Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 13;64(Pt 10):o1930. doi: 10.1107/S1600536808028730

1,4-Dibromo-2,5-bis­(hex­yloxy)benzene

Ying-Fei Li a, Chen Xu b,*, Fei-Fei Cen a, Zhi-Qiang Wang b, Yu-Qing Zhang a,*
PMCID: PMC2959468  PMID: 21201138

Abstract

In the centrosymmetric title compound, C18H28Br2O2, the alkyl chains adopt a fully extended all-trans conformation and each of them is almost planar. In addition, the alkyl chains are coplanar with the benzene ring. Inter­molecular Br⋯Br inter­actions [3.410 (3) Å] are present, resulting in a one-dimensional supra­molecular architecture.

Related literature

For related literature, see: Ali et al. (2008); Brammer (2004); Desiraju & Parthasarathy (1989); Kuriger et al. (2008); Maruyama & Kawanishi (2002).graphic file with name e-64-o1930-scheme1.jpg

Experimental

Crystal data

  • C18H28Br2O2

  • M r = 436.22

  • Triclinic, Inline graphic

  • a = 6.9638 (12) Å

  • b = 8.2581 (14) Å

  • c = 9.7321 (17) Å

  • α = 107.012 (2)°

  • β = 106.981 (2)°

  • γ = 99.193 (2)°

  • V = 493.11 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.12 mm−1

  • T = 295 (2) K

  • 0.28 × 0.27 × 0.07 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.391, T max = 0.764

  • 3675 measured reflections

  • 1818 independent reflections

  • 1567 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.063

  • S = 1.06

  • 1818 reflections

  • 101 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028730/si2104sup1.cif

e-64-o1930-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028730/si2104Isup2.hkl

e-64-o1930-Isup2.hkl (89.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Doctoral Foundation of Luoyang Normal University.

supplementary crystallographic information

Comment

Noncovalent interactions play an important role in designing superstructures (Brammer, 2004). Among these weak forces, the intermolecular interactions between halogen atoms have been a subject of interest (Desiraju et al., 1989). In order to gain more insight into the structure-regulating ability of intermolecular Br···Br interactions, herein we report the crystal structure of the title compound.

A view of the centrosymmetric molecular structure of the title compound is given in Fig.1. The alkyl chains are in the fully extended all-trans conformation and each of them is almost perfectly planar. The C—C—O—C torsion angles of 3.4 (4)o, indicate that the two alkyl chains are coplanar with the benzene ring. The crystal structure of the titile compound reveals the presence of a near linear C—Br···Br fragment[C—Br···Br=155.6 (3)o], the Br···Br distance (3.410 Å) is shorter than the sum of van der Waals radii(3.72 Å) and those in the other compound [3.634 (4)–3.9527 (9) Å](Kuriger et al., 2008; Ali et al., 2008). Owing to the intermolecular Br···Br interactions, the crystal structure of the title compound is extended to a one-dimensional chain structure. The chains are intercalated by van der Waals forces (Fig.2).

Experimental

The title compound was prepared as described in literature (Maruyama & Kawanishi 2002) and recrystallized from dichloromethane-ethanol at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction.

Refinement

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with C—H distances constrained to 0.93 (aromatic CH), or 0.96 Å (methyl CH3), and 0.97 Å (methylene CH2) and constrained to ride on their parent atoms, with Uĩso~(H) = 1.2Ueq(C)(1.5Ueq for methyl H).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids at the 50% probability level. Inversion related atoms are labelled with an A. (Symmetry code: -x, 1 - y, -z).

Fig. 2.

Fig. 2.

Partial view of the crystal packing showing the formation of the infinite chains of molecules formed by the intermolecular Br···Br interactions. Intercalated neighboring chains complete the sheets in the structure running parallel to (100). H atoms have been omitted for clarity.

Crystal data

C18H28Br2O2 Z = 1
Mr = 436.22 F(000) = 222
Triclinic, P1 Dx = 1.469 Mg m3
a = 6.9638 (12) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.2581 (14) Å Cell parameters from 1772 reflections
c = 9.7321 (17) Å θ = 2.3–26.0°
α = 107.012 (2)° µ = 4.12 mm1
β = 106.981 (2)° T = 295 K
γ = 99.193 (2)° Block, colourless
V = 493.11 (15) Å3 0.28 × 0.27 × 0.07 mm

Data collection

Bruker SMART CCD diffractometer 1818 independent reflections
Radiation source: fine-focus sealed tube 1567 reflections with I > 2σ(I)
graphite Rint = 0.018
phi and ω scans θmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.391, Tmax = 0.764 k = −9→9
3675 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.0096P] where P = (Fo2 + 2Fc2)/3
1818 reflections (Δ/σ)max = 0.001
101 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.07253 (4) 0.51292 (4) −0.31314 (3) 0.05768 (13)
O1 0.3731 (2) 0.6878 (2) 0.00755 (19) 0.0577 (5)
C1 −0.1596 (3) 0.4127 (3) −0.1410 (3) 0.0455 (6)
H1 −0.2656 0.3549 −0.2366 0.055*
C2 0.0292 (3) 0.5069 (3) −0.1316 (3) 0.0418 (5)
C3 0.1932 (3) 0.5970 (3) 0.0107 (3) 0.0426 (5)
C4 0.5450 (3) 0.7726 (4) 0.1511 (3) 0.0513 (6)
H4A 0.5871 0.6864 0.1944 0.062*
H4B 0.5056 0.8560 0.2240 0.062*
C5 0.7229 (3) 0.8672 (3) 0.1183 (3) 0.0528 (6)
H5A 0.6775 0.9504 0.0722 0.063*
H5B 0.7610 0.7824 0.0455 0.063*
C6 0.9133 (3) 0.9647 (3) 0.2665 (3) 0.0539 (6)
H6A 0.8755 1.0516 0.3377 0.065*
H6B 0.9547 0.8817 0.3143 0.065*
C7 1.0979 (3) 1.0563 (3) 0.2370 (3) 0.0518 (6)
H7A 1.1351 0.9693 0.1653 0.062*
H7B 1.0564 1.1394 0.1894 0.062*
C8 1.2870 (4) 1.1524 (4) 0.3828 (3) 0.0662 (8)
H8A 1.3355 1.0679 0.4259 0.079*
H8B 1.2471 1.2326 0.4576 0.079*
C9 1.4646 (4) 1.2556 (5) 0.3548 (4) 0.0850 (10)
H9A 1.5032 1.1771 0.2795 0.127*
H9B 1.5824 1.3105 0.4494 0.127*
H9C 1.4200 1.3442 0.3179 0.127*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.05214 (17) 0.0815 (2) 0.03895 (16) 0.00640 (13) 0.01726 (12) 0.02627 (13)
O1 0.0382 (9) 0.0797 (12) 0.0427 (9) −0.0082 (8) 0.0094 (7) 0.0224 (9)
C1 0.0369 (12) 0.0546 (14) 0.0350 (12) 0.0026 (10) 0.0057 (9) 0.0142 (11)
C2 0.0414 (12) 0.0529 (14) 0.0330 (11) 0.0089 (10) 0.0135 (10) 0.0199 (10)
C3 0.0354 (11) 0.0501 (13) 0.0392 (12) 0.0049 (10) 0.0115 (10) 0.0168 (11)
C4 0.0368 (12) 0.0633 (16) 0.0417 (13) −0.0004 (11) 0.0082 (10) 0.0151 (12)
C5 0.0383 (12) 0.0654 (16) 0.0481 (14) 0.0015 (11) 0.0139 (11) 0.0193 (12)
C6 0.0399 (13) 0.0629 (17) 0.0504 (14) 0.0023 (12) 0.0136 (11) 0.0172 (13)
C7 0.0404 (13) 0.0562 (15) 0.0535 (15) 0.0043 (11) 0.0175 (11) 0.0160 (12)
C8 0.0437 (14) 0.0786 (19) 0.0592 (17) −0.0001 (13) 0.0128 (13) 0.0150 (15)
C9 0.0468 (16) 0.095 (2) 0.086 (2) −0.0123 (15) 0.0179 (16) 0.0156 (19)

Geometric parameters (Å, °)

Br1—C2 1.891 (2) C5—H5B 0.9700
O1—C3 1.367 (2) C6—C7 1.529 (3)
O1—C4 1.435 (3) C6—H6A 0.9700
C1—C3i 1.377 (3) C6—H6B 0.9700
C1—C2 1.379 (3) C7—C8 1.514 (3)
C1—H1 0.9300 C7—H7A 0.9700
C2—C3 1.406 (3) C7—H7B 0.9700
C3—C1i 1.377 (3) C8—C9 1.525 (4)
C4—C5 1.522 (3) C8—H8A 0.9700
C4—H4A 0.9700 C8—H8B 0.9700
C4—H4B 0.9700 C9—H9A 0.9600
C5—C6 1.533 (3) C9—H9B 0.9600
C5—H5A 0.9700 C9—H9C 0.9600
C3—O1—C4 117.26 (18) C7—C6—H6A 109.1
C3i—C1—C2 120.9 (2) C5—C6—H6A 109.1
C3i—C1—H1 119.6 C7—C6—H6B 109.1
C2—C1—H1 119.6 C5—C6—H6B 109.1
C1—C2—C3 121.5 (2) H6A—C6—H6B 107.9
C1—C2—Br1 119.81 (16) C8—C7—C6 112.7 (2)
C3—C2—Br1 118.73 (16) C8—C7—H7A 109.1
O1—C3—C1i 125.49 (19) C6—C7—H7A 109.1
O1—C3—C2 116.8 (2) C8—C7—H7B 109.1
C1i—C3—C2 117.70 (19) C6—C7—H7B 109.1
O1—C4—C5 107.30 (19) H7A—C7—H7B 107.8
O1—C4—H4A 110.3 C7—C8—C9 112.5 (3)
C5—C4—H4A 110.3 C7—C8—H8A 109.1
O1—C4—H4B 110.3 C9—C8—H8A 109.1
C5—C4—H4B 110.3 C7—C8—H8B 109.1
H4A—C4—H4B 108.5 C9—C8—H8B 109.1
C4—C5—C6 111.0 (2) H8A—C8—H8B 107.8
C4—C5—H5A 109.4 C8—C9—H9A 109.5
C6—C5—H5A 109.4 C8—C9—H9B 109.5
C4—C5—H5B 109.4 H9A—C9—H9B 109.5
C6—C5—H5B 109.4 C8—C9—H9C 109.5
H5A—C5—H5B 108.0 H9A—C9—H9C 109.5
C7—C6—C5 112.4 (2) H9B—C9—H9C 109.5
C3i—C1—C2—C3 −0.4 (4) Br1—C2—C3—C1i −178.52 (18)
C3i—C1—C2—Br1 178.49 (18) C3—O1—C4—C5 −178.7 (2)
C4—O1—C3—C1i 3.4 (4) O1—C4—C5—C6 179.1 (2)
C4—O1—C3—C2 −176.9 (2) C4—C5—C6—C7 178.1 (2)
C1—C2—C3—O1 −179.4 (2) C5—C6—C7—C8 −179.8 (2)
Br1—C2—C3—O1 1.7 (3) C6—C7—C8—C9 −175.4 (2)
C1—C2—C3—C1i 0.4 (4)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2104).

References

  1. Ali, B. F., Al-Far, R. H. & Haddad, S. F. (2008). Acta Cryst. E64, m751–m752. [DOI] [PMC free article] [PubMed]
  2. Brammer, L. (2004). Chem. Soc. Rev.33, 476–489.
  3. Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Desiraju, G. R. & Parthasarathy, R. (1989). J. Am. Chem. Soc.111, 8725–8726.
  5. Kuriger, T. M., Moratti, S. C. & Simpson, J. (2008). Acta Cryst. E64, o709. [DOI] [PMC free article] [PubMed]
  6. Maruyama, S. & Kawanishi, Y. (2002). J. Mater. Chem.12, 2245–2249.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028730/si2104sup1.cif

e-64-o1930-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028730/si2104Isup2.hkl

e-64-o1930-Isup2.hkl (89.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES