Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 6;64(Pt 10):m1248. doi: 10.1107/S1600536808027864

Bis(2-amino-4-methyl-1,3-thia­zole-κN 3)dichloridocadmium(II)

Lai-Jun Zhang a,b,*, Xing-Can Shen b, Hong Liang b
PMCID: PMC2959461  PMID: 21201005

Abstract

In the title compound, [CdCl2(C4H6N2S)2], the CdII atom is coordinated by two chlorido ligands and two N atoms of the 2-amino-5-methyl-1,3-thia­zole (amtz) ligands in a slightly distorted tetra­hedral coordination geometry. Intra- and inter­molecular N—H⋯Cl hydrogen bonding stabilizes the crystal structure. A weak S⋯Cl inter­action [3.533 (2) Å] is observed between neighboring mol­ecules.

Related literature

For general background, see: Bolos et al. (1999); Miodragović et al. (2006); Cini et al. (2007); Dea et al. (2008); Shen et al. (2008). For a related structure, see: Cai et al. (2008).graphic file with name e-64-m1248-scheme1.jpg

Experimental

Crystal data

  • [CdCl2(C4H6N2S)2]

  • M r = 411.67

  • Monoclinic, Inline graphic

  • a = 8.7100 (17) Å

  • b = 13.190 (3) Å

  • c = 12.740 (3) Å

  • β = 95.19 (3)°

  • V = 1457.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.13 mm−1

  • T = 293 (2) K

  • 0.40 × 0.25 × 0.23 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.442, T max = 0.612

  • 7630 measured reflections

  • 2595 independent reflections

  • 2113 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.064

  • S = 0.98

  • 2595 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808027864/xu2449sup1.cif

e-64-m1248-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027864/xu2449Isup2.hkl

e-64-m1248-Isup2.hkl (127.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cd1—N2 2.246 (3)
Cd1—N1 2.248 (3)
Cd1—Cl1 2.4181 (10)
Cd1—Cl2 2.4387 (11)
N2—Cd1—N1 99.70 (11)
N2—Cd1—Cl1 106.53 (8)
N1—Cd1—Cl1 116.26 (8)
N2—Cd1—Cl2 114.38 (8)
N1—Cd1—Cl2 107.19 (8)
Cl1—Cd1—Cl2 112.34 (4)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Cl2 0.86 2.49 3.322 (4) 164
N3—H3B⋯Cl1i 0.86 2.70 3.343 (3) 133
N4—H4A⋯Cl1 0.86 2.44 3.276 (4) 165
N4—H4B⋯Cl2ii 0.86 2.52 3.325 (3) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Dr Shu-Hua Zhang for helpful discussions and acknowledge funding from the National Natural Science Foundation of China (No. 20701010),the Natural Science Foundation of Guangxi Province (No. 0728094) and the Science and Technology Project of the Department of Education of Jiangxi Province [No. (2007)348].

supplementary crystallographic information

Comment

As one of the important S,N-containing-heterocycles, the 1,3-thiazole have often been regarded as a kind of pharmaceutical intermediates and constituents of many biomolecules. Higher pharmacological activities of metal-thiazole complexes than those of thiazole ligands themselves were found, which may depend on their crystal and molecular structures (Bolos et al. 1999; Miodragović et al. 2006; Cini et al. 2007; Dea et al. 2008; Shen et al. 2008). For 2-amino-5-methyl-1,3-thiazole (amtz), however, only one Cu-containing coordination complex with definite crystal structure was reported (Bolos et al. 1999). Herein, our initial goal of this research is to obtain the single crystal using 2-amino-4-thiazole acetic acid (atac) as ligand. When the reaction using the raw materials such as atac and cadmium chloride hydrate [CdCl2.2.5(H2O)] in ethanol-water mixed solvents was carried out under solvothermal condition, however, atac was decarboxylized and then turn into amtz which may bind to CdCl2 to construct the title complex.

Fig. 1 displays the molecular structure of the title compound. The CdII atom is coordinated by two chloride anions and two N atoms of thiazole rings from two amtz ligands in a slightly distorted tetrahedral coordination geometry (Table 1) (Cai et al. 2008). In the crystal structure, the intramolecular N—H···Cl hydrogen bonds (Table 2) stabilize the molecular conformation, and the molecules are interconnected into a two-dimensional network structure via both the intermolecular N—H···Cl hydrogen bonds and weak S···Cl interactions [3.533 (2) Å]. In the crystal packing diagrams, one-dimensional zigzag chains viewed along the a axis and two-dimensional network structures viewed along the c axis can be found in Fig. 2 and in Fig. 3, respectively.

Experimental

2-Amino-4-thiazole acetic acid (0.316 g, 2 mmol) and CdCl2.2.5H2O (0.457 g, 2 mmol) were added into 15 ml ethanol–water (1:1 volume ratio) mixed solvents and stirred for 30 min. The mixture was transferred into a Teflon-lined stainless steel vessel (25 ml). The autoclave was sealed and heated at 383 K for two days, and then autoclave was allowed to cool to room temperature in air. After isolated by filtration, the filtrate was left to stand at room temperature about one week. The brown–yellow block single crystals suitable for X-ray diffraction were obtained with the reaction yield of 30% (based on cadmium).

Refinement

All H atoms bonded to C or N atoms were placed in geometrically calculated positions (N—H, 0.86 Å; C—H, 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title complex. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the a axis in one-dimensional zigzag chain form via both the intermolecular N—H···Cl hydrogen bonds and weak S···Cl interactions which are shown by dashed lines. The intramolecular N—H···Cl hydrogen bonds and all hydrogen atoms not involved in hydrogen bonding were omitted for clarity.

Fig. 3.

Fig. 3.

The crystal packing of the title compound viewed along the c axis, showing formation of the two-dimensional network structure via both the intermolecular N—H···Cl hydrogen bonds and weak S···Cl interactions which are denoted with dashed lines. All hydrogen atoms not involved in the intermolecular N—H···Cl hydrogen bonds were omitted for clarity.

Crystal data

[CdCl2(C4H6N2S)2] F(000) = 808
Mr = 411.67 Dx = 1.885 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2595 reflections
a = 8.7100 (17) Å θ = 2.2–25.1°
b = 13.190 (3) Å µ = 2.14 mm1
c = 12.740 (3) Å T = 293 K
β = 95.19 (3)° Block, brown-yellow
V = 1457.6 (6) Å3 0.40 × 0.25 × 0.23 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 2595 independent reflections
Radiation source: fine-focus sealed tube 2113 reflections with I > 2σ(I)
graphite Rint = 0.027
φ and ω scans θmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −10→10
Tmin = 0.442, Tmax = 0.612 k = −15→15
7630 measured reflections l = −15→8

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064 H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0309P)2 + 0.4982P] where P = (Fo2 + 2Fc2)/3
2595 reflections (Δ/σ)max < 0.001
156 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Experimental. IR (KBr, cm-1): 3431s, 3861s, 3305s, 3205ms, 3133w, 3100w, 2978w, 2947w, 2913w, 2713w, 2346w, 1621vs, 1561m, 1506s, 1438ms, 1380ms, 1357s, 1147m, 1112s, 1033m, 843w, 738m, 703m, 637m, 606m, 478m.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cd1 0.79522 (3) 0.902858 (19) 0.78981 (2) 0.04161 (10)
C1 0.6219 (4) 0.7247 (3) 0.6506 (3) 0.0454 (9)
C2 0.8598 (4) 0.7492 (3) 0.6053 (3) 0.0468 (9)
C3 0.4937 (4) 1.0397 (3) 0.7472 (3) 0.0510 (9)
C4 0.6202 (4) 0.6597 (3) 0.5703 (3) 0.0535 (10)
H4 0.5368 0.6187 0.5480 0.064*
C5 0.6514 (5) 1.0670 (3) 0.6215 (3) 0.0621 (11)
C6 0.5336 (7) 1.1274 (4) 0.5873 (4) 0.0879 (16)
H6 0.5319 1.1667 0.5267 0.105*
C7 0.7954 (6) 1.0484 (4) 0.5704 (4) 0.0891 (16)
H7A 0.7925 1.0860 0.5057 0.134*
H7B 0.8043 0.9774 0.5557 0.134*
H7C 0.8824 1.0698 0.6167 0.134*
C8 0.4931 (4) 0.7448 (3) 0.7171 (3) 0.0659 (12)
H8A 0.4101 0.6985 0.6983 0.099*
H8B 0.4573 0.8132 0.7058 0.099*
H8C 0.5288 0.7359 0.7900 0.099*
Cl1 1.06487 (10) 0.94872 (8) 0.79854 (9) 0.0612 (3)
Cl2 0.71199 (11) 0.86235 (8) 0.96262 (7) 0.0551 (3)
N1 0.6277 (3) 1.0170 (2) 0.7149 (2) 0.0443 (7)
N2 0.7612 (3) 0.7769 (2) 0.6713 (2) 0.0427 (7)
N3 0.4407 (3) 1.0036 (3) 0.8341 (3) 0.0649 (9)
H3A 0.4957 0.9620 0.8735 0.078*
H3B 0.3512 1.0216 0.8509 0.078*
N4 1.0026 (4) 0.7866 (3) 0.6046 (3) 0.0710 (11)
H4A 1.0348 0.8321 0.6497 0.085*
H4B 1.0621 0.7651 0.5591 0.085*
S1 0.38830 (17) 1.12403 (11) 0.66679 (12) 0.0917 (4)
S2 0.79042 (12) 0.66122 (8) 0.51342 (8) 0.0607 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cd1 0.03346 (15) 0.04928 (17) 0.04276 (17) −0.00234 (11) 0.00714 (11) −0.00173 (12)
C1 0.041 (2) 0.041 (2) 0.052 (2) −0.0037 (16) −0.0011 (17) 0.0042 (18)
C2 0.050 (2) 0.043 (2) 0.048 (2) −0.0025 (17) 0.0102 (17) −0.0039 (17)
C3 0.043 (2) 0.047 (2) 0.062 (3) 0.0040 (17) −0.0009 (19) −0.0053 (19)
C4 0.048 (2) 0.048 (2) 0.062 (3) −0.0031 (18) −0.0063 (19) −0.007 (2)
C5 0.080 (3) 0.049 (2) 0.056 (3) −0.008 (2) 0.002 (2) 0.012 (2)
C6 0.118 (4) 0.069 (3) 0.072 (3) 0.009 (3) −0.013 (3) 0.030 (3)
C7 0.104 (4) 0.099 (4) 0.070 (3) −0.008 (3) 0.034 (3) 0.026 (3)
C8 0.045 (2) 0.075 (3) 0.079 (3) −0.014 (2) 0.015 (2) −0.011 (2)
Cl1 0.0355 (5) 0.0727 (7) 0.0757 (7) −0.0109 (5) 0.0062 (5) −0.0115 (6)
Cl2 0.0497 (5) 0.0708 (6) 0.0466 (5) 0.0022 (5) 0.0140 (4) 0.0077 (5)
N1 0.0445 (17) 0.0412 (17) 0.0470 (18) −0.0030 (14) 0.0030 (14) 0.0039 (14)
N2 0.0429 (16) 0.0425 (16) 0.0436 (16) −0.0034 (13) 0.0084 (13) −0.0036 (14)
N3 0.0409 (18) 0.083 (2) 0.073 (2) 0.0146 (17) 0.0172 (17) 0.008 (2)
N4 0.059 (2) 0.078 (2) 0.081 (3) −0.0172 (19) 0.0366 (19) −0.028 (2)
S1 0.0823 (9) 0.0895 (9) 0.1004 (11) 0.0353 (7) −0.0071 (8) 0.0189 (8)
S2 0.0642 (7) 0.0591 (6) 0.0589 (7) 0.0000 (5) 0.0061 (5) −0.0178 (5)

Geometric parameters (Å, °)

Cd1—N2 2.246 (3) C5—C6 1.340 (6)
Cd1—N1 2.248 (3) C5—N1 1.392 (5)
Cd1—Cl1 2.4181 (10) C5—C7 1.485 (6)
Cd1—Cl2 2.4387 (11) C6—S1 1.691 (6)
C1—C4 1.333 (5) C6—H6 0.9300
C1—N2 1.399 (4) C7—H7A 0.9600
C1—C8 1.490 (5) C7—H7B 0.9600
C2—N2 1.308 (4) C7—H7C 0.9600
C2—N4 1.338 (4) C8—H8A 0.9600
C2—S2 1.718 (4) C8—H8B 0.9600
C3—N1 1.308 (4) C8—H8C 0.9600
C3—N3 1.326 (5) N3—H3A 0.8600
C3—S1 1.720 (4) N3—H3B 0.8600
C4—S2 1.708 (4) N4—H4A 0.8600
C4—H4 0.9300 N4—H4B 0.8600
N2—Cd1—N1 99.70 (11) C5—C7—H7B 109.5
N2—Cd1—Cl1 106.53 (8) H7A—C7—H7B 109.5
N1—Cd1—Cl1 116.26 (8) C5—C7—H7C 109.5
N2—Cd1—Cl2 114.38 (8) H7A—C7—H7C 109.5
N1—Cd1—Cl2 107.19 (8) H7B—C7—H7C 109.5
Cl1—Cd1—Cl2 112.34 (4) C1—C8—H8A 109.5
C4—C1—N2 114.2 (3) C1—C8—H8B 109.5
C4—C1—C8 126.5 (3) H8A—C8—H8B 109.5
N2—C1—C8 119.3 (3) C1—C8—H8C 109.5
N2—C2—N4 124.4 (3) H8A—C8—H8C 109.5
N2—C2—S2 114.6 (3) H8B—C8—H8C 109.5
N4—C2—S2 121.0 (3) C3—N1—C5 111.5 (3)
N1—C3—N3 124.6 (3) C3—N1—Cd1 125.7 (3)
N1—C3—S1 113.8 (3) C5—N1—Cd1 122.7 (3)
N3—C3—S1 121.5 (3) C2—N2—C1 110.4 (3)
C1—C4—S2 111.6 (3) C2—N2—Cd1 125.8 (2)
C1—C4—H4 124.2 C1—N2—Cd1 123.4 (2)
S2—C4—H4 124.2 C3—N3—H3A 120.0
C6—C5—N1 113.0 (4) C3—N3—H3B 120.0
C6—C5—C7 127.4 (4) H3A—N3—H3B 120.0
N1—C5—C7 119.5 (4) C2—N4—H4A 120.0
C5—C6—S1 112.5 (4) C2—N4—H4B 120.0
C5—C6—H6 123.8 H4A—N4—H4B 120.0
S1—C6—H6 123.8 C6—S1—C3 89.2 (2)
C5—C7—H7A 109.5 C4—S2—C2 89.09 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···Cl2 0.86 2.49 3.322 (4) 164.
N3—H3B···Cl1i 0.86 2.70 3.343 (3) 133.
N4—H4A···Cl1 0.86 2.44 3.276 (4) 165.
N4—H4B···Cl2ii 0.86 2.52 3.325 (3) 157.

Symmetry codes: (i) x−1, y, z; (ii) x+1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2449).

References

  1. Bolos, C. A., Fanourgakis, P. V., Christidis, P. C. & Nikolov, G. S. (1999). Polyhedron, 18, 1661–1668.
  2. Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cai, X.-W., Zhao, Y.-Y. & Han, G.-F. (2008). Acta Cryst. E64, m1012. [DOI] [PMC free article] [PubMed]
  5. Cini, R., Tamasi, G., Defazio, S. & Hursthouse, M. B. (2007). J. Inorg. Biochem.101, 1140–1152. [DOI] [PubMed]
  6. Dea, S., Adhikari, S., Tilak-Jain, J., Menon, V. P. & Devasagayam, T. P. A. (2008). Chem. Biol. Interact.173, 215–223. [DOI] [PubMed]
  7. Miodragović, D. U., Bogdanović, G. A., Miodragović, Z. M., Radulović, M.-D., Novaković, S. B., Kaluderović, G. N. & Kozłowski, H. (2006). J. Inorg. Biochem.100, 1568–1574. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  9. Shen, L., Zhang, Y., Wang, A., Sieber-McMaster, E., Chen, X., Pelton, P., Xu, J. Z., Yang, M., Zhu, P., Zhou, L., Reuman, M., Hu, Z., Russell, R., Gibbs, A. C., Ross, H., Demarest, K., Murray, W. V. & Kuo, G.-H. (2008). Bioorg. Med. Chem.16, 3321–3341. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808027864/xu2449sup1.cif

e-64-m1248-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027864/xu2449Isup2.hkl

e-64-m1248-Isup2.hkl (127.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES