Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 13;64(Pt 10):o1943. doi: 10.1107/S1600536808028985

(E)-3-(3,5-Dimethoxy­phen­yl)acrylo­hydrazide

Shahzad Ahmed a, Ghulam Qadeer a, Nasim Hasan Rama a,*, Ales Ruzicka b
PMCID: PMC2959407  PMID: 21201148

Abstract

In the title compound, C11H14N2O3, the planar hydrazide group is oriented with respect to the benzene ring at a dihedral angle of 48.00 (3)°. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For related literature, see: Zheng et al. (2003); Al-Talib et al. (1990); Yousif et al. (1986); Ahmad et al. (2001); Al-Soud et al. (2004); El-Emam et al. (2004); Furniss et al. (1978). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-o1943-scheme1.jpg

Experimental

Crystal data

  • C11H14N2O3

  • M r = 222.24

  • Monoclinic, Inline graphic

  • a = 4.8910 (19) Å

  • b = 30.358 (11) Å

  • c = 8.3440 (14) Å

  • β = 113.02 (3)°

  • V = 1140.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 (1) K

  • 0.90 × 0.17 × 0.12 mm

Data collection

  • Bruker–Nonius KappaCCD area-detector diffractometer

  • Absorption correction: gaussian (Coppens, 1970) T min = 0.961, T max = 0.993

  • 7864 measured reflections

  • 2522 independent reflections

  • 1547 reflections with I > 2σ(I)

  • R int = 0.139

Refinement

  • R[F 2 > 2σ(F 2)] = 0.111

  • wR(F 2) = 0.274

  • S = 1.13

  • 2522 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: DIRAX/LSQ (Duisenberg, 1992); data reduction: EvalCCD (Duisenberg, 1992); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808028985/hk2530sup1.cif

e-64-o1943-sup1.cif (15.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028985/hk2530Isup2.hkl

e-64-o1943-Isup2.hkl (123.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.02 2.870 (3) 168

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge funds from the Higher Education Commission, Islamabad, Pakistan.

supplementary crystallographic information

Comment

Aromatic hydrazides are important intermediates in heterocyclic chemistry and have been used for the synthesis of various biologically active five-membered heterocycles such as 2,5-disubstituted-1,3,4-oxadiazoles (Zheng et al., 2003; Al-Talib et al., 1990) and 5-substituted-2-mercapto-1,3,4-oxadiazoles (Yousif et al., 1986; Ahmad et al., 2001; Al-Soud et al., 2004; El-Emam et al., 2004). In view of the versatility of these compounds, we have synthesized the title compound, and report herein its crystal structure.

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. The benzene ring (C4-C9) is oriented with respect to the planar hydrazide group (O1/N1/N2/C1) at a dihedral angle of 48.00 (3)°.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Experimental

The title compound was synthesized by the reaction of methyl ester of (E)-3 -(3,5-dimethoxyphenyl)acrylic acid with hdyrazine hydrate according to the literature method (Furniss et al., 1978). For the preparation of the title compound, a mixture of (E)-methyl 3-(3,5-dimethoxyphenyl)acrylate (2.22 g, 10 mmol) and hydrazine hydrate (15 ml, 80%) in absolute ethanol (50 ml) was refluxed for 5 h at 413-423 K. The excess solvent was removed by distillation. The solid residue was filtered off, washed with water and recrystallized from ethanol (30%) to give the title compound (yield; 1.55 g, 70%, m.p. 401-402 K). Colorless single crystals were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH and NH2) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with the atom-numbering scheme.

Fig. 2.

Fig. 2.

A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

Reaction scheme.

Crystal data

C11H14N2O3 F(000) = 472
Mr = 222.24 Dx = 1.294 Mg m3
Monoclinic, P21/c Melting point: 401(1) K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 4.8910 (19) Å Cell parameters from 7914 reflections
b = 30.358 (11) Å θ = 1–27.5°
c = 8.3440 (14) Å µ = 0.10 mm1
β = 113.02 (3)° T = 150 K
V = 1140.4 (7) Å3 Needle, colorless
Z = 4 0.90 × 0.17 × 0.12 mm

Data collection

Bruker–Nonius KappaCCD area-detector diffractometer 2522 independent reflections
Radiation source: fine-focus sealed tube 1547 reflections with I > 2σ(I)
graphite Rint = 0.139
Detector resolution: 9.091 pixels mm-1 θmax = 27.5°, θmin = 3.0°
φ and ω scans h = −5→6
Absorption correction: gaussian (Coppens, 1970) k = −39→35
Tmin = 0.961, Tmax = 0.993 l = −10→9
7864 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.111 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.274 H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0574P)2 + 2.6221P] where P = (Fo2 + 2Fc2)/3
2522 reflections (Δ/σ)max < 0.001
145 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.5287 (7) 0.28398 (13) 0.5987 (6) 0.0682 (12)
O2 −0.4491 (7) 0.08832 (12) 0.3236 (4) 0.0538 (9)
O3 0.3626 (7) 0.04751 (12) 0.8379 (5) 0.0544 (10)
N1 0.0720 (8) 0.30545 (13) 0.5611 (6) 0.0468 (10)
H1 −0.0993 0.2975 0.5571 0.056*
N2 0.1165 (9) 0.34981 (14) 0.5371 (6) 0.0548 (11)
H2A 0.2856 0.3587 0.5404 0.066*
H2B −0.0256 0.3683 0.5186 0.066*
C1 0.2785 (10) 0.27498 (16) 0.5905 (7) 0.0469 (12)
C2 0.1853 (14) 0.22916 (18) 0.6146 (10) 0.074 (2)
H2 0.0374 0.2236 0.6559 0.089*
C3 0.3475 (11) 0.19327 (16) 0.5674 (7) 0.0516 (13)
H3 0.5095 0.1979 0.5373 0.062*
C4 0.2192 (10) 0.14822 (15) 0.5752 (6) 0.0437 (11)
C5 −0.0544 (10) 0.13674 (16) 0.4480 (6) 0.0451 (11)
H5 −0.1530 0.1561 0.3573 0.054*
C6 −0.1797 (9) 0.09645 (15) 0.4560 (6) 0.0408 (10)
C7 −0.0380 (9) 0.06710 (16) 0.5864 (6) 0.0417 (10)
H7 −0.1233 0.0400 0.5912 0.050*
C8 0.2389 (10) 0.07918 (15) 0.7127 (6) 0.0404 (10)
C9 0.3672 (9) 0.11891 (15) 0.7090 (6) 0.0391 (10)
H9 0.5512 0.1261 0.7945 0.047*
C10 −0.5868 (11) 0.0472 (2) 0.3233 (7) 0.0605 (15)
H10A −0.4515 0.0237 0.3308 0.073*
H10B −0.7611 0.0443 0.2179 0.073*
H10C −0.6420 0.0461 0.4217 0.073*
C11 0.6609 (10) 0.05504 (18) 0.9613 (7) 0.0547 (13)
H11A 0.7879 0.0602 0.8999 0.066*
H11B 0.7292 0.0296 1.0344 0.066*
H11C 0.6652 0.0802 1.0318 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0387 (18) 0.061 (2) 0.117 (4) −0.0048 (17) 0.043 (2) 0.001 (2)
O2 0.0457 (18) 0.065 (2) 0.0394 (19) −0.0032 (17) 0.0038 (15) −0.0008 (16)
O3 0.0441 (18) 0.056 (2) 0.049 (2) −0.0058 (16) 0.0027 (15) 0.0103 (16)
N1 0.0296 (18) 0.050 (2) 0.062 (3) −0.0042 (17) 0.0198 (18) −0.005 (2)
N2 0.043 (2) 0.049 (2) 0.072 (3) 0.0035 (19) 0.022 (2) 0.009 (2)
C1 0.040 (2) 0.050 (3) 0.056 (3) −0.005 (2) 0.024 (2) −0.003 (2)
C2 0.076 (4) 0.048 (3) 0.134 (6) −0.010 (3) 0.080 (4) −0.008 (3)
C3 0.048 (3) 0.046 (3) 0.069 (4) 0.000 (2) 0.032 (3) 0.006 (2)
C4 0.043 (2) 0.047 (3) 0.049 (3) −0.003 (2) 0.026 (2) −0.004 (2)
C5 0.048 (3) 0.051 (3) 0.035 (2) 0.008 (2) 0.015 (2) 0.008 (2)
C6 0.038 (2) 0.049 (3) 0.037 (2) 0.002 (2) 0.0157 (19) −0.006 (2)
C7 0.040 (2) 0.043 (2) 0.043 (3) −0.005 (2) 0.017 (2) −0.004 (2)
C8 0.042 (2) 0.045 (3) 0.035 (2) 0.003 (2) 0.0155 (19) 0.0017 (19)
C9 0.033 (2) 0.045 (3) 0.038 (2) −0.0019 (19) 0.0119 (18) −0.0043 (19)
C10 0.043 (3) 0.078 (4) 0.049 (3) −0.008 (3) 0.006 (2) −0.009 (3)
C11 0.046 (3) 0.064 (3) 0.045 (3) −0.003 (2) 0.007 (2) 0.006 (2)

Geometric parameters (Å, °)

O1—C1 1.230 (5) C4—C5 1.389 (7)
O2—C6 1.371 (5) C5—H5 0.9301
O2—C10 1.416 (6) C6—C5 1.381 (7)
O3—C8 1.374 (5) C6—C7 1.367 (7)
O3—C11 1.438 (6) C7—H7 0.9298
N1—N2 1.391 (6) C8—C7 1.402 (6)
N1—C1 1.320 (6) C8—C9 1.365 (6)
N1—H1 0.8600 C9—C4 1.389 (7)
N2—H2A 0.8601 C9—H9 0.9300
N2—H2B 0.8600 C10—H10A 0.9598
C1—C2 1.502 (7) C10—H10B 0.9600
C2—H2 0.9300 C10—H10C 0.9600
C3—C2 1.489 (7) C11—H11A 0.9601
C3—C4 1.517 (7) C11—H11B 0.9600
C3—H3 0.9300 C11—H11C 0.9600
N2—N1—H1 118.2 C7—C6—C5 121.3 (4)
C1—N1—N2 123.6 (4) O2—C6—C5 115.2 (4)
C1—N1—H1 118.2 C6—C7—C8 117.9 (4)
N1—N2—H2A 120.1 C6—C7—H7 120.9
N1—N2—H2B 119.9 C8—C7—H7 121.1
H2A—N2—H2B 120.0 C9—C8—O3 124.4 (4)
C6—O2—C10 117.8 (4) C9—C8—C7 122.1 (4)
C8—O3—C11 117.1 (4) O3—C8—C7 113.4 (4)
O1—C1—N1 121.8 (5) C8—C9—C4 119.0 (4)
O1—C1—C2 123.1 (5) C8—C9—H9 120.4
N1—C1—C2 115.1 (4) C4—C9—H9 120.6
C1—C2—H2 122.6 O2—C10—H10A 109.9
C3—C2—C1 114.9 (4) O2—C10—H10B 109.6
C3—C2—H2 122.5 O2—C10—H10C 108.9
C2—C3—C4 112.1 (4) H10A—C10—H10B 109.5
C2—C3—H3 124.0 H10A—C10—H10C 109.5
C4—C3—H3 123.9 H10B—C10—H10C 109.5
C5—C4—C3 119.0 (4) O3—C11—H11A 109.3
C5—C4—C9 119.8 (4) O3—C11—H11B 109.3
C9—C4—C3 121.2 (4) O3—C11—H11C 109.8
C4—C5—H5 120.1 H11A—C11—H11B 109.5
C6—C5—C4 119.9 (4) H11A—C11—H11C 109.5
C6—C5—H5 120.0 H11B—C11—H11C 109.5
C7—C6—O2 123.6 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.86 2.02 2.870 (3) 168.

Symmetry codes: (i) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2530).

References

  1. Ahmad, R., Iqbal, R., Akhtar, R. H., Haq, Z. U., Duddeck, H., Stefaniak, L. & Sitkowski, J. (2001). Nucleosides Nucleotides Nucleic Acids, 20, 1671–1682. [DOI] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Al-Soud, Y. A., Al-Deeri, M. N. & Al-Mosoudi, N. A. (2004). Farmaco, 59, 775–783. [DOI] [PubMed]
  4. Al-Talib, M., Tastoush, H. & Odeh, N. (1990). Synth. Commun.20, 1811–1814.
  5. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  6. Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.
  7. Duisenberg, A. J. M. (1992). J. Appl. Cryst.25, 92–96.
  8. El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. & Lehmann, J. (2004). Bioorg. Med. Chem.12, 5107–5113. [DOI] [PubMed]
  9. Furniss, B. S., Hannaford, A. J., Rogers, V., Smith, P. W. G. & Tatchell, A. R. (1978). Vogel Textbook of Practical Organic Chemistry, 4th ed., p. 1125. London: Longmann.
  10. Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  11. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  14. Yousif, M. Y., Ismail, A. M., Elman, A. A. & El-Kerdawy, M. M. (1986). J. Chem. Soc. Pak.8, 183–187.
  15. Zheng, X., Li, Z., Wang, Y., Chen, W., Huang, Q., Liu, C. & Song, G. (2003). J. Fluorine Chem.117, 163–169.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808028985/hk2530sup1.cif

e-64-o1943-sup1.cif (15.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028985/hk2530Isup2.hkl

e-64-o1943-Isup2.hkl (123.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES