Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 24;64(Pt 10):o2006. doi: 10.1107/S1600536808030353

(2R)-N-[5-(4-Chloro­phen­yl)-1,3,4-thia­diazol-2-yl]-2-(cinnamoylamino)propanamide

Shao-Hua Li a,b, Hui-Ming Huang b, Bin-Hai Kuang b, Guo-Gang Tu b,*, Cheng-Mei Liu a,
PMCID: PMC2959416  PMID: 21201204

Abstract

In the title compound, C20H17ClN4O2S, the dihedral angle between the two benzene rings is 65.9 (1)°; the corresponding angle between the 4-chloro­phenyl and thia­diazole rings is 3.4 (8)°. The conformations of the N—H and C=O bonds are anti with respect to each other. The enone groups show a trans configuration. The structure displays intermolecular N—H⋯O, C—H⋯N, C—H⋯S and C—H⋯O hydrogen bonding.

Related literature

For 1,3,4-thia­diazole scaffold compounds and their biological activity, see: Tu et al. (2008). For the synthesis, see: Foroumadi et al. (1999); Levy & Palmer (1942); Song et al. (1992). For related structures, see: Fun et al. (2008); Gowda et al. (2008) Thiruvalluvar et al. (2008).graphic file with name e-64-o2006-scheme1.jpg

Experimental

Crystal data

  • C20H17ClN4O2S

  • M r = 412.89

  • Orthorhombic, Inline graphic

  • a = 6.6324 (15) Å

  • b = 8.575 (2) Å

  • c = 34.367 (8) Å

  • V = 1954.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 (2) K

  • 0.41 × 0.17 × 0.07 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 14721 measured reflections

  • 4706 independent reflections

  • 2807 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.099

  • S = 1.02

  • 4706 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983), 1876 Friedel pairs

  • Flack parameter: −0.12 (7)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: APEX2; software used to prepare material for publication: APEX2 and publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030353/gw2052sup1.cif

e-64-o2006-sup1.cif (21.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030353/gw2052Isup2.hkl

e-64-o2006-Isup2.hkl (230.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 1.94 2.802 (3) 175
C7—H7A⋯N3ii 0.93 2.54 3.446 (3) 164
C11—H11C⋯S1iii 0.96 2.77 3.526 (3) 136
C20—H20A⋯O2iv 0.93 2.48 3.380 (3) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

In our previous work, 1,3,4-thiadiazole scaffold compounds and their biological activity have been studied (Tu et al., 2008). In view of the importance of these organic materials, the title compound (Fig. 1) was synthesized (Foroumadi et al., 1999; Levy & Palmer 1942; Song et al., 1992) and its crystal structure is reported here. The structure of title compound, C20H17ClN4O2S, has orthorhombic (P212121) symmetry. The dihedral angles between the p-cholobenzene and thiadiazol rings is 3.4 (8) °, the corresponding values between the two benzene rings are measured to 65.9 (1)°. The conformations of the N—H and C=O bonds are anti with respect to each other. The enone groups are trans configurated. Bond lengths and angles are in normal ranges and comparable to those in related structures (Gowda et al., 2008; Fun et al., 2008; Thiruvalluvar et al., 2008). In the crystal structure, molecules are linked through intermolecular hydrogen bonds forming a three-dimensional network (Table 1, Figure 2).

Experimental

N,N-Dicyclohexylcarbodiimide (5.7 mmol) was added to a cooled solution of N-cinnamoyl-D-alanine (5.6 mmol) and N-hydroxysuccinimide (5.6 mmol) in freshly distillation dioxane (30 ml). The reaction mixture was stirred overnight at room temperature. The insoluble material was filtered off and washed with cold dioxane. 2-Amino-5-(4-choloxyphenyl)-1,3,4-thiadiazole (5.5 mmol) was added to the filtrate and the reaction mixture was stirred for 48 hr at room temperature. The solvent was removed under reduced pressure. The residual was dissolved in EtOAc and the insoluble material was filtered off. The filtrate was washed successively with saturated Na2CO3 solution(20 ml, x 3), water(20 ml, x 1), 0.1 M HCl(20 ml, x 3) and water(20 ml, x 1). The organic layer evaporated in vacuo, the residual was recrystallized from methanol. Colorless block-shaped single crystals of the title compound suitable for X-ray diffraction analysis precipitated after several days.

Refinement

H atoms were positioned geometrically and refined using a riding model using SHELXL97 default values (Uĩso(H) = 1.2 Ueq(C) for CH and CH2 groups and Uĩso(H) = 1.5 Ueq(C) for CH3). Refinement with all data (Friedel opposites not merged) led to an unsuitably large error of the Flack parameter. The final refinement was therefore performed with a data set with merged Friedel pairs, hence the calculated Flack parameter is meaningless. The absolute configuration is nevertheless undoubtly as described since enantiomerically pure starting compounds were used and the reaction conditions are not condidered to lead to racemization or inversion.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of title compound, viewed along the a axis with hydrogen bonds drawn as dashed lines.

Crystal data

C20H17ClN4O2S Dx = 1.403 Mg m3
Mr = 412.89 Melting point: 480 K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3308 reflections
a = 6.6324 (15) Å θ = 2.4–21.0°
b = 8.575 (2) Å µ = 0.33 mm1
c = 34.367 (8) Å T = 296 K
V = 1954.6 (8) Å3 Bolck, colourless
Z = 4 0.41 × 0.18 × 0.07 mm
F(000) = 856

Data collection

Bruker SMART CCD area-detector diffractometer 2807 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.046
graphite θmax = 28.4°, θmin = 2.4°
φ and ω scans h = −8→8
14721 measured reflections k = −11→11
4706 independent reflections l = −45→44

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0226P)2 + 0.0747P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
4706 reflections Δρmax = 0.15 e Å3
254 parameters Δρmin = −0.20 e Å3
0 restraints Absolute structure: Flack (1983), 1876 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.12 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6789 (5) 0.2710 (4) 0.19355 (8) 0.0782 (9)
H1B 0.6067 0.2030 0.1777 0.094*
C2 0.6159 (6) 0.2979 (4) 0.23129 (10) 0.0996 (13)
H2B 0.5024 0.2468 0.2408 0.120*
C3 0.7184 (6) 0.3981 (5) 0.25465 (9) 0.0977 (12)
H3B 0.6745 0.4158 0.2800 0.117*
C4 0.8862 (6) 0.4732 (4) 0.24098 (8) 0.0937 (12)
H4B 0.9551 0.5434 0.2568 0.112*
C5 0.9526 (5) 0.4443 (4) 0.20360 (8) 0.0756 (9)
H5A 1.0692 0.4927 0.1947 0.091*
C6 0.8481 (5) 0.3443 (3) 0.17924 (7) 0.0613 (8)
C7 0.9087 (5) 0.3172 (3) 0.13882 (7) 0.0612 (8)
H7A 0.8246 0.2533 0.1242 0.073*
C8 1.0669 (4) 0.3722 (3) 0.12100 (7) 0.0584 (7)
H8A 1.1579 0.4314 0.1353 0.070*
C9 1.1094 (4) 0.3464 (3) 0.07984 (7) 0.0523 (7)
C10 1.3357 (4) 0.4044 (3) 0.02573 (6) 0.0483 (6)
H10A 1.3421 0.2934 0.0190 0.058*
C11 1.5445 (4) 0.4755 (3) 0.02035 (8) 0.0626 (8)
H11A 1.6384 0.4245 0.0374 0.094*
H11B 1.5397 0.5847 0.0264 0.094*
H11C 1.5870 0.4619 −0.0061 0.094*
C12 1.1836 (4) 0.4831 (3) −0.00072 (7) 0.0494 (6)
C13 1.0385 (4) 0.4721 (3) −0.06496 (7) 0.0471 (6)
C14 0.7573 (4) 0.5583 (3) −0.10172 (6) 0.0494 (6)
C15 0.5693 (4) 0.6256 (3) −0.11652 (7) 0.0490 (6)
C16 0.4931 (5) 0.5842 (3) −0.15249 (7) 0.0639 (7)
H16A 0.5625 0.5115 −0.1675 0.077*
C17 0.3163 (5) 0.6479 (3) −0.16687 (8) 0.0669 (8)
H17A 0.2679 0.6198 −0.1913 0.080*
C18 0.2142 (4) 0.7538 (3) −0.14421 (8) 0.0589 (7)
C19 0.2848 (5) 0.7959 (3) −0.10843 (8) 0.0637 (8)
H19A 0.2137 0.8676 −0.0935 0.076*
C20 0.4600 (4) 0.7328 (3) −0.09455 (8) 0.0591 (7)
H20A 0.5068 0.7619 −0.0701 0.071*
Cl1 −0.00738 (13) 0.83679 (9) −0.16181 (2) 0.0835 (3)
N1 1.2732 (3) 0.4188 (2) 0.06588 (5) 0.0537 (5)
H1A 1.3436 0.4758 0.0813 0.064*
N2 1.1824 (3) 0.4305 (2) −0.03825 (5) 0.0525 (5)
H2A 1.2768 0.3681 −0.0455 0.063*
N3 1.0265 (4) 0.4021 (3) −0.09856 (6) 0.0590 (6)
N4 0.8619 (4) 0.4535 (2) −0.12001 (6) 0.0585 (6)
O1 1.0027 (3) 0.2679 (2) 0.05768 (5) 0.0672 (5)
O2 1.0712 (3) 0.5869 (2) 0.00979 (5) 0.0638 (5)
S1 0.85258 (10) 0.60793 (7) −0.056449 (17) 0.05201 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.081 (3) 0.090 (2) 0.0635 (18) −0.017 (2) 0.0140 (18) −0.0047 (16)
C2 0.112 (4) 0.116 (3) 0.070 (2) −0.030 (3) 0.029 (2) −0.004 (2)
C3 0.110 (3) 0.124 (3) 0.0594 (19) −0.021 (3) 0.021 (2) −0.006 (2)
C4 0.113 (3) 0.114 (3) 0.0541 (18) −0.028 (3) 0.0073 (19) −0.0090 (18)
C5 0.080 (2) 0.093 (2) 0.0539 (17) −0.0173 (19) 0.0071 (16) −0.0014 (15)
C6 0.068 (2) 0.0673 (18) 0.0484 (14) −0.0030 (16) 0.0023 (14) 0.0034 (12)
C7 0.075 (2) 0.0623 (16) 0.0465 (15) −0.0090 (16) −0.0007 (15) 0.0002 (13)
C8 0.0591 (19) 0.0670 (17) 0.0490 (15) −0.0077 (15) 0.0026 (13) −0.0025 (13)
C9 0.0530 (19) 0.0535 (15) 0.0503 (14) −0.0074 (13) −0.0006 (13) 0.0012 (12)
C10 0.0448 (15) 0.0539 (14) 0.0464 (13) −0.0036 (14) 0.0008 (12) −0.0019 (11)
C11 0.0491 (19) 0.0728 (18) 0.0658 (17) −0.0078 (15) 0.0092 (14) −0.0079 (14)
C12 0.0496 (18) 0.0524 (15) 0.0460 (14) −0.0044 (13) 0.0050 (12) −0.0053 (11)
C13 0.0461 (16) 0.0516 (13) 0.0437 (13) 0.0004 (12) 0.0065 (12) −0.0024 (11)
C14 0.0524 (18) 0.0529 (15) 0.0428 (13) −0.0032 (13) 0.0074 (12) −0.0003 (11)
C15 0.0502 (17) 0.0516 (14) 0.0453 (14) −0.0025 (13) 0.0051 (12) 0.0000 (12)
C16 0.067 (2) 0.0747 (18) 0.0499 (15) 0.0125 (17) 0.0012 (15) −0.0069 (13)
C17 0.065 (2) 0.081 (2) 0.0540 (15) 0.0083 (17) −0.0075 (15) −0.0055 (14)
C18 0.0460 (18) 0.0622 (17) 0.0686 (18) 0.0037 (14) −0.0010 (14) 0.0109 (14)
C19 0.055 (2) 0.0669 (18) 0.0695 (18) 0.0050 (15) 0.0080 (15) −0.0077 (14)
C20 0.056 (2) 0.0666 (17) 0.0545 (16) 0.0020 (16) 0.0009 (14) −0.0103 (13)
Cl1 0.0582 (5) 0.0923 (6) 0.1001 (6) 0.0079 (4) −0.0089 (5) 0.0129 (4)
N1 0.0521 (14) 0.0672 (13) 0.0417 (11) −0.0115 (12) −0.0006 (10) −0.0046 (10)
N2 0.0508 (14) 0.0629 (13) 0.0439 (11) 0.0086 (11) 0.0030 (10) −0.0048 (9)
N3 0.0611 (16) 0.0685 (13) 0.0472 (12) 0.0108 (13) 0.0006 (11) −0.0074 (11)
N4 0.0591 (16) 0.0676 (13) 0.0488 (11) 0.0069 (13) 0.0014 (12) −0.0090 (10)
O1 0.0605 (13) 0.0815 (12) 0.0595 (11) −0.0230 (11) 0.0052 (11) −0.0127 (10)
O2 0.0666 (13) 0.0715 (12) 0.0534 (10) 0.0174 (11) −0.0024 (9) −0.0166 (9)
S1 0.0507 (4) 0.0584 (4) 0.0469 (3) 0.0047 (3) 0.0040 (3) −0.0059 (3)

Geometric parameters (Å, °)

C1—C6 1.377 (4) C11—H11C 0.9600
C1—C2 1.382 (4) C12—O2 1.216 (3)
C1—H1B 0.9300 C12—N2 1.367 (3)
C2—C3 1.359 (5) C13—N3 1.304 (3)
C2—H2B 0.9300 C13—N2 1.372 (3)
C3—C4 1.369 (5) C13—S1 1.721 (3)
C3—H3B 0.9300 C14—N4 1.298 (3)
C4—C5 1.380 (4) C14—C15 1.465 (3)
C4—H4B 0.9300 C14—S1 1.732 (2)
C5—C6 1.384 (4) C15—C16 1.382 (3)
C5—H5A 0.9300 C15—C20 1.393 (3)
C6—C7 1.465 (4) C16—C17 1.385 (4)
C7—C8 1.303 (4) C16—H16A 0.9300
C7—H7A 0.9300 C17—C18 1.375 (4)
C8—C9 1.459 (3) C17—H17A 0.9300
C8—H8A 0.9300 C18—C19 1.364 (4)
C9—O1 1.239 (3) C18—Cl1 1.741 (3)
C9—N1 1.340 (3) C19—C20 1.368 (4)
C10—N1 1.446 (3) C19—H19A 0.9300
C10—C12 1.517 (3) C20—H20A 0.9300
C10—C11 1.524 (3) N1—H1A 0.8600
C10—H10A 0.9800 N2—H2A 0.8600
C11—H11A 0.9600 N3—N4 1.389 (3)
C11—H11B 0.9600
C6—C1—C2 120.4 (3) H11B—C11—H11C 109.5
C6—C1—H1B 119.8 O2—C12—N2 121.2 (2)
C2—C1—H1B 119.8 O2—C12—C10 123.8 (2)
C3—C2—C1 120.6 (4) N2—C12—C10 115.0 (2)
C3—C2—H2B 119.7 N3—C13—N2 121.0 (2)
C1—C2—H2B 119.7 N3—C13—S1 114.7 (2)
C2—C3—C4 120.1 (3) N2—C13—S1 124.11 (17)
C2—C3—H3B 120.0 N4—C14—C15 124.0 (2)
C4—C3—H3B 120.0 N4—C14—S1 114.2 (2)
C3—C4—C5 119.6 (3) C15—C14—S1 121.72 (18)
C3—C4—H4B 120.2 C16—C15—C20 117.6 (2)
C5—C4—H4B 120.2 C16—C15—C14 121.4 (2)
C4—C5—C6 121.0 (3) C20—C15—C14 121.0 (2)
C4—C5—H5A 119.5 C15—C16—C17 121.8 (3)
C6—C5—H5A 119.5 C15—C16—H16A 119.1
C1—C6—C5 118.3 (3) C17—C16—H16A 119.1
C1—C6—C7 119.3 (3) C18—C17—C16 118.4 (3)
C5—C6—C7 122.3 (3) C18—C17—H17A 120.8
C8—C7—C6 127.5 (3) C16—C17—H17A 120.8
C8—C7—H7A 116.2 C19—C18—C17 121.1 (3)
C6—C7—H7A 116.2 C19—C18—Cl1 119.6 (2)
C7—C8—C9 123.8 (3) C17—C18—Cl1 119.3 (2)
C7—C8—H8A 118.1 C18—C19—C20 120.1 (3)
C9—C8—H8A 118.1 C18—C19—H19A 120.0
O1—C9—N1 119.7 (2) C20—C19—H19A 120.0
O1—C9—C8 124.6 (3) C19—C20—C15 121.0 (3)
N1—C9—C8 115.7 (2) C19—C20—H20A 119.5
N1—C10—C12 110.1 (2) C15—C20—H20A 119.5
N1—C10—C11 110.0 (2) C9—N1—C10 122.3 (2)
C12—C10—C11 110.7 (2) C9—N1—H1A 118.8
N1—C10—H10A 108.7 C10—N1—H1A 118.8
C12—C10—H10A 108.7 C12—N2—C13 123.3 (2)
C11—C10—H10A 108.7 C12—N2—H2A 118.3
C10—C11—H11A 109.5 C13—N2—H2A 118.3
C10—C11—H11B 109.5 C13—N3—N4 111.8 (2)
H11A—C11—H11B 109.5 C14—N4—N3 112.5 (2)
C10—C11—H11C 109.5 C13—S1—C14 86.70 (12)
H11A—C11—H11C 109.5
C6—C1—C2—C3 0.7 (6) C16—C17—C18—C19 0.2 (4)
C1—C2—C3—C4 −0.3 (6) C16—C17—C18—Cl1 179.5 (2)
C2—C3—C4—C5 −1.2 (6) C17—C18—C19—C20 0.1 (4)
C3—C4—C5—C6 2.2 (5) Cl1—C18—C19—C20 −179.2 (2)
C2—C1—C6—C5 0.2 (5) C18—C19—C20—C15 0.2 (4)
C2—C1—C6—C7 −178.4 (3) C16—C15—C20—C19 −0.8 (4)
C4—C5—C6—C1 −1.7 (5) C14—C15—C20—C19 179.8 (2)
C4—C5—C6—C7 176.8 (3) O1—C9—N1—C10 −2.3 (4)
C1—C6—C7—C8 −177.5 (3) C8—C9—N1—C10 179.8 (2)
C5—C6—C7—C8 4.0 (5) C12—C10—N1—C9 67.6 (3)
C6—C7—C8—C9 −176.3 (2) C11—C10—N1—C9 −170.1 (2)
C7—C8—C9—O1 −1.3 (4) O2—C12—N2—C13 −9.9 (4)
C7—C8—C9—N1 176.5 (3) C10—C12—N2—C13 171.0 (2)
N1—C10—C12—O2 24.2 (3) N3—C13—N2—C12 −170.0 (2)
C11—C10—C12—O2 −97.7 (3) S1—C13—N2—C12 5.7 (3)
N1—C10—C12—N2 −156.8 (2) N2—C13—N3—N4 175.5 (2)
C11—C10—C12—N2 81.4 (3) S1—C13—N3—N4 −0.5 (3)
N4—C14—C15—C16 −2.3 (4) C15—C14—N4—N3 −176.1 (2)
S1—C14—C15—C16 −179.3 (2) S1—C14—N4—N3 1.1 (3)
N4—C14—C15—C20 177.1 (2) C13—N3—N4—C14 −0.4 (3)
S1—C14—C15—C20 0.1 (3) N3—C13—S1—C14 0.9 (2)
C20—C15—C16—C17 1.1 (4) N2—C13—S1—C14 −175.0 (2)
C14—C15—C16—C17 −179.5 (2) N4—C14—S1—C13 −1.2 (2)
C15—C16—C17—C18 −0.8 (4) C15—C14—S1—C13 176.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O1i 0.86 1.94 2.802 (3) 175.
C7—H7A···O1 0.93 2.58 2.888 (3) 100.
C7—H7A···N3ii 0.93 2.54 3.446 (3) 164.
C11—H11C···S1iii 0.96 2.77 3.526 (3) 136.
C20—H20A···S1 0.93 2.69 3.105 (3) 108.
C20—H20A···O2iv 0.93 2.48 3.380 (3) 162.

Symmetry codes: (i) x+1/2, −y+1/2, −z; (ii) x−1/2, −y+1/2, −z; (iii) x+1, y, z; (iv) x−1/2, −y+3/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2052).

References

  1. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Foroumadi, A., Daneshtalab, M. & Shafiee, A. (1999). Arzneim. Forsch.49, 1035–1038. [PubMed]
  4. Fun, H.-K., Chantrapromma, S., Patil, P. S., Karthikeyan, M. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o956–o957. [DOI] [PMC free article] [PubMed]
  5. Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o950. [DOI] [PMC free article] [PubMed]
  6. Levy, M. & Palmer, A. H. (1942). J. Biol. Chem.146, 493–495.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Song, K. S., Ishikawa, Y., Kobayashi, S., Sankawa, U. & Ebizuka, Y. (1992). Phytochemistry, 31, 823–826.
  9. Thiruvalluvar, A., Subramanyam, M., Butcher, R. J., Karabasanagouda, T. & Adhikari, A. V. (2008). Acta Cryst. E64, o1263. [DOI] [PMC free article] [PubMed]
  10. Tu, G. G., Li, S. H., Huang, H. M., Li, G., Xiong, F., Mai, X., Zhu, H. W., Kuang, B. H. & Xu, W. F. (2008). Bioorg. Med. Chem.16, 6663–6668. [DOI] [PubMed]
  11. Westrip, S. P. (2008). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030353/gw2052sup1.cif

e-64-o2006-sup1.cif (21.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030353/gw2052Isup2.hkl

e-64-o2006-Isup2.hkl (230.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES