Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 20;64(Pt 10):o1973. doi: 10.1107/S1600536808029723

r-2,c-6-Bis(4-chloro­phen­yl)-t-3-isopropyl-1-nitro­sopiperidin-4-one

P Gayathri a, A Thiruvalluvar a,*, A Manimekalai b, S Sivakumar b, R J Butcher c
PMCID: PMC2959467  PMID: 21201173

Abstract

In the title mol­ecule, C20H20Cl2N2O2, the piperidine ring adopts a chair conformation and the nitroso group at position 1 has a bis­ectional orientation. The two benzene rings and the isopropyl group attached to the piperidine ring in positions 2, 6 and 3, respectively, have axial orientations. The dihedral angle between the two benzene rings is 21.56 (13)°. One of the Cl atoms is disordered over two positions in a 0.281 (5):0.719 (5) ratio. In the crystal structure, mol­ecules are linked by C—H⋯O hydrogen bonds and a short C—H⋯O contact occurs within the mol­ecule.

Related literature

For related crystal structures, see: Balamurugan et al. (2006, 2007); Thiruvalluvar, Balamurugan, Jayabharathi & Manimekalai (2007); Thiruvalluvar, Balamurugan, Jayabharathi, Manimekalai & Rajarajan (2007).graphic file with name e-64-o1973-scheme1.jpg

Experimental

Crystal data

  • C20H20Cl2N2O2

  • M r = 391.28

  • Triclinic, Inline graphic

  • a = 8.2771 (2) Å

  • b = 11.1921 (4) Å

  • c = 11.2351 (4) Å

  • α = 93.375 (3)°

  • β = 106.924 (3)°

  • γ = 104.549 (3)°

  • V = 953.95 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 3.20 mm−1

  • T = 200 (2) K

  • 0.54 × 0.47 × 0.41 mm

Data collection

  • Oxford Diffraction R Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.269, T max = 1.000 (expected range = 0.073–0.270)

  • 8014 measured reflections

  • 3752 independent reflections

  • 3506 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.155

  • S = 1.02

  • 3752 reflections

  • 239 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029723/hb2797sup1.cif

e-64-o1973-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029723/hb2797Isup2.hkl

e-64-o1973-Isup2.hkl (180.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O11 1.00 2.24 2.676 (2) 105
C5—H5B⋯O4i 0.99 2.55 3.530 (3) 171
C32—H32C⋯O4ii 0.98 2.59 3.532 (3) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

AT thanks the UGC, India, for the award of a Minor Research Project [File No. MRP-2355/06(UGC-SERO), Link No. 2355, 10/01/2007]. RJB acknowledges the NSF–MRI program for funding to purchase the diffractometer.

supplementary crystallographic information

Comment

Various crystal structures of di-2-furylpiperidin-4-one derivatives have been reported, wherein the piperidine ring adopts a chair (Balamurugan et al., 2006), a twist-boat (Balamurugan et al., 2007) and a chair conformation (Thiruvalluvar, Balamurugan, Jayabharathi & Manimekalai, 2007). Thiruvalluvar, Balamurugan, Jayabharathi, Manimekalai & Rajarajan (2007) have reported the crystal structure of a diphenylpiperidin-4-ol derivative, wherein the piperidine ring adopts a chair conformation.

In the title molecule, C20H20Cl2N2O2 (Fig. 1), the piperidine ring adopts a chair conformation. The nitroso group at position 1 has a bisectional orientation. The two phenyl rings and the isopropyl group attached to the piperidine ring in positions 2, 6 and 3, respectively, have axial orientations. The dihedral angle between the two phenyl rings is 21.56 (13)°. Compound (I) is chiral: in the arbitrarily chosen asymmetric molecule, C2, C3 and C6 have S, R, and R conformations respectively, but crystal symmetry generates a racemic mixture. In the crystal, the molecules are linked by C—H···O hydrogen bonds (Fig. 2, Table 1).

Experimental

To a solution of t3-isopropyl-r2,c6-bis(4-chlorophenyl) piperidin-4-one (1.81 g, 0.005 mol) in chloroform (10 ml), concentrated HCl (1.5 ml) and water (1.5 ml) were added. While stirring, solid NaNO2 (3 g, 0.012 mol) was added in small portions to the reaction mixture over a period of 30 minutes. The stirring was continued for another 30 minutes. The organic layer was washed with water and saturated NaHCO3 and dried over anhydrous Na2SO4. After the removal of chloroform, the crude solid was recrystallized from distilled ethanol, to yield 1.5 g of colourless chunks of (I) (yield = 76%).

Refinement

The Cl atom attached to C64 is disordered over two positions in a 0.281 (5) to 0.719 (5) ratio. The ADPs of both chlorine atoms were set to be identical. The C—Cl distances were restrained to be 1.740 (3) Å. The H atoms were positioned geometrically (C–H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

The packing of (I), viewed along the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C20H20Cl2N2O2 Z = 2
Mr = 391.28 F(000) = 408
Triclinic, P1 Dx = 1.362 Mg m3
Hall symbol: -P 1 Melting point: 371 K
a = 8.2771 (2) Å Cu Kα radiation, λ = 1.54184 Å
b = 11.1921 (4) Å Cell parameters from 7346 reflections
c = 11.2351 (4) Å θ = 4.1–73.2°
α = 93.375 (3)° µ = 3.20 mm1
β = 106.924 (3)° T = 200 K
γ = 104.549 (3)° Chunk, colourless
V = 953.95 (6) Å3 0.54 × 0.47 × 0.41 mm

Data collection

Oxford Diffraction R Gemini diffractometer 3752 independent reflections
Radiation source: fine-focus sealed tube 3506 reflections with I > 2σ(I)
graphite Rint = 0.020
Detector resolution: 10.5081 pixels mm-1 θmax = 73.6°, θmin = 4.1°
φ and ω scans h = −9→10
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) k = −13→13
Tmin = 0.269, Tmax = 1.000 l = −13→13
8014 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0861P)2 + 0.6137P] where P = (Fo2 + 2Fc2)/3
3752 reflections (Δ/σ)max = 0.001
239 parameters Δρmax = 0.55 e Å3
2 restraints Δρmin = −0.43 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cl2 0.43589 (10) −0.19782 (5) 0.33972 (6) 0.0590 (2)
Cl6A −0.1316 (3) −0.06761 (12) 0.2338 (3) 0.0841 (7) 0.719 (5)
O4 0.7087 (2) 0.46794 (17) 0.48136 (13) 0.0497 (5)
O11 0.5501 (3) 0.32189 (19) −0.05880 (16) 0.0660 (7)
N1 0.4995 (2) 0.34969 (16) 0.11627 (14) 0.0372 (5)
N11 0.4570 (3) 0.35585 (18) −0.00614 (17) 0.0522 (6)
C2 0.6545 (3) 0.31257 (18) 0.18850 (17) 0.0334 (5)
C3 0.7723 (3) 0.42145 (18) 0.29227 (17) 0.0327 (5)
C4 0.6642 (3) 0.45915 (17) 0.36822 (18) 0.0348 (6)
C5 0.5004 (3) 0.49030 (18) 0.29305 (18) 0.0363 (6)
C6 0.3862 (3) 0.39307 (19) 0.17854 (19) 0.0383 (6)
C13 0.8596 (3) 0.53527 (19) 0.2373 (2) 0.0389 (6)
C21 0.5990 (3) 0.18630 (18) 0.23147 (17) 0.0326 (5)
C22 0.4852 (3) 0.08611 (19) 0.14198 (19) 0.0389 (6)
C23 0.4339 (3) −0.0315 (2) 0.1750 (2) 0.0421 (6)
C24 0.4973 (3) −0.04937 (19) 0.2980 (2) 0.0398 (6)
C25 0.6100 (3) 0.0473 (2) 0.38825 (19) 0.0409 (6)
C26 0.6609 (3) 0.16493 (19) 0.35455 (18) 0.0384 (6)
C31 0.9944 (4) 0.5055 (3) 0.1809 (3) 0.0592 (9)
C32 0.9513 (3) 0.6478 (2) 0.3399 (3) 0.0543 (8)
C61 0.2563 (3) 0.2832 (2) 0.2041 (2) 0.0421 (6)
C62 0.2692 (3) 0.2498 (2) 0.3220 (3) 0.0524 (8)
C63 0.1510 (4) 0.1436 (3) 0.3368 (4) 0.0703 (10)
C64 0.0189 (3) 0.0718 (2) 0.2332 (4) 0.0720 (12)
C65 0.0003 (3) 0.1074 (3) 0.1156 (4) 0.0746 (12)
C66 0.1184 (3) 0.2115 (3) 0.1008 (3) 0.0593 (9)
Cl6B −0.0853 (7) −0.0526 (4) 0.2990 (7) 0.0841 (7) 0.281 (5)
H2 0.72236 0.30238 0.12995 0.0401*
H3 0.86751 0.39229 0.34954 0.0393*
H5A 0.53537 0.57198 0.26429 0.0435*
H5B 0.42922 0.49868 0.34856 0.0435*
H6 0.31545 0.43675 0.11767 0.0459*
H13 0.76630 0.55652 0.16987 0.0467*
H22 0.44203 0.09866 0.05694 0.0467*
H23 0.35584 −0.09911 0.11325 0.0505*
H25 0.65284 0.03391 0.47303 0.0491*
H26 0.73940 0.23186 0.41688 0.0461*
H31A 0.93640 0.43346 0.11470 0.0887*
H31B 1.08772 0.48622 0.24672 0.0887*
H31C 1.04551 0.57768 0.14499 0.0887*
H32A 0.86543 0.66784 0.37622 0.0814*
H32B 1.00279 0.71949 0.30348 0.0814*
H32C 1.04446 0.62838 0.40568 0.0814*
H62 0.35940 0.29957 0.39345 0.0629*
H63 0.16109 0.12048 0.41808 0.0844*
H65 −0.09399 0.06000 0.04494 0.0896*
H66 0.10616 0.23497 0.01945 0.0712*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl2 0.0920 (5) 0.0271 (3) 0.0621 (4) 0.0080 (3) 0.0375 (3) 0.0087 (2)
Cl6A 0.0520 (8) 0.0412 (5) 0.157 (2) −0.0006 (5) 0.0433 (11) 0.0067 (8)
O4 0.0592 (10) 0.0591 (10) 0.0295 (7) 0.0196 (8) 0.0111 (7) −0.0008 (6)
O11 0.1101 (16) 0.0592 (11) 0.0380 (9) 0.0351 (11) 0.0273 (10) 0.0098 (8)
N1 0.0515 (10) 0.0316 (8) 0.0251 (7) 0.0123 (7) 0.0063 (7) 0.0056 (6)
N11 0.0833 (14) 0.0385 (10) 0.0322 (9) 0.0179 (10) 0.0137 (9) 0.0057 (7)
C2 0.0445 (10) 0.0299 (9) 0.0274 (9) 0.0122 (8) 0.0124 (8) 0.0045 (7)
C3 0.0389 (10) 0.0293 (9) 0.0299 (9) 0.0105 (8) 0.0096 (7) 0.0058 (7)
C4 0.0428 (10) 0.0264 (9) 0.0327 (10) 0.0067 (8) 0.0114 (8) 0.0017 (7)
C5 0.0441 (11) 0.0289 (9) 0.0366 (10) 0.0110 (8) 0.0137 (8) 0.0024 (8)
C6 0.0430 (11) 0.0336 (10) 0.0354 (10) 0.0143 (8) 0.0050 (8) 0.0065 (8)
C13 0.0398 (10) 0.0343 (10) 0.0422 (10) 0.0093 (8) 0.0119 (8) 0.0132 (8)
C21 0.0407 (10) 0.0282 (9) 0.0322 (9) 0.0130 (8) 0.0139 (8) 0.0038 (7)
C22 0.0481 (11) 0.0347 (10) 0.0328 (10) 0.0133 (9) 0.0101 (8) 0.0022 (8)
C23 0.0489 (12) 0.0308 (10) 0.0425 (11) 0.0083 (9) 0.0125 (9) −0.0034 (8)
C24 0.0526 (12) 0.0266 (9) 0.0471 (11) 0.0118 (8) 0.0251 (9) 0.0070 (8)
C25 0.0570 (12) 0.0333 (10) 0.0346 (10) 0.0134 (9) 0.0164 (9) 0.0083 (8)
C26 0.0503 (11) 0.0295 (10) 0.0329 (10) 0.0093 (8) 0.0114 (8) 0.0026 (7)
C31 0.0607 (15) 0.0555 (15) 0.0714 (17) 0.0117 (12) 0.0389 (13) 0.0145 (12)
C32 0.0528 (13) 0.0332 (11) 0.0700 (16) 0.0032 (10) 0.0170 (12) 0.0066 (10)
C61 0.0360 (10) 0.0342 (10) 0.0547 (12) 0.0132 (8) 0.0095 (9) 0.0065 (9)
C62 0.0463 (12) 0.0490 (13) 0.0657 (15) 0.0140 (10) 0.0207 (11) 0.0186 (11)
C63 0.0632 (17) 0.0625 (17) 0.107 (2) 0.0285 (14) 0.0448 (17) 0.0408 (17)
C64 0.0418 (13) 0.0347 (13) 0.148 (3) 0.0124 (10) 0.0409 (17) 0.0148 (16)
C65 0.0403 (13) 0.0477 (15) 0.120 (3) 0.0057 (11) 0.0118 (15) −0.0104 (16)
C66 0.0446 (13) 0.0496 (14) 0.0720 (17) 0.0135 (11) 0.0026 (11) −0.0012 (12)
Cl6B 0.0520 (8) 0.0412 (5) 0.157 (2) −0.0006 (5) 0.0433 (11) 0.0067 (8)

Geometric parameters (Å, °)

Cl2—C24 1.745 (2) C62—C63 1.390 (4)
Cl6A—C64 1.737 (3) C63—C64 1.380 (5)
Cl6B—C64 1.766 (6) C64—C65 1.379 (6)
O4—C4 1.207 (2) C65—C66 1.373 (5)
O11—N11 1.214 (3) C2—H2 1.0000
N1—N11 1.327 (2) C3—H3 1.0000
N1—C2 1.476 (3) C5—H5A 0.9900
N1—C6 1.475 (3) C5—H5B 0.9900
C2—C21 1.525 (3) C6—H6 1.0000
C2—C3 1.539 (3) C13—H13 1.0000
C3—C4 1.516 (3) C22—H22 0.9500
C3—C13 1.555 (3) C23—H23 0.9500
C4—C5 1.510 (3) C25—H25 0.9500
C5—C6 1.531 (3) C26—H26 0.9500
C6—C61 1.519 (3) C31—H31A 0.9800
C13—C32 1.527 (3) C31—H31B 0.9800
C13—C31 1.527 (4) C31—H31C 0.9800
C21—C22 1.393 (3) C32—H32A 0.9800
C21—C26 1.386 (3) C32—H32B 0.9800
C22—C23 1.385 (3) C32—H32C 0.9800
C23—C24 1.374 (3) C62—H62 0.9500
C24—C25 1.372 (3) C63—H63 0.9500
C25—C26 1.388 (3) C65—H65 0.9500
C61—C66 1.397 (4) C66—H66 0.9500
C61—C62 1.379 (4)
N11—N1—C2 123.99 (18) C21—C2—H2 107.00
N11—N1—C6 114.35 (18) C2—C3—H3 108.00
C2—N1—C6 121.50 (15) C4—C3—H3 108.00
O11—N11—N1 115.3 (2) C13—C3—H3 108.00
N1—C2—C3 108.06 (17) C4—C5—H5A 109.00
N1—C2—C21 110.95 (19) C4—C5—H5B 109.00
C3—C2—C21 116.29 (15) C6—C5—H5A 109.00
C2—C3—C4 109.5 (2) C6—C5—H5B 109.00
C2—C3—C13 111.85 (16) H5A—C5—H5B 108.00
C4—C3—C13 110.24 (17) N1—C6—H6 107.00
O4—C4—C3 122.5 (2) C5—C6—H6 107.00
O4—C4—C5 122.1 (2) C61—C6—H6 107.00
C3—C4—C5 115.41 (17) C3—C13—H13 109.00
C4—C5—C6 113.82 (18) C31—C13—H13 109.00
N1—C6—C5 109.7 (2) C32—C13—H13 109.00
N1—C6—C61 110.74 (17) C21—C22—H22 119.00
C5—C6—C61 115.49 (18) C23—C22—H22 119.00
C3—C13—C31 110.9 (2) C22—C23—H23 120.00
C3—C13—C32 110.29 (18) C24—C23—H23 120.00
C31—C13—C32 109.0 (2) C24—C25—H25 120.00
C2—C21—C22 118.53 (17) C26—C25—H25 120.00
C2—C21—C26 123.28 (18) C21—C26—H26 119.00
C22—C21—C26 118.15 (18) C25—C26—H26 119.00
C21—C22—C23 121.07 (19) C13—C31—H31A 109.00
C22—C23—C24 119.3 (2) C13—C31—H31B 109.00
Cl2—C24—C23 119.49 (17) C13—C31—H31C 109.00
Cl2—C24—C25 119.45 (16) H31A—C31—H31B 109.00
C23—C24—C25 121.1 (2) H31A—C31—H31C 109.00
C24—C25—C26 119.39 (19) H31B—C31—H31C 109.00
C21—C26—C25 121.06 (19) C13—C32—H32A 109.00
C6—C61—C62 123.8 (2) C13—C32—H32B 109.00
C6—C61—C66 117.3 (2) C13—C32—H32C 109.00
C62—C61—C66 118.9 (2) H32A—C32—H32B 109.00
C61—C62—C63 120.4 (3) H32A—C32—H32C 110.00
C62—C63—C64 119.9 (3) H32B—C32—H32C 109.00
Cl6A—C64—C63 125.8 (3) C61—C62—H62 120.00
Cl6A—C64—C65 114.0 (3) C63—C62—H62 120.00
C63—C64—C65 120.2 (3) C62—C63—H63 120.00
Cl6B—C64—C63 102.5 (4) C64—C63—H63 120.00
Cl6B—C64—C65 137.3 (4) C64—C65—H65 120.00
C64—C65—C66 119.9 (3) C66—C65—H65 120.00
C61—C66—C65 120.7 (3) C61—C66—H66 120.00
N1—C2—H2 107.00 C65—C66—H66 120.00
C3—C2—H2 107.00
C2—N1—N11—O11 3.9 (3) C3—C4—C5—C6 48.5 (2)
C6—N1—N11—O11 179.18 (19) C4—C5—C6—N1 −40.6 (2)
N11—N1—C2—C3 120.4 (2) C4—C5—C6—C61 85.3 (3)
N11—N1—C2—C21 −111.1 (2) N1—C6—C61—C62 107.0 (3)
C6—N1—C2—C3 −54.6 (2) N1—C6—C61—C66 −71.9 (3)
C6—N1—C2—C21 73.9 (2) C5—C6—C61—C62 −18.5 (3)
N11—N1—C6—C5 −127.96 (18) C5—C6—C61—C66 162.8 (2)
N11—N1—C6—C61 103.4 (2) C2—C21—C22—C23 178.3 (2)
C2—N1—C6—C5 47.5 (2) C26—C21—C22—C23 0.5 (4)
C2—N1—C6—C61 −81.1 (2) C2—C21—C26—C25 −178.2 (2)
N1—C2—C3—C4 53.3 (2) C22—C21—C26—C25 −0.5 (4)
N1—C2—C3—C13 −69.2 (2) C21—C22—C23—C24 −0.3 (4)
C21—C2—C3—C4 −72.2 (2) C22—C23—C24—Cl2 −179.0 (2)
C21—C2—C3—C13 165.3 (2) C22—C23—C24—C25 0.1 (4)
N1—C2—C21—C22 52.8 (3) Cl2—C24—C25—C26 179.0 (2)
N1—C2—C21—C26 −129.5 (2) C23—C24—C25—C26 −0.1 (4)
C3—C2—C21—C22 176.8 (2) C24—C25—C26—C21 0.3 (4)
C3—C2—C21—C26 −5.5 (4) C6—C61—C62—C63 −176.2 (3)
C2—C3—C4—O4 127.9 (2) C66—C61—C62—C63 2.6 (4)
C2—C3—C4—C5 −54.5 (2) C6—C61—C66—C65 177.0 (3)
C13—C3—C4—O4 −108.6 (2) C62—C61—C66—C65 −1.8 (4)
C13—C3—C4—C5 68.9 (2) C61—C62—C63—C64 −0.7 (5)
C2—C3—C13—C31 −68.1 (3) C62—C63—C64—Cl6A 176.3 (3)
C2—C3—C13—C32 171.1 (2) C62—C63—C64—C65 −2.2 (5)
C4—C3—C13—C31 169.8 (2) Cl6A—C64—C65—C66 −175.6 (3)
C4—C3—C13—C32 49.0 (3) C63—C64—C65—C66 3.0 (5)
O4—C4—C5—C6 −134.0 (2) C64—C65—C66—C61 −1.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O11 1.00 2.24 2.676 (2) 105
C5—H5B···O4i 0.99 2.55 3.530 (3) 171
C32—H32C···O4ii 0.98 2.59 3.532 (3) 162

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2797).

References

  1. Balamurugan, S., Thiruvalluvar, A., Manimekalai, A., Selvaraju, K. & Maruthavanan, T. (2006). Acta Cryst. E62, o2005–o2006.
  2. Balamurugan, S., Thiruvalluvar, A., Manimekalai, A., Selvaraju, K. & Maruthavanan, T. (2007). Acta Cryst. E63, o789–o791.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  7. Thiruvalluvar, A., Balamurugan, S., Jayabharathi, J. & Manimekalai, A. (2007). Acta Cryst. E63, o2910. [DOI] [PMC free article] [PubMed]
  8. Thiruvalluvar, A., Balamurugan, S., Jayabharathi, J., Manimekalai, A. & Rajarajan, G. (2007). Acta Cryst. E63, o2886.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808029723/hb2797sup1.cif

e-64-o1973-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808029723/hb2797Isup2.hkl

e-64-o1973-Isup2.hkl (180.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES