Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 27;64(Pt 10):m1331. doi: 10.1107/S1600536808030444

Diaqua­(2,5-di-4-pyridyl-1,3,4-thia­diazole-κN 2)bis­(thio­cyanato-κN)nickel(II) dihydrate

Ming-Hua Yang a,*
PMCID: PMC2959476  PMID: 21201065

Abstract

In the title mononuclear complex, [Ni(NCS)2(C12H8N4S)2(H2O)2]·2H2O, the NiII atom is located on an inversion center and is octa­hedrally coordinated by four N atoms from two 2,5-di-4-pyridyl-1,3,4-thia­diazole (bpt) ligands and two thio­cyanate mol­ecules forming the equatorial plane; the axial positions are occupied by two O atoms of coordinated water mol­ecules. O—H⋯O, O—H⋯N and O—H⋯S hydrogen bonds, involving the uncoordinated water molecules, result in the formation of a sheet structure developing parallel to (021).

Related literature

For related structures, see: Ma & Yang (2008); Du et al. (2002); Dong et al. (2003); Gudbjarlson et al. (1991). For related literature, see: Su et al. (2005).graphic file with name e-64-m1331-scheme1.jpg

Experimental

Crystal data

  • [Ni(NCS)2(C12H8N4S)2(H2O)2]·2H2O

  • M r = 727.50

  • Triclinic, Inline graphic

  • a = 7.0555 (11) Å

  • b = 8.3034 (13) Å

  • c = 14.849 (2) Å

  • α = 104.629 (2)°

  • β = 93.067 (2)°

  • γ = 112.228 (2)°

  • V = 768.3 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 298 (2) K

  • 0.26 × 0.21 × 0.17 mm

Data collection

  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.789, T max = 0.855

  • 3967 measured reflections

  • 2747 independent reflections

  • 1810 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.143

  • S = 1.06

  • 2747 reflections

  • 205 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Pearce et al., 2000); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030444/dn2378sup1.cif

e-64-m1331-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030444/dn2378Isup2.hkl

e-64-m1331-Isup2.hkl (134.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O2W 0.85 1.91 2.762 (5) 175
O2W—H2WB⋯N4i 0.85 2.00 2.833 (5) 170
O1W—H1WA⋯S2ii 0.85 2.47 3.303 (3) 166
O2W—H2WA⋯S2iii 0.85 2.92 3.540 (4) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The author is grateful to the Natural Science Foundation of Zhejiang Province (No. Y407081) for financial support.

supplementary crystallographic information

Comment

In the last decades, different kinds of metal-organic frameworks (MOFs) have been synthesized by using linear 4,4'-bipyridine, and other bipyridine-like N,N'-donor ligands (Gudbjarlson et al., 1991; Su et al. 2005; Dong et al., 2003). However, the angular N,N'-ligands were less exploited in building the MOFs in the supramolecular chemistry (Du et al., 2002). In this paper, we report the synthesis and characterization of the title compound (I).

the nickel(II) atom located on an inversion center is octahedrally coordinated by four N atoms from two bpt ligands and two thiocyanate molecules forming the equatorial plane, whereas axial positions are occupied by two O atoms of coordinated water molecules (Fig.1). The Ni—N distances are similar with related complexes (Du et al., 2002; Ma & Yang, 2008).

The occurence of O-H···O, O-H···N and O-H···S results in the formation of a two-dimensional sheet structure developping parallel to the (0 2 1) plane (Table 1, Fig.2). The guest water molecule acts as acceptor and donor.

Experimental

Bpt (21 mg,0.6 mmol), NiCl2 (28 mg, 0.9 mmol) and NH4SCN (23 mg,0.8 mmol) were added in methanol. The mixture was heated for one hour under refluxing and stirring. The resulting solution was then cooled to room temperature, and some single crystals were obtained five weeks later.

Refinement

The hydrgen atoms of water molecule were located from difference Fourier maps and their coordinates were initially refined using restraints (O-H= 0.85 (1)Å and H···H = 1.39 (2)Å with Uiso(H) = 1.5Ueq(O) then their coordinates were fixed in the last stage of refinement. H atoms attached to C atoms were treated as riding with C-H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The ORTEP plot of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii. H bond is shown as dashed line. [Symmetry code: (i) 1-x, 1-y, 1-z].

Fig. 2.

Fig. 2.

A partial packing view showing the formation of the two dimensional sheet through O-H···O, O-H···N and O-H···S hydrogren bonds. H bonds are represented as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.

Crystal data

[Ni(NCS)2(C12H8N4S)2(H2O)2]·2H2O Z = 1
Mr = 727.50 F(000) = 374
Triclinic, P1 Dx = 1.572 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.0555 (11) Å Cell parameters from 2721 reflections
b = 8.3034 (13) Å θ = 1.4–25.2°
c = 14.849 (2) Å µ = 0.96 mm1
α = 104.629 (2)° T = 298 K
β = 93.067 (2)° Block, green
γ = 112.228 (2)° 0.26 × 0.21 × 0.17 mm
V = 768.3 (2) Å3

Data collection

Bruker SMART diffractometer 2747 independent reflections
Radiation source: fine-focus sealed tube 1810 reflections with I > 2σ(I)
graphite Rint = 0.028
φ and ω scans θmax = 25.3°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→5
Tmin = 0.789, Tmax = 0.855 k = −9→9
3967 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.1149P] where P = (Fo2 + 2Fc2)/3
2747 reflections (Δ/σ)max < 0.001
205 parameters Δρmax = 0.39 e Å3
0 restraints Δρmin = −0.51 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.5000 0.5000 0.5000 0.0397 (3)
S1 −0.0367 (2) 0.2796 (2) 0.90422 (9) 0.0507 (4)
S2 0.7893 (2) 0.05582 (18) 0.46356 (10) 0.0499 (4)
N1 0.4008 (5) 0.4385 (5) 0.6282 (3) 0.0370 (9)
N2 0.3264 (6) 0.2926 (6) 0.9413 (3) 0.0507 (11)
N3 0.2307 (7) 0.2566 (6) 1.0167 (3) 0.0512 (11)
N4 −0.3536 (7) 0.1274 (6) 1.2103 (3) 0.0530 (11)
N5 0.6832 (6) 0.3540 (6) 0.4939 (3) 0.0439 (10)
O1W 0.2492 (4) 0.2685 (4) 0.4104 (2) 0.0456 (8)
H1WA 0.1300 0.2324 0.4268 0.068*
H1WB 0.2655 0.1751 0.3792 0.068*
C1 0.2114 (7) 0.4119 (6) 0.6465 (3) 0.0448 (12)
H1 0.1217 0.4267 0.6042 0.054*
C2 0.1394 (7) 0.3639 (7) 0.7239 (3) 0.0479 (13)
H2 0.0026 0.3409 0.7317 0.058*
C3 0.2717 (7) 0.3502 (6) 0.7897 (3) 0.0392 (11)
C4 0.4712 (8) 0.3790 (7) 0.7725 (3) 0.0490 (13)
H4 0.5656 0.3697 0.8149 0.059*
C5 0.5267 (7) 0.4217 (7) 0.6915 (3) 0.0454 (12)
H5 0.6606 0.4399 0.6803 0.054*
C6 0.2059 (7) 0.3069 (6) 0.8769 (3) 0.0408 (12)
C7 0.0422 (8) 0.2485 (7) 1.0080 (3) 0.0435 (12)
C8 −0.0933 (7) 0.2144 (6) 1.0799 (3) 0.0395 (11)
C9 −0.0247 (8) 0.1812 (7) 1.1595 (3) 0.0514 (13)
H9 0.1090 0.1867 1.1704 0.062*
C10 −0.1584 (8) 0.1398 (8) 1.2222 (4) 0.0573 (15)
H10 −0.1108 0.1191 1.2760 0.069*
C11 −0.4142 (8) 0.1632 (7) 1.1355 (4) 0.0516 (13)
H11 −0.5477 0.1593 1.1273 0.062*
C12 −0.2923 (7) 0.2065 (7) 1.0682 (3) 0.0459 (12)
H12 −0.3433 0.2298 1.0160 0.055*
C13 0.7270 (6) 0.2306 (7) 0.4811 (3) 0.0366 (11)
O2W 0.3283 (5) −0.0225 (5) 0.3113 (2) 0.0604 (10)
H2WA 0.3641 −0.0509 0.3583 0.091*
H2WB 0.4342 0.0242 0.2871 0.091*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0396 (5) 0.0406 (5) 0.0449 (6) 0.0187 (4) 0.0124 (4) 0.0176 (4)
S1 0.0513 (8) 0.0705 (10) 0.0435 (8) 0.0301 (7) 0.0153 (6) 0.0290 (7)
S2 0.0508 (8) 0.0442 (8) 0.0686 (9) 0.0269 (6) 0.0198 (7) 0.0260 (7)
N1 0.034 (2) 0.039 (2) 0.041 (2) 0.0152 (17) 0.0086 (17) 0.0156 (18)
N2 0.046 (3) 0.065 (3) 0.045 (3) 0.022 (2) 0.013 (2) 0.024 (2)
N3 0.051 (3) 0.066 (3) 0.042 (2) 0.023 (2) 0.015 (2) 0.027 (2)
N4 0.051 (3) 0.065 (3) 0.046 (3) 0.023 (2) 0.017 (2) 0.023 (2)
N5 0.045 (2) 0.045 (2) 0.055 (3) 0.027 (2) 0.0162 (19) 0.022 (2)
O1W 0.0367 (18) 0.045 (2) 0.053 (2) 0.0146 (15) 0.0120 (15) 0.0130 (16)
C1 0.041 (3) 0.054 (3) 0.044 (3) 0.018 (2) 0.008 (2) 0.024 (3)
C2 0.037 (3) 0.058 (3) 0.048 (3) 0.014 (2) 0.010 (2) 0.024 (3)
C3 0.041 (3) 0.036 (3) 0.038 (3) 0.011 (2) 0.012 (2) 0.010 (2)
C4 0.045 (3) 0.066 (4) 0.046 (3) 0.027 (3) 0.010 (2) 0.026 (3)
C5 0.042 (3) 0.057 (3) 0.045 (3) 0.024 (2) 0.018 (2) 0.021 (3)
C6 0.044 (3) 0.039 (3) 0.037 (3) 0.014 (2) 0.009 (2) 0.012 (2)
C7 0.047 (3) 0.046 (3) 0.039 (3) 0.018 (2) 0.007 (2) 0.015 (2)
C8 0.044 (3) 0.038 (3) 0.037 (3) 0.016 (2) 0.008 (2) 0.013 (2)
C9 0.045 (3) 0.067 (4) 0.046 (3) 0.022 (3) 0.008 (2) 0.024 (3)
C10 0.056 (3) 0.076 (4) 0.043 (3) 0.024 (3) 0.013 (3) 0.026 (3)
C11 0.043 (3) 0.055 (3) 0.059 (4) 0.021 (3) 0.011 (3) 0.019 (3)
C12 0.047 (3) 0.053 (3) 0.049 (3) 0.026 (2) 0.009 (2) 0.025 (3)
C13 0.033 (3) 0.046 (3) 0.035 (3) 0.016 (2) 0.012 (2) 0.018 (2)
O2W 0.057 (2) 0.061 (2) 0.054 (2) 0.0141 (18) 0.0183 (17) 0.0132 (19)

Geometric parameters (Å, °)

Ni1—N5 2.072 (4) C1—H1 0.9300
Ni1—N5i 2.072 (4) C2—C3 1.371 (6)
Ni1—O1Wi 2.116 (3) C2—H2 0.9300
Ni1—O1W 2.116 (3) C3—C4 1.385 (6)
Ni1—N1 2.176 (4) C3—C6 1.481 (6)
Ni1—N1i 2.176 (4) C4—C5 1.374 (6)
S1—C7 1.723 (5) C4—H4 0.9300
S1—C6 1.724 (5) C5—H5 0.9300
S2—C13 1.635 (5) C7—C8 1.480 (6)
N1—C1 1.325 (6) C8—C12 1.380 (6)
N1—C5 1.328 (6) C8—C9 1.383 (6)
N2—C6 1.304 (6) C9—C10 1.373 (7)
N2—N3 1.376 (5) C9—H9 0.9300
N3—C7 1.303 (6) C10—H10 0.9300
N4—C11 1.310 (6) C11—C12 1.382 (7)
N4—C10 1.340 (6) C11—H11 0.9300
N5—C13 1.153 (6) C12—H12 0.9300
O1W—H1WA 0.8510 O2W—H2WA 0.8456
O1W—H1WB 0.8497 O2W—H2WB 0.8472
C1—C2 1.371 (6)
N5—Ni1—N5i 180.000 (2) C2—C3—C4 117.8 (4)
N5—Ni1—O1Wi 88.99 (14) C2—C3—C6 121.6 (4)
N5i—Ni1—O1Wi 91.01 (14) C4—C3—C6 120.5 (4)
N5—Ni1—O1W 91.01 (14) C5—C4—C3 118.6 (4)
N5i—Ni1—O1W 88.99 (14) C5—C4—H4 120.7
O1Wi—Ni1—O1W 180.0 C3—C4—H4 120.7
N5—Ni1—N1 91.17 (14) N1—C5—C4 124.0 (4)
N5i—Ni1—N1 88.83 (14) N1—C5—H5 118.0
O1Wi—Ni1—N1 86.52 (12) C4—C5—H5 118.0
O1W—Ni1—N1 93.48 (13) N2—C6—C3 123.7 (4)
N5—Ni1—N1i 88.83 (14) N2—C6—S1 113.8 (3)
N5i—Ni1—N1i 91.17 (14) C3—C6—S1 122.4 (4)
O1Wi—Ni1—N1i 93.48 (13) N3—C7—C8 123.5 (4)
O1W—Ni1—N1i 86.52 (12) N3—C7—S1 113.8 (3)
N1—Ni1—N1i 180.000 (1) C8—C7—S1 122.7 (4)
C7—S1—C6 87.2 (2) C12—C8—C9 118.1 (4)
C1—N1—C5 116.3 (4) C12—C8—C7 121.8 (4)
C1—N1—Ni1 122.2 (3) C9—C8—C7 119.9 (4)
C5—N1—Ni1 121.4 (3) C10—C9—C8 118.5 (5)
C6—N2—N3 112.5 (4) C10—C9—H9 120.7
C7—N3—N2 112.7 (4) C8—C9—H9 120.7
C11—N4—C10 116.8 (4) N4—C10—C9 123.8 (5)
C13—N5—Ni1 159.3 (4) N4—C10—H10 118.1
Ni1—O1W—H1WA 120.3 C9—C10—H10 118.1
Ni1—O1W—H1WB 121.7 N4—C11—C12 124.1 (5)
H1WA—O1W—H1WB 107.7 N4—C11—H11 117.9
N1—C1—C2 124.1 (4) C12—C11—H11 117.9
N1—C1—H1 118.0 C8—C12—C11 118.6 (4)
C2—C1—H1 118.0 C8—C12—H12 120.7
C1—C2—C3 119.1 (5) C11—C12—H12 120.7
C1—C2—H2 120.5 N5—C13—S2 179.7 (4)
C3—C2—H2 120.5 H2WA—O2W—H2WB 109.2

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1WB···O2W 0.85 1.91 2.762 (5) 175.
O2W—H2WB···N4ii 0.85 2.00 2.833 (5) 170.
O1W—H1WA···S2iii 0.85 2.47 3.303 (3) 166.
O2W—H2WA···S2iv 0.85 2.92 3.540 (4) 132.

Symmetry codes: (ii) x+1, y, z−1; (iii) x−1, y, z; (iv) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2378).

References

  1. Bruker (1998). SMART Bruker AXS Inc, Madison, Wisconsin, USA.
  2. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  4. Dong, Y.-B., Cheng, J.-Y., Huang, R.-Q., Smith, M. D. & zur Loye, H.-C. (2003). Inorg. Chem.42, 5699–5706. [DOI] [PubMed]
  5. Du, M., Bu, X.-H., Guo, Y.-M., Liu, H., Batten, S. R., Ribas, J. & Mak, T. C. W. (2002). Inorg. Chem.41, 4904–4908. [DOI] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Gudbjartson, H., Biradha, K., Poirier, K. M. & Zaworotko, M. J. (1991). J. Am. Chem. Soc.121, 2599–2600.
  8. Ma, W.-W. & Yang, M.-H. (2008). Acta Cryst. E64, m630.
  9. Pearce, L., Prout, C. K. & Watkin, D. J. (2000). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Su, C.-Y., Zheng, X.-J., Gao, S., Li, L.-C. & Jin, L.-P. (2005). Eur. J. Inorg. Chem. pp. 4150–4159.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808030444/dn2378sup1.cif

e-64-m1331-sup1.cif (16.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030444/dn2378Isup2.hkl

e-64-m1331-Isup2.hkl (134.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES