Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 20;64(Pt 10):m1295–m1296. doi: 10.1107/S1600536808029413

catena-Poly[[[diaqua­manganese(II)]-μ3-pyridine-2,3-dicarboxyl­ato-κ4 N,O 2:O 3:O 3′] dihydrate]

Zhong-Xiang Du a,*, Jun-Xia Li a
PMCID: PMC2959413  PMID: 21201037

Abstract

In the title coordination polymer, {[Mn(C7H3NO4)(H2O)2]·2H2O}n, the MnII ion is coordinated in a distorted octahedral environment by the O atoms of two water mol­ecules, one N and one O atoms of the chelating pyridine-2,3-dicarboxyl­ate (PDC) dianion, and two axial bridging carboxyl­ate O atoms from two adjacent PDC ligands. The fully deprotonated PDC anion acts a μ3-bridging ligand, establishing a chain structure along the a axis. These polymeric chains are connected into a three-dimensional framework via several inter­molecular O—H⋯O hydrogen bonds.

Related literature

For related literature, see: Aghabozorg et al. (2007); Baruah et al. (2007); Drew et al. (1971); Ghoer & Youssef (1993); Kang et al. (2006); Li et al. (2006); Manteghi et al. (2007); Patrick et al. (2003); Sun et al. (2006); Takusagawa & Koetzle (1978); Turner & Batten (2007); Zhang & You (2003); Zhang et al. (2003).graphic file with name e-64-m1295-scheme1.jpg

Experimental

Crystal data

  • [Mn(C7H3NO4)(H2O)2]·2H2O

  • M r = 292.11

  • Monoclinic, Inline graphic

  • a = 6.5719 (8) Å

  • b = 7.6703 (9) Å

  • c = 20.566 (3) Å

  • β = 93.3540 (10)°

  • V = 1034.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 291 (2) K

  • 0.38 × 0.15 × 0.11 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.639, T max = 0.865

  • 6428 measured reflections

  • 1921 independent reflections

  • 1774 reflections with I > 2σ(I)

  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.095

  • S = 1.07

  • 1921 reflections

  • 154 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.74 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029413/sg2261sup1.cif

e-64-m1295-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029413/sg2261Isup2.hkl

e-64-m1295-Isup2.hkl (94.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Mn1—O3 2.098 (3)
Mn1—O4 2.139 (3)
Mn1—O8i 2.144 (2)
Mn1—O5 2.160 (3)
Mn1—O6ii 2.242 (3)
Mn1—N1i 2.263 (3)
O3—Mn1—O4 96.07 (11)
O3—Mn1—O8i 168.80 (10)
O3—Mn1—O5 87.98 (10)
O4—Mn1—O5 87.54 (10)
O8i—Mn1—O5 95.89 (9)
O3—Mn1—O6ii 84.63 (10)
O5—Mn1—O6ii 164.11 (10)
O4—Mn1—N1i 166.71 (11)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1W⋯O8 0.84 1.95 2.793 (4) 177
O1—H2W⋯O2iii 0.84 2.09 2.845 (4) 149
O2—H4W⋯O6iv 0.84 2.07 2.884 (4) 165
O2—H4W⋯O4v 0.84 2.56 3.043 (4) 118
O2—H3W⋯O4vi 0.85 1.94 2.788 (4) 180
O3—H5W⋯O7iv 0.84 1.85 2.691 (4) 175
O3—H6W⋯O1iv 0.85 1.92 2.730 (4) 159
O4—H8W⋯O1i 0.85 2.61 3.457 (4) 180
O4—H7W⋯O1vii 0.84 1.86 2.691 (4) 168
O4—H8W⋯O2vii 0.85 2.37 2.788 (4) 111

Symmetry codes: (i) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 20471026) and the Natural Science Foundation of Henan Province (grant No. 0311021200).

supplementary crystallographic information

Comment

Pyridine-2,3-dicarboxylic acid (H2PDC), being a potential multidentate bridging ligand, has aroused considerable interests in recent decades and a number of metal complexes have been reported. In these complexes, pyridine-2,3-dicarboxylic acid is partly or fully deprotonated and shows diverse coordination modes, such as non-coordinate (Takusagawa & Koetzle, 1978; Manteghi et al., 2007), monodentate (Drew et al., 1971; Ghoer & Youssef, 1993; Patrick et al., 2003; Baruah et al., 2007), µ2-bridging (Zhang et al., 2003; Aghabozorg et al., 2007; Sun et al., 2006; Turner & Batten, 2007; Kang et al., 2006), µ3-bridging (Zhang & You, 2003; Li et al., 2006). Here we describe another new compound in which the PDC is µ3-bridging, (I),(Fig. 1).

Complex (I) is composed of {[Mn(C7H3NO4)(H2O)2].2H2O}n units, in which the MnII ion is six-coordinated in a distorted octahedral geometry (Table 1) formed by two coordinated water molecules, one N and one O atoms of a PDC dianion and two different carboxylate O atoms in the axial position from another two adjacent PDC ligands. The deprotonated PDC are µ3-bridging ligands and they join the neighbouring MnII ions to form this one-dimensional linear chain structure along a axis. This kind of µ3-bridging mode is different from that have been published (Zhang & You, 2003; Li et al., 2006) as in this paper one bridging carboxylate O atom only links one metal ions, while in the latter one bridging carboxylate O atom simultaneously links two metal ions,respectively.

The carboxylate O atoms of PDC dianion and coordinate and non coordinated water molecules are all involved in rich O—H···O intermolecular hydrogen bonds (Table 2) and they connect polymetric chains into a three-dimensional framework (Fig. 2).

Experimental

The ligand H2PDC (1 mmol, 0.17 g) and NaOH (2 mmol, 0.08 g) were dissolved in water and methanol mixed solvent (20 ml, v/v 1:1). To this solution, Mn(CH3COO)2.4H2O (1 mmol, 0.25 g) was added and the resulting mixture was stirred and refluxed at 343 K for 5 h, then cooled to room temperature. After filtration and evaporation in air for a week, pink block-shaped crystals were obtained in a yield of 37%. Analysis, found (%): C, 28.70; H, 3.80; N, 4.71. C7H11Mn N O8 requires (%): C,28.75; H,3.76; N,4.79. (CCDC number 668395)

Refinement

H atoms bonded to C atoms were positioned geometrically with C—H distance of 0.93 Å, and treated as riding atoms, with Uiso(H) = 1.2Ueq. H atoms bonded to O atoms were located in a difference Fourier map and refined isotropically.

Figures

Fig. 1.

Fig. 1.

The structure of the building unit of the one-dimensional of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Uncoordinate water molecules and H atoms on C atoms have been omitted. [Symmetry codes: (A) 2 - x, 2 - y, 1 - z; (B) 1 - x, 2 - y, 1 - z; (C) -1 + x, y, z.]

Fig. 2.

Fig. 2.

The crystal packing of (I), showing hydrogen bonds as dashed lines. For the sake of clarity, H atoms on C atoms have been omitted.

Crystal data

[Mn(C7H3NO4)(H2O)2]·2H2O F(000) = 596
Mr = 292.11 Dx = 1.875 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4039 reflections
a = 6.5719 (8) Å θ = 2.8–28.1°
b = 7.6703 (9) Å µ = 1.31 mm1
c = 20.566 (3) Å T = 291 K
β = 93.354 (1)° Block, pink
V = 1034.9 (2) Å3 0.38 × 0.15 × 0.11 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 1921 independent reflections
Radiation source: fine-focus sealed tube 1774 reflections with I > 2σ(I)
graphite Rint = 0.015
φ and ω scans θmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −7→7
Tmin = 0.640, Tmax = 0.865 k = −9→9
6428 measured reflections l = −23→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.042P)2 + 2.0761P] where P = (Fo2 + 2Fc2)/3
1921 reflections (Δ/σ)max = 0.001
154 parameters Δρmax = 0.49 e Å3
3 restraints Δρmin = −0.74 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 0.69176 (6) 0.76827 (6) 0.38821 (2) 0.01743 (17)
O1 0.3592 (5) 0.7546 (3) 0.70493 (14) 0.0449 (7)
H1W 0.3455 0.8191 0.6719 0.067*
H2W 0.2695 0.7814 0.7307 0.067*
O2 0.9617 (5) 0.4500 (4) 0.74324 (14) 0.0543 (8)
H3W 0.8800 0.5269 0.7561 0.081*
H4W 0.9878 0.3937 0.7099 0.081*
O3 0.7081 (4) 0.4951 (3) 0.38849 (13) 0.0437 (7)
H5W 0.7244 0.4234 0.4193 0.066*
H6W 0.6950 0.4383 0.3532 0.066*
O4 0.6927 (4) 0.7979 (4) 0.28481 (13) 0.0420 (6)
H7W 0.5997 0.7749 0.2562 0.063*
H8W 0.6803 0.9080 0.2873 0.063*
O5 0.3643 (4) 0.7440 (3) 0.37627 (14) 0.0374 (6)
O6 0.0271 (4) 0.7556 (3) 0.37392 (13) 0.0362 (6)
O7 0.2349 (5) 0.7489 (3) 0.51820 (13) 0.0393 (6)
O8 0.3057 (4) 0.9571 (3) 0.59238 (11) 0.0313 (5)
N1 0.2620 (4) 1.2081 (4) 0.50222 (14) 0.0272 (6)
C1 0.2629 (5) 0.9023 (4) 0.53482 (15) 0.0251 (7)
C2 0.2440 (4) 1.0408 (4) 0.48204 (15) 0.0234 (6)
C3 0.2117 (5) 1.0010 (4) 0.41594 (16) 0.0257 (7)
C4 0.1928 (4) 1.1277 (4) 0.37076 (14) 0.0212 (6)
H4 0.1690 1.1020 0.3268 0.025*
C5 0.2096 (6) 1.2911 (5) 0.39172 (18) 0.0374 (9)
H5 0.1971 1.3810 0.3614 0.045*
C6 0.2452 (6) 1.3332 (5) 0.45735 (17) 0.0331 (8)
H6 0.2574 1.4495 0.4699 0.040*
C7 0.2003 (5) 0.8171 (5) 0.38797 (15) 0.0255 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0193 (3) 0.0159 (3) 0.0170 (3) −0.00007 (16) 0.00015 (17) −0.00174 (16)
O1 0.0536 (18) 0.0450 (16) 0.0354 (15) 0.0076 (13) −0.0033 (13) 0.0040 (12)
O2 0.0584 (19) 0.0623 (19) 0.0426 (16) 0.0277 (16) 0.0062 (13) −0.0098 (14)
O3 0.0653 (19) 0.0273 (13) 0.0376 (15) −0.0005 (12) −0.0048 (13) 0.0011 (11)
O4 0.0416 (15) 0.0498 (16) 0.0339 (14) −0.0068 (13) −0.0048 (11) 0.0014 (12)
O5 0.0277 (13) 0.0371 (14) 0.0475 (16) 0.0024 (10) 0.0035 (11) −0.0113 (11)
O6 0.0259 (13) 0.0410 (15) 0.0413 (15) −0.0027 (10) −0.0015 (11) −0.0103 (11)
O7 0.0592 (18) 0.0225 (13) 0.0353 (14) −0.0028 (11) −0.0030 (13) 0.0002 (10)
O8 0.0405 (14) 0.0286 (12) 0.0242 (12) 0.0002 (10) −0.0024 (10) 0.0017 (10)
N1 0.0272 (14) 0.0247 (13) 0.0297 (15) 0.0008 (11) 0.0024 (11) −0.0001 (11)
C1 0.0223 (16) 0.0250 (16) 0.0279 (16) 0.0009 (12) 0.0010 (12) −0.0004 (13)
C2 0.0182 (15) 0.0249 (16) 0.0273 (16) 0.0004 (12) 0.0016 (12) 0.0000 (13)
C3 0.0183 (15) 0.0292 (17) 0.0298 (17) −0.0003 (12) 0.0016 (12) −0.0001 (13)
C4 0.0262 (16) 0.0241 (15) 0.0133 (13) 0.0011 (12) −0.0004 (11) 0.0015 (11)
C5 0.046 (2) 0.0328 (19) 0.033 (2) 0.0036 (16) 0.0031 (16) 0.0099 (15)
C6 0.043 (2) 0.0233 (16) 0.0325 (18) −0.0003 (14) 0.0019 (15) 0.0017 (14)
C7 0.0232 (17) 0.0311 (17) 0.0220 (15) 0.0000 (13) 0.0002 (12) −0.0007 (13)

Geometric parameters (Å, °)

Mn1—O3 2.098 (3) O6—Mn1iii 2.243 (2)
Mn1—O4 2.139 (3) O7—C1 1.236 (4)
Mn1—O8i 2.144 (2) O8—C1 1.272 (4)
Mn1—O5 2.160 (3) O8—Mn1i 2.144 (2)
Mn1—O6ii 2.242 (3) N1—C6 1.332 (4)
Mn1—N1i 2.263 (3) N1—C2 1.352 (4)
O1—H1W 0.8416 N1—Mn1i 2.263 (3)
O1—H2W 0.8409 C1—C2 1.519 (4)
O2—H3W 0.8502 C2—C3 1.397 (4)
O2—H4W 0.8369 C3—C4 1.346 (4)
O3—H5W 0.8410 C3—C7 1.523 (5)
O3—H6W 0.8474 C4—C5 1.327 (5)
O4—H7W 0.8414 C4—H4 0.9300
O4—H8W 0.8497 C5—C6 1.394 (5)
O5—C7 1.250 (4) C5—H5 0.9300
O6—C7 1.250 (4) C6—H6 0.9300
O3—Mn1—O4 96.07 (11) C1—O8—Mn1i 119.8 (2)
O3—Mn1—O8i 168.80 (10) C6—N1—C2 118.0 (3)
O4—Mn1—O8i 94.60 (10) C6—N1—Mn1i 129.3 (2)
O3—Mn1—O5 87.98 (10) C2—N1—Mn1i 112.7 (2)
O4—Mn1—O5 87.54 (10) O7—C1—O8 126.4 (3)
O8i—Mn1—O5 95.89 (9) O7—C1—C2 117.6 (3)
O3—Mn1—O6ii 84.63 (10) O8—C1—C2 116.0 (3)
O4—Mn1—O6ii 79.30 (10) N1—C2—C3 120.8 (3)
O8i—Mn1—O6ii 94.02 (9) N1—C2—C1 116.3 (3)
O5—Mn1—O6ii 164.11 (10) C3—C2—C1 122.9 (3)
O3—Mn1—N1i 94.21 (10) C4—C3—C2 121.1 (3)
O4—Mn1—N1i 166.71 (11) C4—C3—C7 114.1 (3)
O8i—Mn1—N1i 74.75 (9) C2—C3—C7 124.8 (3)
O5—Mn1—N1i 101.24 (10) C5—C4—C3 117.1 (3)
O6ii—Mn1—N1i 93.33 (10) C5—C4—H4 121.5
H1W—O1—H2W 108.6 C3—C4—H4 121.5
H3W—O2—H4W 140.9 C4—C5—C6 122.6 (3)
Mn1—O3—H5W 131.3 C4—C5—H5 118.7
Mn1—O3—H6W 120.6 C6—C5—H5 118.7
H5W—O3—H6W 108.1 N1—C6—C5 120.4 (3)
Mn1—O4—H7W 128.9 N1—C6—H6 119.8
Mn1—O4—H8W 92.3 C5—C6—H6 119.8
H7W—O4—H8W 100.4 O6—C7—O5 124.7 (3)
C7—O5—Mn1 143.5 (2) O6—C7—C3 117.4 (3)
C7—O6—Mn1iii 147.3 (2) O5—C7—C3 117.6 (3)
O3—Mn1—O5—C7 151.0 (4) N1—C2—C3—C7 176.7 (3)
O4—Mn1—O5—C7 −112.9 (4) C1—C2—C3—C7 −2.7 (5)
O8i—Mn1—O5—C7 −18.5 (4) C2—C3—C4—C5 1.1 (5)
O6ii—Mn1—O5—C7 −146.8 (4) C7—C3—C4—C5 −177.4 (3)
N1i—Mn1—O5—C7 57.1 (4) C3—C4—C5—C6 0.0 (5)
Mn1i—O8—C1—O7 −171.8 (3) C2—N1—C6—C5 0.2 (5)
Mn1i—O8—C1—C2 7.9 (4) Mn1i—N1—C6—C5 −177.7 (3)
C6—N1—C2—C3 0.9 (5) C4—C5—C6—N1 −0.7 (6)
Mn1i—N1—C2—C3 179.1 (2) Mn1iii—O6—C7—O5 165.6 (3)
C6—N1—C2—C1 −179.7 (3) Mn1iii—O6—C7—C3 −20.0 (6)
Mn1i—N1—C2—C1 −1.4 (3) Mn1—O5—C7—O6 −177.6 (3)
O7—C1—C2—N1 175.7 (3) Mn1—O5—C7—C3 8.0 (6)
O8—C1—C2—N1 −4.0 (4) C4—C3—C7—O6 −81.4 (4)
O7—C1—C2—C3 −4.8 (5) C2—C3—C7—O6 100.2 (4)
O8—C1—C2—C3 175.5 (3) C4—C3—C7—O5 93.4 (4)
N1—C2—C3—C4 −1.6 (5) C2—C3—C7—O5 −85.0 (4)
C1—C2—C3—C4 179.0 (3)

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x+1, y, z; (iii) x−1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1W···O8 0.84 1.95 2.793 (4) 177.
O1—H2W···O2iv 0.84 2.09 2.845 (4) 149.
O2—H4W···O6v 0.84 2.07 2.884 (4) 165.
O2—H4W···O4vi 0.84 2.56 3.043 (4) 118.
O2—H3W···O4vii 0.85 1.94 2.788 (4) 180.
O3—H5W···O7v 0.84 1.85 2.691 (4) 175.
O3—H6W···O1v 0.85 1.92 2.730 (4) 159.
O4—H8W···O1i 0.85 2.61 3.457 (4) 180.
O4—H7W···O1viii 0.84 1.86 2.691 (4) 168.
O4—H8W···O2viii 0.85 2.37 2.788 (4) 111.

Symmetry codes: (iv) −x+1, y+1/2, −z+3/2; (v) −x+1, −y+1, −z+1; (vi) −x+2, −y+1, −z+1; (vii) x, −y+3/2, z+1/2; (i) −x+1, −y+2, −z+1; (viii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2261).

References

  1. Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst.E63, m2468–m2469. [DOI] [PMC free article] [PubMed]
  2. Baruah, A. M., Karmakar, A. & Baruah, J. B. (2007). Polyhedron, 26, 4518–4524.
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Drew, M. B., Matthews, R. W. & Walton, R. A. (1971). J. Chem. Soc. A, pp. 2959–2962.
  5. Ghoer, M. S. & Youssef, A. A. (1993). Polyhedron, 12, 1871–1878.
  6. Kang, Y., Zhang, J., Li, Z. J., Cheng, J. K. & Yao, Y. G. (2006). Inorg. Chim. Acta, 359, 2201–2209.
  7. Li, M., Xiang, J. F., Yuan, L. J., Wu, S. M., Chen, S. P. & Sun, J. T. (2006). Cryst. Growth Des.6, 2036–2040.
  8. Manteghi, F., Ghadermazi, M. & Aghabozorg, H. (2007). Acta Cryst. E63, o2809. [DOI] [PMC free article] [PubMed]
  9. Patrick, B. O., Stevens, C. L., Storr, A. & Thompson, R. C. (2003). Polyhedron, 22, 3025–3035.
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sun, L. P., Niu, S. Y., Jin, J., Yang, G. D. & Ye, L. (2006). Inorg. Chem. Commun.9, 679–682.
  13. Takusagawa, F. & Koetzle, T. F. (1978). Acta Cryst. B34, 1149–1154.
  14. Turner, D. R. & Batten, S. R. (2007). Acta Cryst. E63, m452–m454.
  15. Zhang, X.-M., Fang, R.-Q., Wu, H.-S. & Ng, S. W. (2003). Acta Cryst. E59, m1143–m1145.
  16. Zhang, H.-T. & You, X.-Z. (2003). Acta Cryst. C59, m313–m314. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029413/sg2261sup1.cif

e-64-m1295-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029413/sg2261Isup2.hkl

e-64-m1295-Isup2.hkl (94.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES