Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 20;64(Pt 10):m1298–m1299. doi: 10.1107/S1600536808029140

Hemipiperazinediium bis­(pyridine-2,6-dicarboxyl­ato-κ3 O,N,O′)gallate(III) pyridine-2,6-dicarboxylic acid dihydrate

Masoud Rafizadeh a,*, Andya Nemati a, Zohreh Derikvand a
PMCID: PMC2959419  PMID: 21201039

Abstract

The asymmetric unit of the title compound, (C4H12N2)0.5[Ga(pydc)2]·pydcH2·2H2O, where pydcH2 is pyridine-2,6-dicarboxylic acid, C7H5NO4, contains one half of a centrosymmetric piperazinediium dication, one anion, one uncoord­inated pydcH2 mol­ecule and two uncoordinated water mol­ecules, one of which is disordered over two sites in a 1:1 ratio. In the anion, the GaIII ion is coordinated by four O atoms [Ga—O = 1.9706 (16)–2.0494 (15) Å] and two N atoms [Ga—N = 1.9660 (18) and 1.9709 (17) Å] from two pydc ligands in a distorted octa­hedral geometry. The crystal structure exhibits inter­molecular O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds and π–π inter­actions [centroid–centroid distances of 3.5359 (13) and 3.6550 (14) Å].

Related literature

For self-assembling systems involving pydcH2, see: Aghabozorg et al. (2006a ,b ). For related complexes of the pyridine-2,6-dicarboxyl­ate ligand with transition metals, see: Rafizadeh et al. (2005, 2006); Rafizadeh & Amani (2006); Aghabozorg et al. (2007, 2008). For details of the synthesis, see: Sheshmani et al. (2006).graphic file with name e-64-m1298-scheme1.jpg

Experimental

Crystal data

  • (C4H12N2)0.5[Ga(C7H3NO4)2·C7H5NO4·2H2O

  • M r = 647.16

  • Triclinic, Inline graphic

  • a = 8.6434 (4) Å

  • b = 11.8582 (5) Å

  • c = 13.7907 (6) Å

  • α = 65.7151 (10)°

  • β = 80.0391 (10)°

  • γ = 86.9150 (11)°

  • V = 1268.74 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 120 (2) K

  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998) T min = 0.749, T max = 0.807

  • 13018 measured reflections

  • 6067 independent reflections

  • 5263 reflections with I > 2σ(I)

  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.099

  • S = 1.00

  • 6067 reflections

  • 382 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.84 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808029140/cv2438sup1.cif

e-64-m1298-sup1.cif (27.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029140/cv2438Isup2.hkl

e-64-m1298-Isup2.hkl (879.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯O13i 0.92 1.84 2.754 (3) 169
N4—H4C⋯O14 0.92 1.94 2.818 (4) 160
N4—H4C⋯O14′ 0.92 1.85 2.681 (4) 150
O9—H9O⋯O8ii 0.89 1.90 2.710 (2) 150
O11—H11O⋯O8ii 0.87 1.91 2.725 (2) 155
O13—H13A⋯O4 0.97 1.88 2.823 (3) 163
O13—H13B⋯O2iii 0.92 1.84 2.765 (3) 175
O14—H14A⋯O10 0.91 1.95 2.798 (5) 153
O14—H14B⋯O1iv 0.96 2.15 2.974 (5) 143
N4—H4C⋯O12ii 0.92 2.50 2.863 (3) 104
O9—H9O⋯N3 0.89 2.20 2.678 (3) 113
O11—H11O⋯N3 0.87 2.22 2.690 (2) 114

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

In continuation of our study of self-assembling systems (pipzH2)32+[In(pydc)3]23-.12H2O, (pipzH2)2+[Tl2(pydc)2Cl4(H2O)2]2-.4H2O and some others (Aghabozorg et al., 2006a,b), we present here the crystal structure of the title compound, (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related complexes of pyridine-2,6-dicarboxylate ligand with transition metals (Rafizadeh et al., 2005; Rafizadeh, Mehrabi & Amani, 2006; Rafizadeh & Amani, 2006; Aghabozorg et al., 2007, 2008). In the anion, the angles O1—Ga—O3 [158.69 (6)°], O5—Ga—O7 [158.65 (6)°] and N1—Ga—N2 [171.11 (7)°] indicate that the coordination environment around GaIII ion is a distorted octahedron.

In the crystal, the π–π interactions (Table 1) and extensive three-dimensional network of intermolecular O—H···O, O—H···N and N—H···O hydrogen bonds (Table 2) contribute to the crystal packing stability.

Experimental

The proton transfer compound (pipzH2)(pydcH)2.3H2O, was prepared by the reaction of pyridine-2,6-dicarboxylic acid, pydcH2, with piperazine, pipz, (Sheshmani et al., 2006). The reaction between Ga(NO3)3.8H2O (200.0 mg, 0.5 mmol) in water (25 ml) and the proton transfer compound (pipzH2 )(pydcH)2.3H2O (253.0 mg, 1.0 mmol) in water (25 ml), in a 1:2 molar ratio was carried by slow evaporation of the solvent at room temperature.

Refinement

The H atoms of the –OH and –NH2 groups as well as the water molecule were located in the difference Fourier map and refined in rigid model with fixed thermal (Uiso(H) = 1.2Ueq(O or N) for the –OH and –NH2 groups and Uiso(H) = 1.5Ueq(O) for the water molecule) parameters. The H(C) atoms were placed in calculated positions and refined in riding model with fixed thermal parameters (Uiso(H) = 1.2Ueq(C)). The Ueq(O, N or C) are the equivalent thermal parameters of the oxygen, nitrogen and carbon atoms, respectively, to which corresponding H atoms are bonded. One water molecule (O14) was refined as disordered between two positions with the occupancies fixed to 0.5 each.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atomic numbering, 50% probability displacement ellipsoids and disordered water molecule. Hydrogen bonds are shown as dashed lines.

Crystal data

(C4H12N2)0.5[Ga(C7H3NO4)2]·C7H5NO4·2H2O Z = 2
Mr = 647.16 F(000) = 660
Triclinic, P1 Dx = 1.694 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.6434 (4) Å Cell parameters from 6643 reflections
b = 11.8582 (5) Å θ = 2.4–29.9°
c = 13.7907 (6) Å µ = 1.17 mm1
α = 65.7151 (10)° T = 120 K
β = 80.0391 (10)° Prism, colourless
γ = 86.9150 (11)° 0.25 × 0.20 × 0.18 mm
V = 1268.74 (10) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 6067 independent reflections
Radiation source: fine-focus sealed tube 5263 reflections with I > 2σ(I)
graphite Rint = 0.024
φ and ω scans θmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1998a) h = −11→11
Tmin = 0.749, Tmax = 0.807 k = −15→15
13018 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: mixed
wR(F2) = 0.099 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.043P)2 + 2.120P] where P = (Fo2 + 2Fc2)/3
6067 reflections (Δ/σ)max = 0.001
382 parameters Δρmax = 0.86 e Å3
0 restraints Δρmin = −0.84 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ga1 0.69834 (3) 0.81449 (2) 0.236980 (18) 0.01489 (8)
O1 0.49972 (19) 0.87108 (15) 0.30323 (13) 0.0197 (3)
O2 0.3151 (2) 0.80985 (17) 0.45133 (15) 0.0282 (4)
O3 0.89040 (18) 0.71384 (14) 0.22836 (12) 0.0172 (3)
O4 1.00566 (19) 0.53668 (15) 0.31985 (13) 0.0221 (3)
O5 0.82240 (19) 0.95577 (14) 0.22476 (13) 0.0196 (3)
O6 0.9372 (2) 1.13613 (15) 0.10526 (14) 0.0247 (4)
O7 0.56973 (18) 0.71043 (14) 0.19088 (12) 0.0175 (3)
O8 0.49004 (19) 0.70052 (14) 0.04916 (13) 0.0197 (3)
N1 0.6764 (2) 0.69072 (16) 0.38696 (14) 0.0149 (3)
N2 0.7106 (2) 0.91756 (16) 0.08145 (14) 0.0136 (3)
C1 0.5515 (3) 0.6960 (2) 0.45659 (17) 0.0167 (4)
C2 0.5309 (3) 0.6093 (2) 0.56250 (18) 0.0210 (4)
H2A 0.4444 0.6131 0.6139 0.025*
C3 0.6416 (3) 0.5158 (2) 0.59122 (18) 0.0219 (5)
H3A 0.6310 0.4555 0.6635 0.026*
C4 0.7666 (3) 0.5101 (2) 0.51542 (17) 0.0192 (4)
H4A 0.8400 0.4452 0.5342 0.023*
C5 0.7816 (3) 0.60203 (19) 0.41114 (17) 0.0156 (4)
C6 0.4444 (3) 0.8002 (2) 0.40167 (18) 0.0191 (4)
C7 0.9052 (3) 0.6166 (2) 0.31338 (17) 0.0166 (4)
C8 0.7917 (2) 1.02317 (19) 0.04205 (17) 0.0153 (4)
C9 0.8099 (3) 1.0982 (2) −0.06768 (18) 0.0186 (4)
H9A 0.8670 1.1745 −0.0976 0.022*
C10 0.7412 (3) 1.0574 (2) −0.13246 (18) 0.0203 (4)
H10A 0.7516 1.1069 −0.2077 0.024*
C11 0.6578 (3) 0.9454 (2) −0.08861 (17) 0.0174 (4)
H11A 0.6120 0.9174 −0.1328 0.021*
C12 0.6438 (2) 0.87575 (19) 0.02216 (17) 0.0147 (4)
C13 0.8575 (3) 1.0439 (2) 0.12937 (18) 0.0172 (4)
C14 0.5601 (2) 0.75183 (19) 0.09115 (17) 0.0151 (4)
O9 0.58636 (19) 0.23498 (15) 0.14907 (13) 0.0210 (3)
H9O 0.5960 0.2683 0.0773 0.025*
O10 0.6888 (2) 0.25644 (16) 0.27682 (13) 0.0254 (4)
O11 0.6148 (2) 0.53088 (15) −0.19160 (13) 0.0217 (3)
H11O 0.6047 0.4592 −0.1367 0.026*
O12 0.7671 (2) 0.69899 (16) −0.25682 (14) 0.0280 (4)
N3 0.7038 (2) 0.45536 (16) 0.00267 (14) 0.0157 (3)
C15 0.7399 (2) 0.4193 (2) 0.10158 (17) 0.0167 (4)
C16 0.8334 (3) 0.4892 (2) 0.12957 (18) 0.0195 (4)
H16A 0.8564 0.4600 0.2007 0.023*
C17 0.8921 (3) 0.6026 (2) 0.05116 (19) 0.0207 (4)
H17A 0.9560 0.6529 0.0676 0.025*
C18 0.8560 (3) 0.6413 (2) −0.05174 (19) 0.0192 (4)
H18A 0.8950 0.7184 −0.1072 0.023*
C19 0.7612 (2) 0.56477 (19) −0.07202 (17) 0.0158 (4)
C20 0.6712 (3) 0.2969 (2) 0.18329 (18) 0.0182 (4)
C21 0.7167 (3) 0.6045 (2) −0.18171 (18) 0.0191 (4)
N4 0.1327 (2) 0.08293 (17) 0.44706 (15) 0.0178 (4)
H4B 0.0905 0.1566 0.4452 0.021*
H4C 0.2365 0.0977 0.4152 0.021*
C22 0.1227 (3) −0.0079 (2) 0.56174 (17) 0.0183 (4)
H22A 0.1770 0.0268 0.6012 0.022*
H22B 0.1760 −0.0849 0.5644 0.022*
C23 0.0474 (3) 0.0373 (2) 0.38454 (17) 0.0193 (4)
H23A 0.0981 −0.0380 0.3808 0.023*
H23B 0.0525 0.1012 0.3100 0.023*
O13 0.9874 (2) 0.28616 (16) 0.46782 (16) 0.0303 (4)
H13A 0.9995 0.3653 0.4063 0.045*
H13B 0.8844 0.2583 0.4939 0.045*
O14 0.4588 (4) 0.0692 (4) 0.3846 (3) 0.0273 (6) 0.50
H14B 0.4838 0.0384 0.3297 0.041* 0.50
O14' 0.4459 (4) 0.0981 (4) 0.4270 (3) 0.0273 (6) 0.50
H14C 0.4715 0.0321 0.4851 0.041* 0.50
H14A 0.5272 0.1322 0.3704 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ga1 0.01791 (13) 0.01363 (12) 0.01235 (12) −0.00172 (8) −0.00268 (8) −0.00423 (9)
O1 0.0207 (8) 0.0183 (7) 0.0188 (8) 0.0022 (6) −0.0022 (6) −0.0070 (6)
O2 0.0233 (9) 0.0275 (9) 0.0299 (9) 0.0030 (7) 0.0045 (7) −0.0114 (8)
O3 0.0182 (7) 0.0171 (7) 0.0150 (7) −0.0004 (6) −0.0020 (6) −0.0055 (6)
O4 0.0207 (8) 0.0224 (8) 0.0225 (8) 0.0047 (6) −0.0045 (6) −0.0085 (7)
O5 0.0254 (8) 0.0175 (7) 0.0172 (7) −0.0038 (6) −0.0056 (6) −0.0070 (6)
O6 0.0277 (9) 0.0187 (8) 0.0281 (9) −0.0082 (7) −0.0054 (7) −0.0086 (7)
O7 0.0219 (8) 0.0161 (7) 0.0135 (7) −0.0050 (6) −0.0041 (6) −0.0039 (6)
O8 0.0232 (8) 0.0178 (7) 0.0201 (8) −0.0044 (6) −0.0056 (6) −0.0082 (6)
N1 0.0157 (8) 0.0153 (8) 0.0133 (8) −0.0020 (7) −0.0018 (6) −0.0055 (7)
N2 0.0136 (8) 0.0127 (8) 0.0129 (8) 0.0003 (6) −0.0021 (6) −0.0038 (6)
C1 0.0176 (10) 0.0184 (10) 0.0163 (10) −0.0015 (8) 0.0001 (8) −0.0101 (8)
C2 0.0266 (12) 0.0225 (11) 0.0154 (10) −0.0037 (9) 0.0018 (8) −0.0107 (9)
C3 0.0341 (13) 0.0176 (10) 0.0129 (10) −0.0028 (9) −0.0041 (9) −0.0045 (8)
C4 0.0255 (11) 0.0163 (10) 0.0162 (10) −0.0006 (8) −0.0071 (8) −0.0054 (8)
C5 0.0182 (10) 0.0137 (9) 0.0159 (10) −0.0016 (8) −0.0046 (8) −0.0062 (8)
C6 0.0204 (11) 0.0180 (10) 0.0211 (10) −0.0006 (8) −0.0024 (8) −0.0105 (8)
C7 0.0178 (10) 0.0176 (10) 0.0162 (10) −0.0011 (8) −0.0056 (8) −0.0076 (8)
C8 0.0147 (9) 0.0128 (9) 0.0178 (10) −0.0013 (7) −0.0021 (8) −0.0057 (8)
C9 0.0180 (10) 0.0146 (10) 0.0201 (10) −0.0020 (8) −0.0024 (8) −0.0038 (8)
C10 0.0207 (11) 0.0210 (11) 0.0144 (10) −0.0006 (8) −0.0011 (8) −0.0030 (8)
C11 0.0183 (10) 0.0191 (10) 0.0150 (10) 0.0008 (8) −0.0046 (8) −0.0065 (8)
C12 0.0135 (9) 0.0149 (9) 0.0169 (10) 0.0006 (7) −0.0030 (7) −0.0075 (8)
C13 0.0170 (10) 0.0155 (10) 0.0183 (10) −0.0007 (8) −0.0035 (8) −0.0059 (8)
C14 0.0138 (9) 0.0151 (9) 0.0163 (9) −0.0001 (7) −0.0024 (7) −0.0064 (8)
O9 0.0271 (8) 0.0175 (7) 0.0158 (7) −0.0077 (6) −0.0034 (6) −0.0032 (6)
O10 0.0305 (9) 0.0269 (9) 0.0154 (8) −0.0071 (7) −0.0040 (7) −0.0043 (7)
O11 0.0283 (9) 0.0197 (8) 0.0155 (7) −0.0052 (6) −0.0070 (6) −0.0035 (6)
O12 0.0339 (10) 0.0209 (8) 0.0213 (8) −0.0081 (7) −0.0045 (7) 0.0002 (7)
N3 0.0173 (9) 0.0148 (8) 0.0161 (8) −0.0028 (7) −0.0026 (7) −0.0071 (7)
C15 0.0166 (10) 0.0190 (10) 0.0145 (9) 0.0000 (8) −0.0007 (8) −0.0075 (8)
C16 0.0188 (10) 0.0245 (11) 0.0185 (10) −0.0008 (8) −0.0023 (8) −0.0121 (9)
C17 0.0190 (10) 0.0236 (11) 0.0256 (11) −0.0048 (8) −0.0006 (9) −0.0168 (9)
C18 0.0181 (10) 0.0154 (10) 0.0240 (11) −0.0032 (8) 0.0007 (8) −0.0093 (9)
C19 0.0167 (10) 0.0143 (9) 0.0161 (9) −0.0012 (8) −0.0006 (8) −0.0064 (8)
C20 0.0164 (10) 0.0198 (10) 0.0175 (10) −0.0018 (8) −0.0020 (8) −0.0069 (8)
C21 0.0189 (10) 0.0182 (10) 0.0187 (10) −0.0024 (8) −0.0015 (8) −0.0061 (8)
N4 0.0179 (9) 0.0150 (8) 0.0186 (9) −0.0022 (7) −0.0011 (7) −0.0054 (7)
C22 0.0209 (11) 0.0168 (10) 0.0169 (10) 0.0004 (8) −0.0057 (8) −0.0057 (8)
C23 0.0239 (11) 0.0184 (10) 0.0148 (10) −0.0005 (8) −0.0023 (8) −0.0061 (8)
O13 0.0278 (9) 0.0159 (8) 0.0394 (10) −0.0010 (7) 0.0036 (8) −0.0069 (7)
O14 0.0209 (11) 0.0258 (15) 0.0248 (18) −0.0049 (10) −0.0007 (13) −0.0006 (11)
O14' 0.0209 (11) 0.0258 (15) 0.0248 (18) −0.0049 (10) −0.0007 (13) −0.0006 (11)

Geometric parameters (Å, °)

Ga1—N1 1.9660 (18) C12—C14 1.521 (3)
Ga1—O5 1.9706 (16) O9—C20 1.328 (3)
Ga1—N2 1.9709 (17) O9—H9O 0.8922
Ga1—O3 2.0073 (16) O10—C20 1.212 (3)
Ga1—O1 2.0175 (16) O11—C21 1.334 (3)
Ga1—O7 2.0494 (15) O11—H11O 0.8710
O1—C6 1.288 (3) O12—C21 1.208 (3)
O2—C6 1.232 (3) N3—C19 1.336 (3)
O3—C7 1.282 (3) N3—C15 1.340 (3)
O4—C7 1.236 (3) C15—C16 1.390 (3)
O5—C13 1.296 (3) C15—C20 1.498 (3)
O6—C13 1.218 (3) C16—C17 1.387 (3)
O7—C14 1.272 (3) C16—H16A 0.9500
O8—C14 1.234 (3) C17—C18 1.387 (3)
N1—C5 1.326 (3) C17—H17A 0.9500
N1—C1 1.332 (3) C18—C19 1.393 (3)
N2—C8 1.326 (3) C18—H18A 0.9500
N2—C12 1.333 (3) C19—C21 1.501 (3)
C1—C2 1.385 (3) N4—C23 1.492 (3)
C1—C6 1.519 (3) N4—C22 1.493 (3)
C2—C3 1.399 (3) N4—H4B 0.9200
C2—H2A 0.9500 N4—H4C 0.9200
C3—C4 1.387 (3) C22—C23i 1.516 (3)
C3—H3A 0.9500 C22—H22A 0.9900
C4—C5 1.391 (3) C22—H22B 0.9900
C4—H4A 0.9500 C23—C22i 1.516 (3)
C5—C7 1.523 (3) C23—H23A 0.9900
C8—C9 1.390 (3) C23—H23B 0.9900
C8—C13 1.526 (3) O13—H13A 0.9680
C9—C10 1.398 (3) O13—H13B 0.9241
C9—H9A 0.9500 O14—H14B 0.9561
C10—C11 1.393 (3) O14—H14A 0.9136
C10—H10A 0.9500 O14'—H14C 0.9120
C11—C12 1.393 (3) O14'—H14A 0.9201
C11—H11A 0.9500
Cg1···Cg1ii 3.5359 (13) Cg2···Cg2iii 3.6550 (14)
N1—Ga1—O5 108.00 (7) C10—C11—H11A 121.1
N1—Ga1—N2 171.11 (7) N2—C12—C11 119.35 (19)
O5—Ga1—N2 80.53 (7) N2—C12—C14 111.43 (18)
N1—Ga1—O3 79.40 (7) C11—C12—C14 129.22 (19)
O5—Ga1—O3 92.73 (7) O6—C13—O5 126.4 (2)
N2—Ga1—O3 98.00 (7) O6—C13—C8 119.7 (2)
N1—Ga1—O1 79.32 (7) O5—C13—C8 113.88 (18)
O5—Ga1—O1 92.66 (7) O8—C14—O7 125.60 (19)
N2—Ga1—O1 103.22 (7) O8—C14—C12 119.95 (19)
O3—Ga1—O1 158.69 (6) O7—C14—C12 114.45 (18)
N1—Ga1—O7 93.34 (7) C20—O9—H9O 111.7
O5—Ga1—O7 158.65 (6) C21—O11—H11O 111.4
N2—Ga1—O7 78.18 (7) C19—N3—C15 117.42 (18)
O3—Ga1—O7 91.71 (6) N3—C15—C16 123.5 (2)
O1—Ga1—O7 90.73 (7) N3—C15—C20 115.68 (19)
C6—O1—Ga1 115.97 (14) C16—C15—C20 120.8 (2)
C7—O3—Ga1 116.61 (14) C17—C16—C15 118.4 (2)
C13—O5—Ga1 116.85 (14) C17—C16—H16A 120.8
C14—O7—Ga1 116.91 (13) C15—C16—H16A 120.8
C5—N1—C1 123.75 (19) C16—C17—C18 118.9 (2)
C5—N1—Ga1 117.85 (14) C16—C17—H17A 120.6
C1—N1—Ga1 118.25 (15) C18—C17—H17A 120.6
C8—N2—C12 124.25 (18) C17—C18—C19 118.6 (2)
C8—N2—Ga1 116.74 (14) C17—C18—H18A 120.7
C12—N2—Ga1 118.95 (14) C19—C18—H18A 120.7
N1—C1—C2 119.9 (2) N3—C19—C18 123.2 (2)
N1—C1—C6 111.16 (18) N3—C19—C21 116.56 (19)
C2—C1—C6 128.9 (2) C18—C19—C21 120.18 (19)
C1—C2—C3 117.7 (2) O10—C20—O9 120.9 (2)
C1—C2—H2A 121.1 O10—C20—C15 122.2 (2)
C3—C2—H2A 121.1 O9—C20—C15 116.82 (19)
C4—C3—C2 120.8 (2) O12—C21—O11 121.3 (2)
C4—C3—H3A 119.6 O12—C21—C19 122.4 (2)
C2—C3—H3A 119.6 O11—C21—C19 116.24 (19)
C3—C4—C5 118.2 (2) C23—N4—C22 111.88 (16)
C3—C4—H4A 120.9 C23—N4—H4B 109.2
C5—C4—H4A 120.9 C22—N4—H4B 109.2
N1—C5—C4 119.5 (2) C23—N4—H4C 109.2
N1—C5—C7 111.65 (18) C22—N4—H4C 109.2
C4—C5—C7 128.8 (2) H4B—N4—H4C 107.9
O2—C6—O1 125.6 (2) N4—C22—C23i 110.48 (17)
O2—C6—C1 119.7 (2) N4—C22—H22A 109.6
O1—C6—C1 114.70 (19) C23i—C22—H22A 109.6
O4—C7—O3 125.8 (2) N4—C22—H22B 109.6
O4—C7—C5 120.05 (19) C23i—C22—H22B 109.6
O3—C7—C5 114.15 (18) H22A—C22—H22B 108.1
N2—C8—C9 119.8 (2) N4—C23—C22i 109.99 (18)
N2—C8—C13 111.98 (18) N4—C23—H23A 109.7
C9—C8—C13 128.25 (19) C22i—C23—H23A 109.7
C8—C9—C10 117.6 (2) N4—C23—H23B 109.7
C8—C9—H9A 121.2 C22i—C23—H23B 109.7
C10—C9—H9A 121.2 H23A—C23—H23B 108.2
C11—C10—C9 121.2 (2) H13A—O13—H13B 114.1
C11—C10—H10A 119.4 H14B—O14—H14C 137.1
C9—C10—H10A 119.4 H14B—O14—H14A 109.3
C12—C11—C10 117.8 (2) H14C—O14—H14A 87.3
C12—C11—H11A 121.1 H14C—O14'—H14A 115.4
N1—Ga1—O1—C6 −6.27 (15) N1—C1—C6—O1 −6.8 (3)
O5—Ga1—O1—C6 −114.09 (16) C2—C1—C6—O1 176.0 (2)
N2—Ga1—O1—C6 165.03 (15) Ga1—O3—C7—O4 171.78 (17)
O3—Ga1—O1—C6 −9.6 (3) Ga1—O3—C7—C5 −6.4 (2)
O7—Ga1—O1—C6 87.00 (16) N1—C5—C7—O4 −174.74 (19)
N1—Ga1—O3—C7 5.46 (15) C4—C5—C7—O4 3.7 (3)
O5—Ga1—O3—C7 113.27 (15) N1—C5—C7—O3 3.5 (3)
N2—Ga1—O3—C7 −165.92 (15) C4—C5—C7—O3 −178.0 (2)
O1—Ga1—O3—C7 8.8 (3) C12—N2—C8—C9 0.5 (3)
O7—Ga1—O3—C7 −87.62 (15) Ga1—N2—C8—C9 177.69 (16)
N1—Ga1—O5—C13 175.84 (15) C12—N2—C8—C13 −178.39 (18)
N2—Ga1—O5—C13 −1.56 (16) Ga1—N2—C8—C13 −1.2 (2)
O3—Ga1—O5—C13 96.10 (16) N2—C8—C9—C10 −0.4 (3)
O1—Ga1—O5—C13 −104.53 (16) C13—C8—C9—C10 178.3 (2)
O7—Ga1—O5—C13 −5.7 (3) C8—C9—C10—C11 −0.1 (3)
N1—Ga1—O7—C14 −174.98 (16) C9—C10—C11—C12 0.6 (3)
O5—Ga1—O7—C14 6.5 (3) C8—N2—C12—C11 0.0 (3)
N2—Ga1—O7—C14 2.31 (15) Ga1—N2—C12—C11 −177.16 (15)
O3—Ga1—O7—C14 −95.50 (15) C8—N2—C12—C14 179.72 (18)
O1—Ga1—O7—C14 105.67 (15) Ga1—N2—C12—C14 2.6 (2)
O5—Ga1—N1—C5 −92.75 (16) C10—C11—C12—N2 −0.5 (3)
O3—Ga1—N1—C5 −3.32 (15) C10—C11—C12—C14 179.8 (2)
O1—Ga1—N1—C5 177.91 (16) Ga1—O5—C13—O6 −177.41 (19)
O7—Ga1—N1—C5 87.80 (16) Ga1—O5—C13—C8 1.3 (2)
O5—Ga1—N1—C1 91.47 (16) N2—C8—C13—O6 178.7 (2)
O3—Ga1—N1—C1 −179.09 (17) C9—C8—C13—O6 0.0 (4)
O1—Ga1—N1—C1 2.14 (15) N2—C8—C13—O5 −0.1 (3)
O7—Ga1—N1—C1 −87.97 (16) C9—C8—C13—O5 −178.9 (2)
O5—Ga1—N2—C8 1.50 (15) Ga1—O7—C14—O8 178.77 (17)
O3—Ga1—N2—C8 −89.95 (16) Ga1—O7—C14—C12 −1.6 (2)
O1—Ga1—N2—C8 92.02 (16) N2—C12—C14—O8 179.09 (19)
O7—Ga1—N2—C8 179.97 (16) C11—C12—C14—O8 −1.2 (3)
O5—Ga1—N2—C12 178.85 (16) N2—C12—C14—O7 −0.6 (3)
O3—Ga1—N2—C12 87.40 (16) C11—C12—C14—O7 179.2 (2)
O1—Ga1—N2—C12 −90.63 (16) C19—N3—C15—C16 −0.2 (3)
O7—Ga1—N2—C12 −2.69 (15) C19—N3—C15—C20 179.14 (19)
C5—N1—C1—C2 3.5 (3) N3—C15—C16—C17 0.2 (3)
Ga1—N1—C1—C2 179.03 (16) C20—C15—C16—C17 −179.1 (2)
C5—N1—C1—C6 −173.91 (19) C15—C16—C17—C18 −0.3 (3)
Ga1—N1—C1—C6 1.6 (2) C16—C17—C18—C19 0.3 (3)
N1—C1—C2—C3 −2.1 (3) C15—N3—C19—C18 0.2 (3)
C6—C1—C2—C3 174.9 (2) C15—N3—C19—C21 −178.88 (19)
C1—C2—C3—C4 −0.7 (3) C17—C18—C19—N3 −0.3 (3)
C2—C3—C4—C5 2.1 (3) C17—C18—C19—C21 178.8 (2)
C1—N1—C5—C4 −2.1 (3) N3—C15—C20—O10 −176.5 (2)
Ga1—N1—C5—C4 −177.58 (15) C16—C15—C20—O10 2.9 (3)
C1—N1—C5—C7 176.57 (19) N3—C15—C20—O9 2.1 (3)
Ga1—N1—C5—C7 1.0 (2) C16—C15—C20—O9 −178.5 (2)
C3—C4—C5—N1 −0.8 (3) N3—C19—C21—O12 −176.7 (2)
C3—C4—C5—C7 −179.1 (2) C18—C19—C21—O12 4.1 (3)
Ga1—O1—C6—O2 −170.02 (19) N3—C19—C21—O11 4.8 (3)
Ga1—O1—C6—C1 8.8 (2) C18—C19—C21—O11 −174.3 (2)
N1—C1—C6—O2 172.1 (2) C23—N4—C22—C23i −57.1 (3)
C2—C1—C6—O2 −5.1 (4) C22—N4—C23—C22i 56.8 (2)

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+2, −y+1, −z; (iii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4B···O13iv 0.92 1.84 2.754 (3) 169
N4—H4C···O14 0.92 1.94 2.818 (4) 160
N4—H4C···O14' 0.92 1.85 2.681 (4) 150
O9—H9O···O8v 0.89 1.90 2.710 (2) 150
O11—H11O···O8v 0.87 1.91 2.725 (2) 155
O13—H13A···O4 0.97 1.88 2.823 (3) 163
O13—H13B···O2iii 0.92 1.84 2.765 (3) 175
O14—H14A···O10 0.91 1.95 2.798 (5) 153
O14—H14B···O1vi 0.96 2.15 2.974 (5) 143
O14'—H14C···O14vii 0.91 1.89 2.774 (6) 164
N4—H4C···O12v 0.92 2.50 2.863 (3) 104
O9—H9O···N3 0.89 2.20 2.678 (3) 113
O11—H11O···N3 0.87 2.22 2.690 (2) 114
C3—H3A···O11viii 0.95 2.48 3.042 (3) 117
C9—H9A···O3ix 0.95 2.54 3.341 (3) 143
C17—H17A···O3 0.95 2.57 3.217 (3) 126
C18—H18A···O6ix 0.95 2.32 3.026 (3) 130
C22—H22A···O5iii 0.99 2.49 3.360 (3) 146
C22—H22B···O2vi 0.99 2.50 3.346 (3) 144
C23—H23A···O2vi 0.99 2.56 3.391 (3) 142

Symmetry codes: (iv) x−1, y, z; (v) −x+1, −y+1, −z; (iii) −x+1, −y+1, −z+1; (vi) x, y−1, z; (vii) −x+1, −y, −z+1; (viii) x, y, z+1; (ix) −x+2, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2438).

References

  1. Aghabozorg, H., Ghadermazi, M., Manteghi, F. & Nakhjavan, B. (2006a). Z. Anorg. Allg. Chem.632, 2058–2064.
  2. Aghabozorg, H., Ghadermazi, M., Sheshmani, S. & Nakhjavan, B. (2006b). Acta Cryst. E62, m2371–m2373.
  3. Aghabozorg, H., Nemati, A., Derikvand, Z. & Ghadermazi, M. (2007). Acta Cryst. E63, m2921. [DOI] [PMC free article] [PubMed]
  4. Aghabozorg, H., Nemati, A., Derikvand, Z. & Ghadermazi, M. (2008). Acta Cryst. E64, m374. [DOI] [PMC free article] [PubMed]
  5. Bruker (1998). SMART and SAINT-Plus Bruker AXS, Madison, Wisconsin, USA.
  6. Rafizadeh, M. & Amani, V. (2006). Acta Cryst. E62, m90–m91.
  7. Rafizadeh, M., Amani, V. & Neumüller, B. (2005). Z. Anorg. Allg. Chem.631, 1753–1755.
  8. Rafizadeh, M., Mehrabi, B. & Amani, V. (2006). Acta Cryst. E62, m1332–m1334.
  9. Sheldrick, G. M. (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheshmani, S., Ghadermazi, M. & Aghabozorg, H. (2006). Acta Cryst E62, o3620–o3622.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808029140/cv2438sup1.cif

e-64-m1298-sup1.cif (27.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029140/cv2438Isup2.hkl

e-64-m1298-Isup2.hkl (879.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES