Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 13;64(Pt 10):o1922. doi: 10.1107/S1600536808028584

Methyl 4-hydr­oxy-2H-1,2-benzothia­zine-3-carboxyl­ate 1,1-dioxide

Waseeq Ahmad Siddiqui a,*, Saeed Ahmad b, Hamid Latif Siddiqui c, Mujahid Hussain Bukhari c, Masood Parvez d
PMCID: PMC2959412  PMID: 21201130

Abstract

The asymmetric unit of the title compound, C10H9NO5S, contains two independent mol­ecules. The heterocyclic thia­zine rings in both mol­ecules adopt half-chair conformations, with the S atoms in each mol­ecule displaced by 0.455 (3) and 0.539 (3) Å and the N atoms displaced in the opposite direction by 0.214 (3) and 0.203 (3) Å, from the planes defined by the remaining ring atoms. The crystal structure is stabilized by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds involving both inter- and intra­molecular inter­actions.

Related literature

For related literature, see: Banerjee & Sarkar (2002); Cremer & Pople, 1975; Hirai et al. (1997); Khalil et al. (2000); Myung et al. (2002); Siddiqui et al. (2006, 2008).graphic file with name e-64-o1922-scheme1.jpg

Experimental

Crystal data

  • C10H9NO5S

  • M r = 255.24

  • Triclinic, Inline graphic

  • a = 7.777 (2) Å

  • b = 10.932 (4) Å

  • c = 12.890 (4) Å

  • α = 105.569 (16)°

  • β = 94.588 (15)°

  • γ = 97.763 (16)°

  • V = 1038.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 173 (2) K

  • 0.24 × 0.22 × 0.16 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997) T min = 0.927, T max = 0.950

  • 8716 measured reflections

  • 4693 independent reflections

  • 4191 reflections with (I) > 2.0 σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.088

  • S = 1.03

  • 4693 reflections

  • 321 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks Global, I. DOI: 10.1107/S1600536808028584/lh2686sup1.cif

e-64-o1922-sup1.cif (23KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028584/lh2686Isup2.hkl

e-64-o1922-Isup2.hkl (225.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O4 0.81 (2) 1.86 (2) 2.600 (2) 152 (2)
N1—H1N⋯O9 0.81 (2) 2.22 (2) 2.994 (2) 162 (2)
O6—H6O⋯O9 0.81 (2) 1.91 (2) 2.634 (2) 147 (2)
N2—H2N⋯O3i 0.83 (2) 2.13 (2) 2.966 (2) 175 (2)
C4—H4⋯O8ii 0.95 2.36 3.259 (2) 158
C20—H20A⋯O2i 0.98 2.51 3.267 (2) 134

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

The 1,2-benzothiazine-3-carboxamide 1,1-dioxide derivatives belong to oxicams, a new class of non-steroidal anti-inflammatory drugs (NSAIDs). They are important for their analgesic and anti-inflammatory activities (Hirai et al., 1997, Khalil et al., 2000; Myung et al., 2002). Besides great therapeutic potential, these are very motivating polyfunctional heterocyclic molecules by virtue of their dynamic structural features, which include different tautomeric forms and their possible polymorphism (Banerjee et al., 2002). Continuing our investigations in this important field, (Siddiqui et al., 2006, 2008), we now report the crystal structure of the title compound, (I), in this paper.

An asymmetric unit of (I) contains two independent molecules presented in Figures 1 (molecule a) and 2 (molecule b). The heterocyclic thiazine rings in both molecules adopt half-chair conformations, with atoms S1 and N1 in molecule a and atoms S2 and N2 in molecule b displaced by -0.455 (3), 0.214 (3), -0.539 (3) and 0.203 (3) Å, from the planes defined by C1/C6/C7/C8 and C11/C16/C17/C18, respectively; the puckering parameters (Cremer & Pople, 1975) are Q = 0.4365 (12) and 0.4901 (12) Å, θ = 61.8 (2) and 64.1 (2)° and φ = 19.6 (2) and 17.5 (2)°, respectively. Similar conformations of the corresponding rings have been reported in some closely related compounds (Siddiqui et al., 2008).

The structure is stabilized by classical as well as non-classical hydrogen bonding (Fig. 3). Details of the hydrogen bonding geometry have been provided in Table 1.

Experimental

The synthesis of the title compound as an important intermediate in the synthesis of oxicams has been reported (Siddiqui et al., 2006). Crystals suitable for crystallographic studies were obtained from a solution of MeOH by slow evaporation at 313 K.

Refinement

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: aryl and methyl C—H distances were set to 0.95 and 0.98 Å, respectively, and Uiso(H) = 1.2 Ueq(C). The H-atoms bonded to N and O-atoms were allowed to refine with Uiso(H) = 1.2 Ueq(N/O). The final difference map was free of any chemically significant features.

Figures

Fig. 1.

Fig. 1.

ORTEP-3 (Farrugia, 1997) drawing of molecule a with displacement ellipsoids plotted at 50% probability level.

Fig. 2.

Fig. 2.

ORTEP-3 (Farrugia, 1997) drawing of molecule b with displacement ellipsoids plotted at 50% probability level.

Fig. 3.

Fig. 3.

Part of the crystal structure showing H-bonding interactions (classical in red, non-classical in green and intramolecular in black) indicated by dashed lines, H-atoms not involved in H-bonds have been excluded.

Crystal data

C10H9NO5S Z = 4
Mr = 255.24 F(000) = 528
Triclinic, P1 Dx = 1.633 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.777 (2) Å Cell parameters from 8716 reflections
b = 10.932 (4) Å θ = 3.3–27.5°
c = 12.890 (4) Å µ = 0.32 mm1
α = 105.569 (16)° T = 173 K
β = 94.588 (15)° Block, colorless
γ = 97.763 (16)° 0.24 × 0.22 × 0.16 mm
V = 1038.2 (6) Å3

Data collection

Nonius KappaCCD diffractometer 4693 independent reflections
Radiation source: fine-focus sealed tube 4191 reflections with (I) > 2.0 σ(I)
graphite Rint = 0.019
ω and φ scans θmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (SORTAV; Blessing, 1997) h = −10→10
Tmin = 0.927, Tmax = 0.950 k = −14→13
8716 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.041P)2 + 0.6P] where P = (Fo2 + 2Fc2)/3
4693 reflections (Δ/σ)max = 0.001
321 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.30114 (5) 0.07908 (3) 0.24748 (3) 0.01734 (10)
O1 0.23427 (16) −0.14432 (12) −0.08819 (9) 0.0293 (3)
H1O 0.263 (3) −0.213 (2) −0.0882 (18) 0.035*
O2 0.40121 (15) 0.17533 (10) 0.33806 (9) 0.0245 (2)
O3 0.14058 (14) 0.00794 (10) 0.26334 (9) 0.0218 (2)
O4 0.37308 (17) −0.31701 (11) −0.02096 (9) 0.0311 (3)
O5 0.49305 (15) −0.26084 (10) 0.15392 (9) 0.0243 (2)
N1 0.42676 (17) −0.02186 (12) 0.19684 (10) 0.0200 (3)
H1N 0.528 (3) −0.0058 (18) 0.2220 (16) 0.024*
C1 0.25147 (19) 0.14330 (14) 0.13951 (12) 0.0192 (3)
C2 0.2150 (2) 0.26789 (15) 0.16002 (13) 0.0247 (3)
H2 0.2298 0.3231 0.2320 0.030*
C3 0.1567 (2) 0.31014 (17) 0.07309 (15) 0.0297 (4)
H3 0.1312 0.3951 0.0855 0.036*
C4 0.1354 (2) 0.22878 (18) −0.03175 (14) 0.0303 (4)
H4 0.0919 0.2579 −0.0903 0.036*
C5 0.1764 (2) 0.10609 (17) −0.05230 (13) 0.0251 (3)
H5 0.1628 0.0520 −0.1247 0.030*
C6 0.23809 (18) 0.06130 (15) 0.03369 (12) 0.0195 (3)
C7 0.28587 (19) −0.06738 (15) 0.01323 (12) 0.0207 (3)
C8 0.37515 (19) −0.10618 (14) 0.09083 (12) 0.0194 (3)
C9 0.4123 (2) −0.23777 (15) 0.06838 (12) 0.0220 (3)
C10 0.5260 (3) −0.39148 (16) 0.13991 (15) 0.0326 (4)
H10A 0.5654 −0.4022 0.2106 0.039*
H10B 0.6167 −0.4083 0.0917 0.039*
H10C 0.4183 −0.4522 0.1079 0.039*
S2 0.86977 (5) 0.34163 (3) 0.69700 (3) 0.01856 (10)
O6 0.98831 (15) 0.24939 (12) 0.36870 (9) 0.0243 (2)
H6O 0.932 (3) 0.180 (2) 0.3347 (17) 0.029*
O7 0.72248 (14) 0.39245 (11) 0.66203 (9) 0.0253 (2)
O8 0.89790 (15) 0.34412 (11) 0.80904 (9) 0.0252 (2)
O9 0.77047 (14) 0.03249 (11) 0.33635 (9) 0.0261 (2)
O10 0.70377 (16) −0.02541 (11) 0.48543 (9) 0.0271 (3)
N2 0.86481 (19) 0.19551 (13) 0.62361 (10) 0.0237 (3)
H2N 0.869 (3) 0.138 (2) 0.6548 (16) 0.028*
C11 1.05550 (19) 0.41894 (14) 0.65790 (12) 0.0187 (3)
C12 1.1639 (2) 0.52218 (15) 0.73162 (13) 0.0235 (3)
H12 1.1443 0.5475 0.8056 0.028*
C13 1.3017 (2) 0.58800 (15) 0.69539 (14) 0.0268 (3)
H13 1.3775 0.6586 0.7448 0.032*
C14 1.3285 (2) 0.55026 (16) 0.58671 (14) 0.0263 (3)
H14 1.4209 0.5970 0.5621 0.032*
C15 1.2225 (2) 0.44570 (15) 0.51417 (13) 0.0226 (3)
H15 1.2436 0.4204 0.4404 0.027*
C16 1.08448 (19) 0.37690 (14) 0.54858 (12) 0.0188 (3)
C17 0.97645 (19) 0.26167 (14) 0.47423 (12) 0.0189 (3)
C18 0.8758 (2) 0.17361 (14) 0.51071 (12) 0.0202 (3)
C19 0.77841 (19) 0.05550 (15) 0.43550 (12) 0.0210 (3)
C20 0.6136 (2) −0.14884 (16) 0.41616 (14) 0.0314 (4)
H20A 0.5696 −0.2026 0.4612 0.038*
H20B 0.6949 −0.1918 0.3703 0.038*
H20C 0.5154 −0.1354 0.3702 0.038*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.02110 (18) 0.01460 (17) 0.01551 (17) 0.00158 (13) 0.00185 (13) 0.00366 (13)
O1 0.0381 (7) 0.0269 (6) 0.0176 (5) 0.0025 (5) −0.0021 (5) 0.0001 (5)
O2 0.0315 (6) 0.0189 (5) 0.0189 (5) 0.0002 (4) −0.0004 (4) 0.0010 (4)
O3 0.0232 (5) 0.0212 (5) 0.0227 (5) 0.0017 (4) 0.0056 (4) 0.0091 (4)
O4 0.0415 (7) 0.0223 (6) 0.0243 (6) 0.0063 (5) 0.0025 (5) −0.0023 (5)
O5 0.0300 (6) 0.0194 (5) 0.0242 (5) 0.0078 (4) 0.0048 (4) 0.0052 (4)
N1 0.0187 (6) 0.0191 (6) 0.0189 (6) 0.0035 (5) −0.0025 (5) 0.0009 (5)
C1 0.0182 (7) 0.0201 (7) 0.0203 (7) 0.0006 (5) 0.0029 (5) 0.0087 (6)
C2 0.0268 (8) 0.0227 (8) 0.0274 (8) 0.0053 (6) 0.0072 (6) 0.0100 (6)
C3 0.0292 (8) 0.0280 (8) 0.0400 (9) 0.0088 (7) 0.0099 (7) 0.0196 (7)
C4 0.0251 (8) 0.0404 (10) 0.0338 (9) 0.0062 (7) 0.0037 (7) 0.0243 (8)
C5 0.0214 (7) 0.0342 (9) 0.0213 (7) 0.0020 (6) 0.0018 (6) 0.0119 (7)
C6 0.0153 (6) 0.0233 (7) 0.0200 (7) −0.0004 (5) 0.0019 (5) 0.0081 (6)
C7 0.0200 (7) 0.0223 (7) 0.0169 (7) −0.0005 (6) 0.0028 (5) 0.0026 (6)
C8 0.0200 (7) 0.0172 (7) 0.0179 (7) 0.0014 (5) 0.0017 (5) 0.0006 (5)
C9 0.0225 (7) 0.0201 (7) 0.0222 (7) 0.0022 (6) 0.0058 (6) 0.0037 (6)
C10 0.0453 (10) 0.0215 (8) 0.0359 (9) 0.0137 (7) 0.0117 (8) 0.0105 (7)
S2 0.02101 (18) 0.01819 (18) 0.01673 (17) 0.00130 (13) 0.00248 (13) 0.00623 (13)
O6 0.0270 (6) 0.0265 (6) 0.0175 (5) 0.0004 (5) 0.0052 (4) 0.0045 (4)
O7 0.0216 (5) 0.0304 (6) 0.0277 (6) 0.0065 (4) 0.0061 (4) 0.0128 (5)
O8 0.0328 (6) 0.0254 (6) 0.0168 (5) 0.0017 (5) 0.0022 (4) 0.0069 (4)
O9 0.0244 (5) 0.0298 (6) 0.0193 (5) −0.0009 (5) 0.0018 (4) 0.0019 (4)
O10 0.0362 (6) 0.0198 (5) 0.0211 (5) −0.0044 (5) −0.0014 (5) 0.0044 (4)
N2 0.0358 (7) 0.0173 (6) 0.0172 (6) −0.0004 (5) 0.0012 (5) 0.0065 (5)
C11 0.0184 (7) 0.0171 (7) 0.0224 (7) 0.0042 (5) 0.0023 (5) 0.0080 (6)
C12 0.0247 (7) 0.0204 (7) 0.0236 (7) 0.0028 (6) 0.0036 (6) 0.0032 (6)
C13 0.0240 (8) 0.0193 (7) 0.0326 (8) −0.0013 (6) 0.0021 (6) 0.0024 (6)
C14 0.0209 (7) 0.0236 (8) 0.0358 (9) 0.0023 (6) 0.0085 (6) 0.0102 (7)
C15 0.0221 (7) 0.0222 (7) 0.0252 (7) 0.0054 (6) 0.0066 (6) 0.0077 (6)
C16 0.0185 (7) 0.0175 (7) 0.0217 (7) 0.0053 (5) 0.0019 (5) 0.0068 (6)
C17 0.0184 (7) 0.0211 (7) 0.0176 (7) 0.0055 (5) 0.0020 (5) 0.0051 (6)
C18 0.0228 (7) 0.0191 (7) 0.0174 (7) 0.0030 (6) 0.0004 (5) 0.0039 (6)
C19 0.0188 (7) 0.0219 (7) 0.0214 (7) 0.0039 (6) 0.0008 (5) 0.0048 (6)
C20 0.0410 (10) 0.0193 (8) 0.0267 (8) −0.0059 (7) −0.0052 (7) 0.0026 (6)

Geometric parameters (Å, °)

S1—O2 1.4318 (12) S2—O7 1.4310 (12)
S1—O3 1.4386 (11) S2—O8 1.4356 (12)
S1—N1 1.6139 (14) S2—N2 1.6170 (15)
S1—C1 1.7581 (15) S2—C11 1.7521 (15)
O1—C7 1.3462 (18) O6—C17 1.3426 (18)
O1—H1O 0.81 (2) O6—H6O 0.81 (2)
O4—C9 1.2273 (19) O9—C19 1.2292 (19)
O5—C9 1.3246 (19) O10—C19 1.3267 (19)
O5—C10 1.4513 (19) O10—C20 1.4516 (19)
N1—C8 1.4192 (19) N2—C18 1.4216 (19)
N1—H1N 0.81 (2) N2—H2N 0.83 (2)
C1—C2 1.389 (2) C11—C12 1.388 (2)
C1—C6 1.404 (2) C11—C16 1.407 (2)
C2—C3 1.389 (2) C12—C13 1.392 (2)
C2—H2 0.9500 C12—H12 0.9500
C3—C4 1.387 (3) C13—C14 1.391 (2)
C3—H3 0.9500 C13—H13 0.9500
C4—C5 1.382 (3) C14—C15 1.382 (2)
C4—H4 0.9500 C14—H14 0.9500
C5—C6 1.403 (2) C15—C16 1.397 (2)
C5—H5 0.9500 C15—H15 0.9500
C6—C7 1.464 (2) C16—C17 1.466 (2)
C7—C8 1.363 (2) C17—C18 1.363 (2)
C8—C9 1.463 (2) C18—C19 1.459 (2)
C10—H10A 0.9800 C20—H20A 0.9800
C10—H10B 0.9800 C20—H20B 0.9800
C10—H10C 0.9800 C20—H20C 0.9800
O2—S1—O3 119.12 (7) O7—S2—O8 118.19 (7)
O2—S1—N1 107.80 (7) O7—S2—N2 110.26 (8)
O3—S1—N1 108.47 (7) O8—S2—N2 108.16 (7)
O2—S1—C1 111.19 (7) O7—S2—C11 107.46 (7)
O3—S1—C1 106.82 (7) O8—S2—C11 110.99 (7)
N1—S1—C1 102.09 (7) N2—S2—C11 100.30 (7)
C7—O1—H1O 105.2 (16) C17—O6—H6O 107.2 (14)
C9—O5—C10 116.20 (13) C19—O10—C20 116.26 (13)
C8—N1—S1 118.66 (10) C18—N2—S2 118.32 (11)
C8—N1—H1N 120.1 (14) C18—N2—H2N 122.7 (14)
S1—N1—H1N 117.5 (14) S2—N2—H2N 118.5 (14)
C2—C1—C6 122.02 (14) C12—C11—C16 121.77 (14)
C2—C1—S1 120.29 (12) C12—C11—S2 120.58 (12)
C6—C1—S1 117.53 (11) C16—C11—S2 117.57 (11)
C1—C2—C3 118.62 (15) C11—C12—C13 118.93 (15)
C1—C2—H2 120.7 C11—C12—H12 120.5
C3—C2—H2 120.7 C13—C12—H12 120.5
C4—C3—C2 120.26 (16) C14—C13—C12 119.95 (15)
C4—C3—H3 119.9 C14—C13—H13 120.0
C2—C3—H3 119.9 C12—C13—H13 120.0
C5—C4—C3 121.02 (15) C15—C14—C13 120.86 (15)
C5—C4—H4 119.5 C15—C14—H14 119.6
C3—C4—H4 119.5 C13—C14—H14 119.6
C4—C5—C6 120.04 (15) C14—C15—C16 120.39 (15)
C4—C5—H5 120.0 C14—C15—H15 119.8
C6—C5—H5 120.0 C16—C15—H15 119.8
C5—C6—C1 117.94 (14) C15—C16—C11 118.04 (14)
C5—C6—C7 120.79 (14) C15—C16—C17 121.18 (14)
C1—C6—C7 121.28 (13) C11—C16—C17 120.75 (13)
O1—C7—C8 122.72 (14) O6—C17—C18 123.41 (14)
O1—C7—C6 114.65 (13) O6—C17—C16 114.53 (13)
C8—C7—C6 122.63 (13) C18—C17—C16 122.04 (13)
C7—C8—N1 120.81 (13) C17—C18—N2 120.21 (13)
C7—C8—C9 120.74 (14) C17—C18—C19 121.04 (14)
N1—C8—C9 118.38 (13) N2—C18—C19 118.75 (13)
O4—C9—O5 124.32 (14) O9—C19—O10 123.81 (14)
O4—C9—C8 122.83 (14) O9—C19—C18 123.27 (14)
O5—C9—C8 112.84 (13) O10—C19—C18 112.90 (13)
O5—C10—H10A 109.5 O10—C20—H20A 109.5
O5—C10—H10B 109.5 O10—C20—H20B 109.5
H10A—C10—H10B 109.5 H20A—C20—H20B 109.5
O5—C10—H10C 109.5 O10—C20—H20C 109.5
H10A—C10—H10C 109.5 H20A—C20—H20C 109.5
H10B—C10—H10C 109.5 H20B—C20—H20C 109.5
O2—S1—N1—C8 −163.59 (11) O7—S2—N2—C18 62.59 (13)
O3—S1—N1—C8 66.16 (13) O8—S2—N2—C18 −166.78 (11)
C1—S1—N1—C8 −46.39 (13) C11—S2—N2—C18 −50.50 (13)
O2—S1—C1—C2 −36.33 (14) O7—S2—C11—C12 98.46 (13)
O3—S1—C1—C2 95.16 (13) O8—S2—C11—C12 −32.17 (15)
N1—S1—C1—C2 −151.06 (12) N2—S2—C11—C12 −146.32 (13)
O2—S1—C1—C6 148.12 (11) O7—S2—C11—C16 −78.25 (13)
O3—S1—C1—C6 −80.39 (12) O8—S2—C11—C16 151.13 (11)
N1—S1—C1—C6 33.39 (13) N2—S2—C11—C16 36.98 (13)
C6—C1—C2—C3 2.7 (2) C16—C11—C12—C13 1.9 (2)
S1—C1—C2—C3 −172.61 (12) S2—C11—C12—C13 −174.65 (12)
C1—C2—C3—C4 0.1 (2) C11—C12—C13—C14 0.3 (2)
C2—C3—C4—C5 −1.9 (3) C12—C13—C14—C15 −1.7 (2)
C3—C4—C5—C6 1.0 (2) C13—C14—C15—C16 0.9 (2)
C4—C5—C6—C1 1.7 (2) C14—C15—C16—C11 1.2 (2)
C4—C5—C6—C7 −178.64 (14) C14—C15—C16—C17 −176.71 (14)
C2—C1—C6—C5 −3.6 (2) C12—C11—C16—C15 −2.7 (2)
S1—C1—C6—C5 171.83 (11) S2—C11—C16—C15 174.00 (11)
C2—C1—C6—C7 176.74 (14) C12—C11—C16—C17 175.28 (14)
S1—C1—C6—C7 −7.80 (18) S2—C11—C16—C17 −8.05 (18)
C5—C6—C7—O1 −12.3 (2) C15—C16—C17—O6 −17.4 (2)
C1—C6—C7—O1 167.33 (13) C11—C16—C17—O6 164.76 (13)
C5—C6—C7—C8 167.84 (14) C15—C16—C17—C18 161.26 (14)
C1—C6—C7—C8 −12.5 (2) C11—C16—C17—C18 −16.6 (2)
O1—C7—C8—N1 −179.89 (14) O6—C17—C18—N2 −177.69 (13)
C6—C7—C8—N1 0.0 (2) C16—C17—C18—N2 3.8 (2)
O1—C7—C8—C9 −3.0 (2) O6—C17—C18—C19 2.6 (2)
C6—C7—C8—C9 176.87 (13) C16—C17—C18—C19 −175.92 (13)
S1—N1—C8—C7 34.08 (19) S2—N2—C18—C17 34.94 (19)
S1—N1—C8—C9 −142.91 (12) S2—N2—C18—C19 −145.32 (12)
C10—O5—C9—O4 −3.7 (2) C20—O10—C19—O9 2.1 (2)
C10—O5—C9—C8 176.75 (13) C20—O10—C19—C18 −176.20 (13)
C7—C8—C9—O4 3.3 (2) C17—C18—C19—O9 −5.4 (2)
N1—C8—C9—O4 −179.71 (14) N2—C18—C19—O9 174.86 (14)
C7—C8—C9—O5 −177.16 (13) C17—C18—C19—O10 172.87 (14)
N1—C8—C9—O5 −0.17 (19) N2—C18—C19—O10 −6.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O···O4 0.81 (2) 1.86 (2) 2.600 (2) 152 (2)
N1—H1N···O9 0.81 (2) 2.22 (2) 2.994 (2) 162 (2)
O6—H6O···O9 0.81 (2) 1.91 (2) 2.634 (2) 147 (2)
N2—H2N···O3i 0.83 (2) 2.13 (2) 2.966 (2) 175 (2)
C4—H4···O8ii 0.95 2.36 3.259 (2) 158
C20—H20A···O2i 0.98 2.51 3.267 (2) 134

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2686).

References

  1. Banerjee, R. & Sarkar, M. (2002). J. Lumin.99, 255–263.
  2. Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354-1358.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Hirai, T., Matsumoto, S. & Kishi, I. (1997). J. Chromatogr. B, 692, 375–388. [DOI] [PubMed]
  6. Hooft, R. (1998). COLLECT Nonius B V, Delft, The Netherlands.
  7. Khalil, S., Borham, N. & El-Ries, M. A. (2000). Anal. Chim. Acta, 441, 215–219.
  8. Myung, S. P., Eun, S. C., Myung, S. L. & Soon-kyoung, K. (2002). Bull. Korean Chem. Soc.23, 1836–1838.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. and R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6. [DOI] [PubMed]
  12. Siddiqui, W. A., Ahmad, S., Ullah, I. & Malik, A. (2006). J. Chem. Soc. Pak.28, 583–589.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks Global, I. DOI: 10.1107/S1600536808028584/lh2686sup1.cif

e-64-o1922-sup1.cif (23KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028584/lh2686Isup2.hkl

e-64-o1922-Isup2.hkl (225.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES