Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 6;64(Pt 10):o1878–o1879. doi: 10.1107/S1600536808027761

4-Amino­pyridinium 4-nitro­benzoate 4-nitro­benzoic acid

Ching Kheng Quah a, Samuel Robinson Jebas a,, Hoong-Kun Fun a,*
PMCID: PMC2959422  PMID: 21201092

Abstract

The asymmetric unit of the title compound, C5H7N2 +·C7H4NO4 ·C7H5NO4, consists of an amino­pyridinium cation, a 4-nitro­benzoate anion and a neutral 4-nitro­benzoic acid mol­ecule. The pyridine ring forms dihedral angles of 64.70 (5)° and 70.37 (5)°, respectively, with the benzene rings of 4-nitro­benzoic acid and 4-nitro­benzoate. In the crystal structure, the cations, anions and the neutral 4-nitro­benzoic acid mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (001). Adjacent networks are cross-linked via C—H⋯O hydrogen bonds and π–π stacking inter­actions [centroid–centroid distances 3.6339 (6) and 3.6566 (6) Å].

Related literature

For the biological activity of 4-amino­pyridine, see: Judge et al. (2006); Schwid et al. (1997); Strupp et al. (2004). For related structures, see: Chao & Schempp (1977); Anderson et al. (2005); Andrau & White, (2003); Bhattacharya et al. (1994); Karle et al. (2003).graphic file with name e-64-o1878-scheme1.jpg

Experimental

Crystal data

  • C5H7N2 +·C7H4NO4 ·C7H5NO4

  • M r = 428.36

  • Triclinic, Inline graphic

  • a = 6.4561 (1) Å

  • b = 6.8598 (1) Å

  • c = 20.9055 (3) Å

  • α = 85.826 (1)°

  • β = 87.975 (1)°

  • γ = 86.188 (1)°

  • V = 920.92 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100.0 (1) K

  • 0.40 × 0.36 × 0.29 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.952, T max = 0.965

  • 24945 measured reflections

  • 6647 independent reflections

  • 5169 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.132

  • S = 1.05

  • 6647 reflections

  • 284 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808027761/ci2664sup1.cif

e-64-o1878-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027761/ci2664Isup2.hkl

e-64-o1878-Isup2.hkl (318.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3A—H1O3⋯O3Bi 0.82 1.63 2.4457 (11) 170
N3—H3A⋯O3Bii 0.86 2.14 2.9977 (12) 172
N3—H3B⋯O4Bi 0.86 2.07 2.8758 (12) 155
N2—H1N2⋯O4Aiii 0.85 (1) 1.99 (1) 2.7726 (12) 153 (1)
C2B—H2BA⋯O1Biv 0.93 2.52 3.2187 (13) 133
C8—H8A⋯O3Av 0.93 2.56 3.4565 (13) 161
C12—H12A⋯O1Avi 0.93 2.55 3.4427 (13) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship. CKQ thanks Universiti Sains Malaysia for a student assistanceship.

supplementary crystallographic information

Comment

4-Aminopyridine (Fampridine) is used clinically in Lambert-Eaton myasthenic syndrome and multiple sclerosis because by blocking potassium channels, it prolongs the action potentials thereby increasing transmitter release at the neuromuscular junction (Judge et al., 2006; Schwid et al., 1997; Strupp et al., 2004). The crystal structure of 4-aminopyridine has been reported (Chao & Schempp, 1977; Anderson et al., 2005). As an extension of our systematic study of hydrogen bonding patterns of 4-aminopyridine with aromatic carboxylic acids, we report here the crystal structure of the title compound.

The asymmetric unit of the title compound contains one 4-aminopyridinium cation, one 4-nitrobenzoate anion and one 4-nitrobenzoic acid molecule. A proton transfer from the carboxyl group of 4-nitrobenzoic acid to atom N2 of 4-aminopyridine resulted in the formation of ions. This lead to the widening of C8—N2—C12 angle of the pyridine ring to 120.86 (9)°, compared to 115.25 (13)° in the unprotonated 4-aminopyridine (Anderson et al., 2005). This type of protonation is observed in various 4-aminopyridine acid complexes (Bhattacharya et al., 1994; Karle et al., 2003). The bond lengths and angles of the 4-aminopyridne are comparable to the values reported earlier for 4-aminopyridine (Chao & Schempp, 1977; Anderson et al., 2005). The bond lengths and angles of the 4-nitrobenzoic acid is found to be normal(Andrau & White, 2003).

The dihedral angle between the benzene rings of 4-nitrobenzoic acid (C1A-C6A) and 4-nitrobenzoate (C1B-C6B) units is 6.62 (5)°. The pyridine (N2/C8—C12) ring forms dihedral angles of 64.70 (5)° and 70.37 (5)°, respectively, with the C1A-C6A and C1B-C6B rings.

In the crystal structure, the cations, anions and the neutral 4-nitrobenzoic acid molecules are linked to form a two-dimensional network (Fig. 2) parallel to the (0 0 1) by O—H···O and N—H···O hydrogen bonds (Table 1). The adjacent networks are cross-linked via C—H···O hydrogen bonds. The crystal packing is further consolidated by π–π stacking interactions between symmetry-related C1A-C6A (centroid Cg1) and C1B-C6B (centroid Cg2) rings, with Cg1···Cg1i and Cg2···Cg2vii distances of 3.6566 (6) Å and 3.6339 (6) Å, respectively [symmetry codes: (i) 1-x, 2-y, 1-z; (vii) 2-x, 2-y, 2-z].

Experimental

4-Aminopyridine and 4-nitrobenzoic acid were mixed in equimolar ratio in methanol and warmed in a water bath for 2 h. Colourless single crystals were obtained after a week on slow evaporation.

Refinement

Atom H1N2 was located from a difference map and was refined with the N-H distance restrained to 0.85 (1) Å. The remaining H atoms were positioned geometrically with C-H = 0.93 Å, N-H = 0.86 Å and O-H = 0.82Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C5H7N2+·C7H4NO4·C7H5NO4 Z = 2
Mr = 428.36 F(000) = 444
Triclinic, P1 Dx = 1.545 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.4561 (1) Å Cell parameters from 6200 reflections
b = 6.8598 (1) Å θ = 2.2–29.2°
c = 20.9055 (3) Å µ = 0.12 mm1
α = 85.826 (1)° T = 100 K
β = 87.975 (1)° Block, colourless
γ = 86.188 (1)° 0.40 × 0.36 × 0.29 mm
V = 920.92 (2) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 6647 independent reflections
Radiation source: fine-focus sealed tube 5169 reflections with I > 2σ(I)
graphite Rint = 0.031
φ and ω scans θmax = 32.5°, θmin = 1.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −9→9
Tmin = 0.952, Tmax = 0.965 k = −10→10
24945 measured reflections l = −31→31

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0736P)2 + 0.1221P] where P = (Fo2 + 2Fc2)/3
6647 reflections (Δ/σ)max = 0.001
284 parameters Δρmax = 0.43 e Å3
1 restraint Δρmin = −0.39 e Å3

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.61416 (13) 0.64153 (13) 0.61139 (4) 0.02534 (18)
O1B 1.43798 (12) 0.64460 (14) 1.07244 (4) 0.02613 (19)
O2A 0.89023 (12) 0.63198 (13) 0.54960 (4) 0.02492 (18)
O2B 1.15700 (13) 0.66730 (15) 1.13139 (4) 0.02794 (19)
O3A 0.31404 (11) 0.97209 (12) 0.29069 (4) 0.02024 (16)
H1O3 0.2342 1.0163 0.2628 0.030*
O3B 0.89111 (11) 0.90736 (11) 0.80183 (4) 0.01831 (15)
O4A 0.02402 (11) 0.98398 (11) 0.35318 (4) 0.01950 (16)
O4B 0.59084 (12) 0.90329 (13) 0.85892 (4) 0.02425 (18)
N1A 0.70215 (13) 0.66162 (13) 0.55851 (4) 0.01667 (17)
N1B 1.24848 (13) 0.67136 (13) 1.07904 (4) 0.01646 (17)
N2 0.80980 (14) 0.30341 (13) 0.29153 (4) 0.01904 (18)
N3 0.73597 (13) 0.85350 (13) 0.20200 (5) 0.02020 (18)
H3A 0.8354 0.9309 0.2022 0.024*
H3B 0.6223 0.8922 0.1834 0.024*
C1A 0.24956 (15) 0.84572 (14) 0.46101 (5) 0.01507 (18)
H1AA 0.1084 0.8790 0.4667 0.018*
C1B 1.11431 (15) 0.75402 (14) 0.90711 (5) 0.01505 (18)
H1BA 1.1788 0.7482 0.8667 0.018*
C2A 0.36551 (15) 0.77640 (14) 0.51351 (5) 0.01593 (18)
H2AA 0.3048 0.7633 0.5545 0.019*
C2B 1.22778 (15) 0.70459 (14) 0.96180 (5) 0.01522 (18)
H2BA 1.3685 0.6664 0.9587 0.018*
C3B 1.12614 (14) 0.71350 (14) 1.02109 (5) 0.01397 (17)
C3A 0.57532 (15) 0.72731 (14) 0.50276 (5) 0.01424 (17)
C4A 0.67164 (15) 0.74110 (15) 0.44250 (5) 0.01592 (18)
H4AA 0.8119 0.7038 0.4369 0.019*
C4B 0.91589 (15) 0.76542 (14) 1.02843 (5) 0.01527 (18)
H4BA 0.8513 0.7667 1.0689 0.018*
C5A 0.55303 (15) 0.81214 (15) 0.39071 (5) 0.01621 (18)
H5AA 0.6142 0.8239 0.3498 0.019*
C5B 0.80500 (15) 0.81538 (14) 0.97324 (5) 0.01517 (18)
H5BA 0.6638 0.8512 0.9766 0.018*
C6A 0.34218 (14) 0.86598 (14) 0.39989 (5) 0.01412 (17)
C6B 0.90370 (14) 0.81237 (14) 0.91270 (5) 0.01388 (17)
C7A 0.21250 (15) 0.94696 (14) 0.34447 (5) 0.01498 (18)
C7B 0.78049 (15) 0.87820 (14) 0.85437 (5) 0.01578 (18)
C8 0.62995 (16) 0.35854 (16) 0.26207 (5) 0.0195 (2)
H8A 0.5260 0.2709 0.2623 0.023*
C9 0.59889 (15) 0.54066 (15) 0.23204 (5) 0.01760 (19)
H9A 0.4736 0.5775 0.2126 0.021*
C10 0.75805 (15) 0.67391 (15) 0.23052 (5) 0.01566 (18)
C11 0.94501 (15) 0.60896 (15) 0.26128 (5) 0.01670 (19)
H11A 1.0538 0.6914 0.2611 0.020*
C12 0.96496 (16) 0.42621 (16) 0.29097 (5) 0.0186 (2)
H12A 1.0877 0.3849 0.3113 0.022*
H1N2 0.839 (2) 0.1892 (15) 0.3080 (7) 0.029 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0250 (4) 0.0384 (5) 0.0118 (4) −0.0024 (3) −0.0008 (3) 0.0048 (3)
O1B 0.0158 (3) 0.0428 (5) 0.0191 (4) 0.0041 (3) −0.0028 (3) −0.0013 (3)
O2A 0.0172 (3) 0.0361 (5) 0.0207 (4) 0.0016 (3) −0.0036 (3) 0.0012 (3)
O2B 0.0228 (4) 0.0485 (5) 0.0115 (4) 0.0012 (3) 0.0006 (3) 0.0003 (3)
O3A 0.0183 (3) 0.0303 (4) 0.0116 (3) −0.0013 (3) −0.0025 (3) 0.0027 (3)
O3B 0.0174 (3) 0.0258 (4) 0.0114 (3) −0.0009 (3) −0.0003 (3) 0.0006 (3)
O4A 0.0158 (3) 0.0236 (4) 0.0182 (4) 0.0011 (3) −0.0016 (3) 0.0026 (3)
O4B 0.0145 (3) 0.0368 (5) 0.0198 (4) 0.0011 (3) −0.0020 (3) 0.0071 (3)
N1A 0.0179 (4) 0.0178 (4) 0.0145 (4) −0.0016 (3) −0.0034 (3) −0.0001 (3)
N1B 0.0167 (4) 0.0194 (4) 0.0131 (4) 0.0003 (3) −0.0014 (3) −0.0010 (3)
N2 0.0213 (4) 0.0188 (4) 0.0161 (4) 0.0014 (3) 0.0009 (3) 0.0017 (3)
N3 0.0160 (4) 0.0212 (4) 0.0224 (5) 0.0005 (3) −0.0014 (3) 0.0045 (3)
C1A 0.0146 (4) 0.0166 (4) 0.0140 (4) −0.0011 (3) −0.0003 (3) −0.0006 (3)
C1B 0.0156 (4) 0.0177 (4) 0.0114 (4) 0.0009 (3) 0.0001 (3) −0.0004 (3)
C2A 0.0172 (4) 0.0180 (4) 0.0127 (4) −0.0030 (3) 0.0005 (3) −0.0001 (3)
C2B 0.0139 (4) 0.0175 (4) 0.0140 (4) 0.0009 (3) −0.0001 (3) −0.0010 (3)
C3B 0.0151 (4) 0.0154 (4) 0.0114 (4) −0.0001 (3) −0.0023 (3) −0.0003 (3)
C3A 0.0168 (4) 0.0143 (4) 0.0118 (4) −0.0017 (3) −0.0030 (3) 0.0002 (3)
C4A 0.0141 (4) 0.0193 (4) 0.0143 (4) −0.0007 (3) −0.0005 (3) −0.0013 (3)
C4B 0.0158 (4) 0.0175 (4) 0.0125 (4) −0.0018 (3) 0.0009 (3) −0.0007 (3)
C5A 0.0163 (4) 0.0206 (4) 0.0117 (4) −0.0015 (3) 0.0000 (3) −0.0013 (3)
C5B 0.0131 (4) 0.0180 (4) 0.0142 (4) −0.0005 (3) −0.0002 (3) 0.0001 (3)
C6A 0.0154 (4) 0.0147 (4) 0.0125 (4) −0.0018 (3) −0.0021 (3) −0.0006 (3)
C6B 0.0143 (4) 0.0151 (4) 0.0122 (4) −0.0013 (3) −0.0014 (3) 0.0005 (3)
C7A 0.0173 (4) 0.0153 (4) 0.0125 (4) −0.0026 (3) −0.0018 (3) 0.0002 (3)
C7B 0.0157 (4) 0.0167 (4) 0.0149 (4) −0.0007 (3) −0.0022 (3) −0.0001 (3)
C8 0.0175 (4) 0.0233 (5) 0.0178 (5) −0.0023 (4) 0.0008 (4) −0.0016 (4)
C9 0.0138 (4) 0.0231 (5) 0.0156 (5) −0.0006 (3) −0.0012 (3) −0.0001 (4)
C10 0.0144 (4) 0.0199 (4) 0.0123 (4) 0.0012 (3) 0.0005 (3) −0.0009 (3)
C11 0.0151 (4) 0.0203 (4) 0.0148 (4) −0.0004 (3) −0.0020 (3) −0.0015 (4)
C12 0.0178 (4) 0.0232 (5) 0.0143 (5) 0.0029 (3) −0.0023 (3) −0.0010 (4)

Geometric parameters (Å, °)

O1A—N1A 1.2278 (12) C2A—H2AA 0.93
O1B—N1B 1.2294 (11) C2B—C3B 1.3851 (14)
O2A—N1A 1.2276 (11) C2B—H2BA 0.93
O2B—N1B 1.2244 (12) C3B—C4B 1.3863 (13)
O3A—C7A 1.2877 (12) C3A—C4A 1.3848 (14)
O3A—H1O3 0.8200 C4A—C5A 1.3888 (14)
O3B—C7B 1.2993 (12) C4A—H4AA 0.93
O4A—C7A 1.2362 (12) C4B—C5B 1.3890 (14)
O4B—C7B 1.2263 (12) C4B—H4BA 0.93
N1A—C3A 1.4743 (12) C5A—C6A 1.3969 (13)
N1B—C3B 1.4702 (13) C5A—H5AA 0.93
N2—C12 1.3502 (14) C5B—C6B 1.3977 (14)
N2—C8 1.3523 (14) C5B—H5BA 0.93
N2—H1N2 0.844 (9) C6A—C7A 1.5049 (13)
N3—C10 1.3301 (13) C6B—C7B 1.5047 (13)
N3—H3A 0.86 C8—C9 1.3626 (15)
N3—H3B 0.86 C8—H8A 0.93
C1A—C2A 1.3877 (14) C9—C10 1.4180 (14)
C1A—C6A 1.3930 (14) C9—H9A 0.93
C1A—H1AA 0.93 C10—C11 1.4180 (13)
C1B—C2B 1.3888 (13) C11—C12 1.3580 (15)
C1B—C6B 1.3949 (13) C11—H11A 0.93
C1B—H1BA 0.93 C12—H12A 0.93
C2A—C3A 1.3884 (13)
C7A—O3A—H1O3 109.5 C3B—C4B—H4BA 121.2
O2A—N1A—O1A 123.62 (9) C5B—C4B—H4BA 121.2
O2A—N1A—C3A 118.18 (9) C4A—C5A—C6A 120.21 (9)
O1A—N1A—C3A 118.20 (8) C4A—C5A—H5AA 119.9
O2B—N1B—O1B 123.36 (9) C6A—C5A—H5AA 119.9
O2B—N1B—C3B 118.43 (8) C4B—C5B—C6B 120.61 (9)
O1B—N1B—C3B 118.20 (9) C4B—C5B—H5BA 119.7
C12—N2—C8 120.86 (9) C6B—C5B—H5BA 119.7
C12—N2—H1N2 115.2 (11) C1A—C6A—C5A 119.99 (9)
C8—N2—H1N2 123.7 (11) C1A—C6A—C7A 119.15 (8)
C10—N3—H3A 120.0 C5A—C6A—C7A 120.86 (9)
C10—N3—H3B 120.0 C1B—C6B—C5B 120.08 (9)
H3A—N3—H3B 120.0 C1B—C6B—C7B 121.02 (9)
C2A—C1A—C6A 120.74 (9) C5B—C6B—C7B 118.88 (8)
C2A—C1A—H1AA 119.6 O4A—C7A—O3A 125.63 (9)
C6A—C1A—H1AA 119.6 O4A—C7A—C6A 119.65 (9)
C2B—C1B—C6B 120.04 (9) O3A—C7A—C6A 114.72 (8)
C2B—C1B—H1BA 120.0 O4B—C7B—O3B 125.05 (9)
C6B—C1B—H1BA 120.0 O4B—C7B—C6B 120.18 (9)
C1A—C2A—C3A 117.70 (9) O3B—C7B—C6B 114.75 (8)
C1A—C2A—H2AA 121.2 N2—C8—C9 120.94 (10)
C3A—C2A—H2AA 121.2 N2—C8—H8A 119.5
C3B—C2B—C1B 118.35 (9) C9—C8—H8A 119.5
C3B—C2B—H2BA 120.8 C8—C9—C10 119.85 (9)
C1B—C2B—H2BA 120.8 C8—C9—H9A 120.1
C2B—C3B—C4B 123.20 (9) C10—C9—H9A 120.1
C2B—C3B—N1B 118.36 (8) N3—C10—C11 120.35 (9)
C4B—C3B—N1B 118.42 (9) N3—C10—C9 122.38 (9)
C4A—C3A—C2A 123.18 (9) C11—C10—C9 117.27 (9)
C4A—C3A—N1A 118.57 (8) C12—C11—C10 119.88 (9)
C2A—C3A—N1A 118.23 (9) C12—C11—H11A 120.1
C3A—C4A—C5A 118.16 (9) C10—C11—H11A 120.1
C3A—C4A—H4AA 120.9 N2—C12—C11 121.19 (9)
C5A—C4A—H4AA 120.9 N2—C12—H12A 119.4
C3B—C4B—C5B 117.67 (9) C11—C12—H12A 119.4
C6A—C1A—C2A—C3A −0.39 (14) C4A—C5A—C6A—C1A −0.97 (14)
C6B—C1B—C2B—C3B 0.50 (14) C4A—C5A—C6A—C7A 178.78 (9)
C1B—C2B—C3B—C4B 1.38 (15) C2B—C1B—C6B—C5B −1.98 (14)
C1B—C2B—C3B—N1B −176.79 (9) C2B—C1B—C6B—C7B 176.30 (9)
O2B—N1B—C3B—C2B −175.56 (9) C4B—C5B—C6B—C1B 1.65 (14)
O1B—N1B—C3B—C2B 5.40 (14) C4B—C5B—C6B—C7B −176.66 (9)
O2B—N1B—C3B—C4B 6.18 (14) C1A—C6A—C7A—O4A −4.01 (14)
O1B—N1B—C3B—C4B −172.86 (9) C5A—C6A—C7A—O4A 176.24 (9)
C1A—C2A—C3A—C4A −1.18 (15) C1A—C6A—C7A—O3A 175.76 (8)
C1A—C2A—C3A—N1A 177.40 (8) C5A—C6A—C7A—O3A −3.99 (13)
O2A—N1A—C3A—C4A 3.87 (13) C1B—C6B—C7B—O4B 170.01 (9)
O1A—N1A—C3A—C4A −176.87 (9) C5B—C6B—C7B—O4B −11.69 (14)
O2A—N1A—C3A—C2A −174.77 (9) C1B—C6B—C7B—O3B −11.13 (13)
O1A—N1A—C3A—C2A 4.48 (13) C5B—C6B—C7B—O3B 167.17 (9)
C2A—C3A—C4A—C5A 1.64 (15) C12—N2—C8—C9 −1.21 (16)
N1A—C3A—C4A—C5A −176.93 (8) N2—C8—C9—C10 1.08 (16)
C2B—C3B—C4B—C5B −1.70 (15) C8—C9—C10—N3 −179.88 (10)
N1B—C3B—C4B—C5B 176.47 (9) C8—C9—C10—C11 −0.23 (15)
C3A—C4A—C5A—C6A −0.53 (14) N3—C10—C11—C12 179.16 (10)
C3B—C4B—C5B—C6B 0.15 (14) C9—C10—C11—C12 −0.50 (15)
C2A—C1A—C6A—C5A 1.44 (14) C8—N2—C12—C11 0.45 (16)
C2A—C1A—C6A—C7A −178.30 (9) C10—C11—C12—N2 0.41 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3A—H1O3···O3Bi 0.82 1.63 2.4457 (11) 170
N3—H3A···O3Bii 0.86 2.14 2.9977 (12) 172
N3—H3B···O4Bi 0.86 2.07 2.8758 (12) 155
N2—H1N2···O4Aiii 0.85 (1) 1.99 (1) 2.7726 (12) 153 (1)
C2B—H2BA···O1Biv 0.93 2.52 3.2187 (13) 133
C8—H8A···O3Av 0.93 2.56 3.4565 (13) 161
C12—H12A···O1Avi 0.93 2.55 3.4427 (13) 162

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+2, −y+2, −z+1; (iii) x+1, y−1, z; (iv) −x+3, −y+1, −z+2; (v) x, y−1, z; (vi) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2664).

References

  1. Anderson, F. P., Gallagher, J. F., Kenny, P. T. M. & Lough, A. J. (2005). Acta Cryst. E61, o1350–o1353.
  2. Andrau, L. & White, J. (2003). Acta Cryst. E59, o77–o79. [DOI] [PubMed]
  3. Bhattacharya, S., Dastidar, P. & Guru Row, T. N. (1994). Chem. Mater.6, 531–537.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chao, M. & Schempp, E. (1977). Acta Cryst. B33, 1557–1564.
  6. Judge, S. & Bever, C. (2006). Pharmacol. Ther.111, 224–259. [DOI] [PubMed]
  7. Karle, I., Gilardi, R. D., Chandrashekhar Rao, Ch., Muraleedharan, K. M. & Ranganathan, S. (2003). J. Chem. Crystallogr.33, 727–749.
  8. Schwid, S. B., Petrie, M. D., McDermott, M. P., Tierney, D. S., Mason, D. H. & Goodman, A. D. (1997). Neurology, 48, 817–821. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  11. Strupp, M., Kalla, R., Dichgans, M., Fraitinger, T., Glasauer, S. & Brandt, T. (2004). Neurology, 62, 1623–1625. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808027761/ci2664sup1.cif

e-64-o1878-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027761/ci2664Isup2.hkl

e-64-o1878-Isup2.hkl (318.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES