Abstract
In the title mononuclear complex, [Ni(NCS)2(C12H8N4S)2(H2O)2]·2H2O, the NiII atom is located on an inversion center and is octahedrally coordinated by four N atoms from two 2,5-di-4-pyridyl-1,3,4-thiadiazole (bpt) ligands and two thiocyanate molecules forming the equatorial plane; the axial positions are occupied by two O atoms of coordinated water molecules. O—H⋯O, O—H⋯N and O—H⋯S hydrogen bonds, involving the uncoordinated water molecules, result in the formation of a sheet structure developing parallel to (021).
Related literature
For related structures, see: Ma & Yang (2008 ▶); Du et al. (2002 ▶); Dong et al. (2003 ▶); Gudbjarlson et al. (1991 ▶). For related literature, see: Su et al. (2005 ▶).
Experimental
Crystal data
[Ni(NCS)2(C12H8N4S)2(H2O)2]·2H2O
M r = 727.50
Triclinic,
a = 7.0555 (11) Å
b = 8.3034 (13) Å
c = 14.849 (2) Å
α = 104.629 (2)°
β = 93.067 (2)°
γ = 112.228 (2)°
V = 768.3 (2) Å3
Z = 1
Mo Kα radiation
μ = 0.95 mm−1
T = 298 (2) K
0.26 × 0.21 × 0.17 mm
Data collection
Bruker SMART diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996 ▶) T min = 0.789, T max = 0.855
3967 measured reflections
2747 independent reflections
1810 reflections with I > 2σ(I)
R int = 0.028
Refinement
R[F 2 > 2σ(F 2)] = 0.055
wR(F 2) = 0.143
S = 1.06
2747 reflections
205 parameters
H-atom parameters constrained
Δρmax = 0.39 e Å−3
Δρmin = −0.51 e Å−3
Data collection: SMART (Bruker, 1998 ▶); cell refinement: SAINT (Bruker, 1999 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 ▶), ORTEP-3 for Windows (Farrugia, 1997 ▶) and CAMERON (Pearce et al., 2000 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030444/dn2378sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030444/dn2378Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1W—H1WB⋯O2W | 0.85 | 1.91 | 2.762 (5) | 175 |
| O2W—H2WB⋯N4i | 0.85 | 2.00 | 2.833 (5) | 170 |
| O1W—H1WA⋯S2ii | 0.85 | 2.47 | 3.303 (3) | 166 |
| O2W—H2WA⋯S2iii | 0.85 | 2.92 | 3.540 (4) | 132 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Acknowledgments
The author is grateful to the Natural Science Foundation of Zhejiang Province (No. Y407081) for financial support.
supplementary crystallographic information
Comment
In the last decades, different kinds of metal-organic frameworks (MOFs) have been synthesized by using linear 4,4'-bipyridine, and other bipyridine-like N,N'-donor ligands (Gudbjarlson et al., 1991; Su et al. 2005; Dong et al., 2003). However, the angular N,N'-ligands were less exploited in building the MOFs in the supramolecular chemistry (Du et al., 2002). In this paper, we report the synthesis and characterization of the title compound (I).
the nickel(II) atom located on an inversion center is octahedrally coordinated by four N atoms from two bpt ligands and two thiocyanate molecules forming the equatorial plane, whereas axial positions are occupied by two O atoms of coordinated water molecules (Fig.1). The Ni—N distances are similar with related complexes (Du et al., 2002; Ma & Yang, 2008).
The occurence of O-H···O, O-H···N and O-H···S results in the formation of a two-dimensional sheet structure developping parallel to the (0 2 1) plane (Table 1, Fig.2). The guest water molecule acts as acceptor and donor.
Experimental
Bpt (21 mg,0.6 mmol), NiCl2 (28 mg, 0.9 mmol) and NH4SCN (23 mg,0.8 mmol) were added in methanol. The mixture was heated for one hour under refluxing and stirring. The resulting solution was then cooled to room temperature, and some single crystals were obtained five weeks later.
Refinement
The hydrgen atoms of water molecule were located from difference Fourier maps and their coordinates were initially refined using restraints (O-H= 0.85 (1)Å and H···H = 1.39 (2)Å with Uiso(H) = 1.5Ueq(O) then their coordinates were fixed in the last stage of refinement. H atoms attached to C atoms were treated as riding with C-H = 0.93Å and Uiso(H) = 1.2Ueq(C).
Figures
Fig. 1.
The ORTEP plot of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii. H bond is shown as dashed line. [Symmetry code: (i) 1-x, 1-y, 1-z].
Fig. 2.
A partial packing view showing the formation of the two dimensional sheet through O-H···O, O-H···N and O-H···S hydrogren bonds. H bonds are represented as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.
Crystal data
| [Ni(NCS)2(C12H8N4S)2(H2O)2]·2H2O | Z = 1 |
| Mr = 727.50 | F(000) = 374 |
| Triclinic, P1 | Dx = 1.572 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
| a = 7.0555 (11) Å | Cell parameters from 2721 reflections |
| b = 8.3034 (13) Å | θ = 1.4–25.2° |
| c = 14.849 (2) Å | µ = 0.96 mm−1 |
| α = 104.629 (2)° | T = 298 K |
| β = 93.067 (2)° | Block, green |
| γ = 112.228 (2)° | 0.26 × 0.21 × 0.17 mm |
| V = 768.3 (2) Å3 |
Data collection
| Bruker SMART diffractometer | 2747 independent reflections |
| Radiation source: fine-focus sealed tube | 1810 reflections with I > 2σ(I) |
| graphite | Rint = 0.028 |
| φ and ω scans | θmax = 25.3°, θmin = 1.4° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −8→5 |
| Tmin = 0.789, Tmax = 0.855 | k = −9→9 |
| 3967 measured reflections | l = −17→17 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.143 | H-atom parameters constrained |
| S = 1.06 | w = 1/[σ2(Fo2) + (0.0643P)2 + 0.1149P] where P = (Fo2 + 2Fc2)/3 |
| 2747 reflections | (Δ/σ)max < 0.001 |
| 205 parameters | Δρmax = 0.39 e Å−3 |
| 0 restraints | Δρmin = −0.51 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Ni1 | 0.5000 | 0.5000 | 0.5000 | 0.0397 (3) | |
| S1 | −0.0367 (2) | 0.2796 (2) | 0.90422 (9) | 0.0507 (4) | |
| S2 | 0.7893 (2) | 0.05582 (18) | 0.46356 (10) | 0.0499 (4) | |
| N1 | 0.4008 (5) | 0.4385 (5) | 0.6282 (3) | 0.0370 (9) | |
| N2 | 0.3264 (6) | 0.2926 (6) | 0.9413 (3) | 0.0507 (11) | |
| N3 | 0.2307 (7) | 0.2566 (6) | 1.0167 (3) | 0.0512 (11) | |
| N4 | −0.3536 (7) | 0.1274 (6) | 1.2103 (3) | 0.0530 (11) | |
| N5 | 0.6832 (6) | 0.3540 (6) | 0.4939 (3) | 0.0439 (10) | |
| O1W | 0.2492 (4) | 0.2685 (4) | 0.4104 (2) | 0.0456 (8) | |
| H1WA | 0.1300 | 0.2324 | 0.4268 | 0.068* | |
| H1WB | 0.2655 | 0.1751 | 0.3792 | 0.068* | |
| C1 | 0.2114 (7) | 0.4119 (6) | 0.6465 (3) | 0.0448 (12) | |
| H1 | 0.1217 | 0.4267 | 0.6042 | 0.054* | |
| C2 | 0.1394 (7) | 0.3639 (7) | 0.7239 (3) | 0.0479 (13) | |
| H2 | 0.0026 | 0.3409 | 0.7317 | 0.058* | |
| C3 | 0.2717 (7) | 0.3502 (6) | 0.7897 (3) | 0.0392 (11) | |
| C4 | 0.4712 (8) | 0.3790 (7) | 0.7725 (3) | 0.0490 (13) | |
| H4 | 0.5656 | 0.3697 | 0.8149 | 0.059* | |
| C5 | 0.5267 (7) | 0.4217 (7) | 0.6915 (3) | 0.0454 (12) | |
| H5 | 0.6606 | 0.4399 | 0.6803 | 0.054* | |
| C6 | 0.2059 (7) | 0.3069 (6) | 0.8769 (3) | 0.0408 (12) | |
| C7 | 0.0422 (8) | 0.2485 (7) | 1.0080 (3) | 0.0435 (12) | |
| C8 | −0.0933 (7) | 0.2144 (6) | 1.0799 (3) | 0.0395 (11) | |
| C9 | −0.0247 (8) | 0.1812 (7) | 1.1595 (3) | 0.0514 (13) | |
| H9 | 0.1090 | 0.1867 | 1.1704 | 0.062* | |
| C10 | −0.1584 (8) | 0.1398 (8) | 1.2222 (4) | 0.0573 (15) | |
| H10 | −0.1108 | 0.1191 | 1.2760 | 0.069* | |
| C11 | −0.4142 (8) | 0.1632 (7) | 1.1355 (4) | 0.0516 (13) | |
| H11 | −0.5477 | 0.1593 | 1.1273 | 0.062* | |
| C12 | −0.2923 (7) | 0.2065 (7) | 1.0682 (3) | 0.0459 (12) | |
| H12 | −0.3433 | 0.2298 | 1.0160 | 0.055* | |
| C13 | 0.7270 (6) | 0.2306 (7) | 0.4811 (3) | 0.0366 (11) | |
| O2W | 0.3283 (5) | −0.0225 (5) | 0.3113 (2) | 0.0604 (10) | |
| H2WA | 0.3641 | −0.0509 | 0.3583 | 0.091* | |
| H2WB | 0.4342 | 0.0242 | 0.2871 | 0.091* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Ni1 | 0.0396 (5) | 0.0406 (5) | 0.0449 (6) | 0.0187 (4) | 0.0124 (4) | 0.0176 (4) |
| S1 | 0.0513 (8) | 0.0705 (10) | 0.0435 (8) | 0.0301 (7) | 0.0153 (6) | 0.0290 (7) |
| S2 | 0.0508 (8) | 0.0442 (8) | 0.0686 (9) | 0.0269 (6) | 0.0198 (7) | 0.0260 (7) |
| N1 | 0.034 (2) | 0.039 (2) | 0.041 (2) | 0.0152 (17) | 0.0086 (17) | 0.0156 (18) |
| N2 | 0.046 (3) | 0.065 (3) | 0.045 (3) | 0.022 (2) | 0.013 (2) | 0.024 (2) |
| N3 | 0.051 (3) | 0.066 (3) | 0.042 (2) | 0.023 (2) | 0.015 (2) | 0.027 (2) |
| N4 | 0.051 (3) | 0.065 (3) | 0.046 (3) | 0.023 (2) | 0.017 (2) | 0.023 (2) |
| N5 | 0.045 (2) | 0.045 (2) | 0.055 (3) | 0.027 (2) | 0.0162 (19) | 0.022 (2) |
| O1W | 0.0367 (18) | 0.045 (2) | 0.053 (2) | 0.0146 (15) | 0.0120 (15) | 0.0130 (16) |
| C1 | 0.041 (3) | 0.054 (3) | 0.044 (3) | 0.018 (2) | 0.008 (2) | 0.024 (3) |
| C2 | 0.037 (3) | 0.058 (3) | 0.048 (3) | 0.014 (2) | 0.010 (2) | 0.024 (3) |
| C3 | 0.041 (3) | 0.036 (3) | 0.038 (3) | 0.011 (2) | 0.012 (2) | 0.010 (2) |
| C4 | 0.045 (3) | 0.066 (4) | 0.046 (3) | 0.027 (3) | 0.010 (2) | 0.026 (3) |
| C5 | 0.042 (3) | 0.057 (3) | 0.045 (3) | 0.024 (2) | 0.018 (2) | 0.021 (3) |
| C6 | 0.044 (3) | 0.039 (3) | 0.037 (3) | 0.014 (2) | 0.009 (2) | 0.012 (2) |
| C7 | 0.047 (3) | 0.046 (3) | 0.039 (3) | 0.018 (2) | 0.007 (2) | 0.015 (2) |
| C8 | 0.044 (3) | 0.038 (3) | 0.037 (3) | 0.016 (2) | 0.008 (2) | 0.013 (2) |
| C9 | 0.045 (3) | 0.067 (4) | 0.046 (3) | 0.022 (3) | 0.008 (2) | 0.024 (3) |
| C10 | 0.056 (3) | 0.076 (4) | 0.043 (3) | 0.024 (3) | 0.013 (3) | 0.026 (3) |
| C11 | 0.043 (3) | 0.055 (3) | 0.059 (4) | 0.021 (3) | 0.011 (3) | 0.019 (3) |
| C12 | 0.047 (3) | 0.053 (3) | 0.049 (3) | 0.026 (2) | 0.009 (2) | 0.025 (3) |
| C13 | 0.033 (3) | 0.046 (3) | 0.035 (3) | 0.016 (2) | 0.012 (2) | 0.018 (2) |
| O2W | 0.057 (2) | 0.061 (2) | 0.054 (2) | 0.0141 (18) | 0.0183 (17) | 0.0132 (19) |
Geometric parameters (Å, °)
| Ni1—N5 | 2.072 (4) | C1—H1 | 0.9300 |
| Ni1—N5i | 2.072 (4) | C2—C3 | 1.371 (6) |
| Ni1—O1Wi | 2.116 (3) | C2—H2 | 0.9300 |
| Ni1—O1W | 2.116 (3) | C3—C4 | 1.385 (6) |
| Ni1—N1 | 2.176 (4) | C3—C6 | 1.481 (6) |
| Ni1—N1i | 2.176 (4) | C4—C5 | 1.374 (6) |
| S1—C7 | 1.723 (5) | C4—H4 | 0.9300 |
| S1—C6 | 1.724 (5) | C5—H5 | 0.9300 |
| S2—C13 | 1.635 (5) | C7—C8 | 1.480 (6) |
| N1—C1 | 1.325 (6) | C8—C12 | 1.380 (6) |
| N1—C5 | 1.328 (6) | C8—C9 | 1.383 (6) |
| N2—C6 | 1.304 (6) | C9—C10 | 1.373 (7) |
| N2—N3 | 1.376 (5) | C9—H9 | 0.9300 |
| N3—C7 | 1.303 (6) | C10—H10 | 0.9300 |
| N4—C11 | 1.310 (6) | C11—C12 | 1.382 (7) |
| N4—C10 | 1.340 (6) | C11—H11 | 0.9300 |
| N5—C13 | 1.153 (6) | C12—H12 | 0.9300 |
| O1W—H1WA | 0.8510 | O2W—H2WA | 0.8456 |
| O1W—H1WB | 0.8497 | O2W—H2WB | 0.8472 |
| C1—C2 | 1.371 (6) | ||
| N5—Ni1—N5i | 180.000 (2) | C2—C3—C4 | 117.8 (4) |
| N5—Ni1—O1Wi | 88.99 (14) | C2—C3—C6 | 121.6 (4) |
| N5i—Ni1—O1Wi | 91.01 (14) | C4—C3—C6 | 120.5 (4) |
| N5—Ni1—O1W | 91.01 (14) | C5—C4—C3 | 118.6 (4) |
| N5i—Ni1—O1W | 88.99 (14) | C5—C4—H4 | 120.7 |
| O1Wi—Ni1—O1W | 180.0 | C3—C4—H4 | 120.7 |
| N5—Ni1—N1 | 91.17 (14) | N1—C5—C4 | 124.0 (4) |
| N5i—Ni1—N1 | 88.83 (14) | N1—C5—H5 | 118.0 |
| O1Wi—Ni1—N1 | 86.52 (12) | C4—C5—H5 | 118.0 |
| O1W—Ni1—N1 | 93.48 (13) | N2—C6—C3 | 123.7 (4) |
| N5—Ni1—N1i | 88.83 (14) | N2—C6—S1 | 113.8 (3) |
| N5i—Ni1—N1i | 91.17 (14) | C3—C6—S1 | 122.4 (4) |
| O1Wi—Ni1—N1i | 93.48 (13) | N3—C7—C8 | 123.5 (4) |
| O1W—Ni1—N1i | 86.52 (12) | N3—C7—S1 | 113.8 (3) |
| N1—Ni1—N1i | 180.000 (1) | C8—C7—S1 | 122.7 (4) |
| C7—S1—C6 | 87.2 (2) | C12—C8—C9 | 118.1 (4) |
| C1—N1—C5 | 116.3 (4) | C12—C8—C7 | 121.8 (4) |
| C1—N1—Ni1 | 122.2 (3) | C9—C8—C7 | 119.9 (4) |
| C5—N1—Ni1 | 121.4 (3) | C10—C9—C8 | 118.5 (5) |
| C6—N2—N3 | 112.5 (4) | C10—C9—H9 | 120.7 |
| C7—N3—N2 | 112.7 (4) | C8—C9—H9 | 120.7 |
| C11—N4—C10 | 116.8 (4) | N4—C10—C9 | 123.8 (5) |
| C13—N5—Ni1 | 159.3 (4) | N4—C10—H10 | 118.1 |
| Ni1—O1W—H1WA | 120.3 | C9—C10—H10 | 118.1 |
| Ni1—O1W—H1WB | 121.7 | N4—C11—C12 | 124.1 (5) |
| H1WA—O1W—H1WB | 107.7 | N4—C11—H11 | 117.9 |
| N1—C1—C2 | 124.1 (4) | C12—C11—H11 | 117.9 |
| N1—C1—H1 | 118.0 | C8—C12—C11 | 118.6 (4) |
| C2—C1—H1 | 118.0 | C8—C12—H12 | 120.7 |
| C1—C2—C3 | 119.1 (5) | C11—C12—H12 | 120.7 |
| C1—C2—H2 | 120.5 | N5—C13—S2 | 179.7 (4) |
| C3—C2—H2 | 120.5 | H2WA—O2W—H2WB | 109.2 |
Symmetry codes: (i) −x+1, −y+1, −z+1.
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1W—H1WB···O2W | 0.85 | 1.91 | 2.762 (5) | 175. |
| O2W—H2WB···N4ii | 0.85 | 2.00 | 2.833 (5) | 170. |
| O1W—H1WA···S2iii | 0.85 | 2.47 | 3.303 (3) | 166. |
| O2W—H2WA···S2iv | 0.85 | 2.92 | 3.540 (4) | 132. |
Symmetry codes: (ii) x+1, y, z−1; (iii) x−1, y, z; (iv) −x+1, −y, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2378).
References
- Bruker (1998). SMART Bruker AXS Inc, Madison, Wisconsin, USA.
- Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Dong, Y.-B., Cheng, J.-Y., Huang, R.-Q., Smith, M. D. & zur Loye, H.-C. (2003). Inorg. Chem.42, 5699–5706. [DOI] [PubMed]
- Du, M., Bu, X.-H., Guo, Y.-M., Liu, H., Batten, S. R., Ribas, J. & Mak, T. C. W. (2002). Inorg. Chem.41, 4904–4908. [DOI] [PubMed]
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Gudbjartson, H., Biradha, K., Poirier, K. M. & Zaworotko, M. J. (1991). J. Am. Chem. Soc.121, 2599–2600.
- Ma, W.-W. & Yang, M.-H. (2008). Acta Cryst. E64, m630.
- Pearce, L., Prout, C. K. & Watkin, D. J. (2000). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.
- Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Su, C.-Y., Zheng, X.-J., Gao, S., Li, L.-C. & Jin, L.-P. (2005). Eur. J. Inorg. Chem. pp. 4150–4159.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030444/dn2378sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030444/dn2378Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


