Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 13;64(Pt 10):m1262. doi: 10.1107/S1600536808028687

Bis[μ-3-(2-hydroxy­ethyl)-2-methyl-4-oxo-4H-pyrido[1,2-a]pyrimidin-9-olato-κ3 N,O:O]bis[aquachloridocopper(II)]

Ying Deng a, Zhong-Shu Li a, Bai-Wang Sun a,*
PMCID: PMC2959477  PMID: 21201016

Abstract

In the dinuclear centrosymmetric copper(II) title compound, [Cu2(C11H11N2O2)2Cl2(H2O)2], each CuII ion has a slightly distorted trigonal-bipyramidal geometry and is coordinated by one N and one O atom from one 3-(2-hydroxy­ethyl)-2-methyl-4-oxopyrido[1,2-a]pyrimidin-9-olate ligand, another O atom from the second ligand, one water mol­ecule and one Cl atom. The crystal structure involves inter­molecular C—H⋯Cl, O—H⋯Cl and O—H⋯O hydrogen bonds

Related literature

For related literature, see: Bayot et al. (2006); Chen et al. (2007); Sun et al. (2008); Wu et al. (2006).graphic file with name e-64-m1262-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C11H11N2O2)2Cl2(H2O)2]

  • M r = 672.45

  • Monoclinic, Inline graphic

  • a = 9.391 (3) Å

  • b = 11.322 (3) Å

  • c = 11.905 (4) Å

  • β = 102.414 (18)°

  • V = 1236.2 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.99 mm−1

  • T = 293 (2) K

  • 0.25 × 0.12 × 0.08 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.890, T max = 1.000 (expected range = 0.759–0.853)

  • 12472 measured reflections

  • 2826 independent reflections

  • 2249 reflections with I > 2σ(I)

  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.115

  • S = 1.01

  • 2826 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808028687/sg2256sup1.cif

e-64-m1262-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028687/sg2256Isup2.hkl

e-64-m1262-Isup2.hkl (138.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5C⋯O2i 0.82 2.13 2.742 (4) 131
O5—H5D⋯O1ii 0.96 2.11 2.788 (4) 127
O2—H2A⋯Cl1iii 0.75 (6) 2.37 (6) 3.078 (4) 158 (6)
C9—H9A⋯Cl1 0.96 2.49 3.275 (4) 139
C3—H3A⋯Cl1iv 0.93 2.72 3.387 (4) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

In the past decade, much attention has been paid to the design and synthesis of self-assembling systems with organic ligands containing N and O donors (Bayot et al., 2006; Chen et al., 2007). Quinolin-8-ol is one such ligand and several crystal structures of complexes containing it have been reported (Wu et al., 2006). Our group has recently reported a new manganese compound with this 3-(2-hydroxyethyl)-2-methyl-4-oxopyrido[1,2-a]pyrimidin-9-olate ligands (Sun et al., 2008). We report here the synthesis and crystal structure of the title complex, (I) (Fig. 1). In (I), each Cu(II) ion has a slightly distorted trigonal–bipyramidal geometry and is coordinated by one N atoms and one O atom from one 3-(2-hydroxyethyl)-2-methyl-4-oxopyrido[1,2-a]pyrimidin-9-olate ligand, the another O atom of the second 3-(2-hydroxyethyl)-2-methyl-4-oxopyrido[1,2-a]pyrimidin-9-olate ligand, together with one water molecule and one Cl atom (Fig. 1). The bond lengths and angles are shown in Table 1. In the crystal structure, the intermolecular O—H···O hydrogen bonds connect the molecules of (I) into a two-dimensional layer along the [010] axis, Fig. 2. Two neighboring net framework layers are interconnected through intermolecular C—H···Cl, O—H···Cl hydrogen bonds forming a three-dimensionnal framework along the [100] axis, Fig. 3, Table 2.

Experimental

All chemicals used (reagent grade) were commercially available. a aqueous solution (5 ml) of CuCl2 (28 mg, 0.1 mmol) was added with constant stirring to a ethanol solution (10 ml) containing 3-(2-hydroxyethyl)-2-methyl-9-hydroxylpyrido[1,2-a] pyrimidin-4-one (22 mg, 0.1 mmol) then filtered off. After a few days, colorless well shaped single crystals in the form of prisms deposited in the other liquid. They were separated off, washed with cold ethanol and dried in air at room temperature.

Refinement

H atoms bound to carbon were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.94 Å and Uiso(H) = 1.2Ueq(C). The H of hydroxyl and water were refined independently with isotropic displacement parameters.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom-numbering scheme and all hydrogen atoms. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Two-dimensional net framework of the title compound viewed along b axis. Hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 3.

Fig. 3.

Three-dimensional net framework of the title compound viewed along a axis. Hydrogen bonds are shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Cu2(C11H11N2O2)2Cl2(H2O)2] F(000) = 684
Mr = 672.45 Dx = 1.807 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2976 reflections
a = 9.391 (3) Å θ = 2.5–27.5°
b = 11.322 (3) Å µ = 1.99 mm1
c = 11.905 (4) Å T = 293 K
β = 102.414 (18)° Prism, colorless
V = 1236.2 (6) Å3 0.25 × 0.12 × 0.08 mm
Z = 2

Data collection

Rigaku SCXmini diffractometer 2826 independent reflections
Radiation source: fine-focus sealed tube 2249 reflections with I > 2σ(I)
graphite Rint = 0.056
Detector resolution: 8.192 pixels mm-1 θmax = 27.5°, θmin = 2.5°
ω scans h = −12→12
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −14→14
Tmin = 0.890, Tmax = 1.000 l = −15→15
12472 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.059P)2 + 0.8671P] where P = (Fo2 + 2Fc2)/3
2826 reflections (Δ/σ)max = 0.001
176 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.09275 (4) 0.92674 (4) 0.60256 (3) 0.02472 (15)
C1 0.3469 (3) 1.0520 (3) 0.5971 (3) 0.0230 (7)
C2 0.2373 (4) 1.1028 (3) 0.5076 (3) 0.0241 (7)
C3 0.2761 (4) 1.1877 (3) 0.4388 (3) 0.0315 (8)
H3A 0.2069 1.2198 0.3788 0.038*
C4 0.4213 (4) 1.2264 (3) 0.4592 (3) 0.0335 (8)
H4A 0.4474 1.2855 0.4133 0.040*
C5 0.5234 (4) 1.1795 (3) 0.5441 (3) 0.0309 (8)
H5A 0.6190 1.2067 0.5566 0.037*
C6 0.6009 (4) 1.0432 (3) 0.7013 (3) 0.0294 (8)
C7 0.5562 (4) 0.9521 (3) 0.7664 (3) 0.0284 (8)
C8 0.4116 (4) 0.9186 (3) 0.7479 (3) 0.0259 (7)
C9 0.3610 (4) 0.8284 (3) 0.8226 (3) 0.0342 (9)
H9A 0.2576 0.8176 0.7978 0.051*
H9B 0.3833 0.8550 0.9010 0.051*
H9C 0.4097 0.7548 0.8169 0.051*
C10 0.6746 (4) 0.8972 (3) 0.8572 (3) 0.0319 (8)
H10A 0.6415 0.8209 0.8786 0.038*
H10B 0.7601 0.8841 0.8254 0.038*
C11 0.7161 (5) 0.9729 (4) 0.9631 (3) 0.0421 (10)
H11A 0.7600 1.0453 0.9432 0.051*
H11B 0.6285 0.9939 0.9893 0.051*
O1 0.7242 (3) 1.0832 (2) 0.7112 (3) 0.0412 (7)
O2 0.8149 (3) 0.9165 (3) 1.0542 (3) 0.0441 (8)
O3 0.1054 (2) 1.0586 (2) 0.4999 (2) 0.0313 (6)
O5 0.0115 (3) 1.0044 (3) 0.7446 (2) 0.0542 (9)
H5C 0.0633 0.9835 0.8059 0.081*
H5D −0.0866 0.9780 0.7408 0.081*
N1 0.3065 (3) 0.9674 (2) 0.6621 (2) 0.0244 (6)
N2 0.4871 (3) 1.0915 (2) 0.6127 (2) 0.0253 (6)
Cl1 0.07956 (10) 0.73242 (8) 0.63230 (9) 0.0408 (3)
H2A 0.775 (6) 0.878 (5) 1.088 (5) 0.07 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0176 (2) 0.0284 (2) 0.0255 (2) −0.00189 (17) −0.00112 (16) 0.00366 (16)
C1 0.0188 (16) 0.0241 (16) 0.0247 (17) −0.0006 (13) 0.0013 (13) −0.0017 (13)
C2 0.0168 (15) 0.0286 (17) 0.0260 (17) 0.0011 (13) 0.0022 (13) −0.0013 (13)
C3 0.0283 (18) 0.0332 (19) 0.032 (2) 0.0011 (16) 0.0041 (15) 0.0050 (15)
C4 0.0291 (18) 0.032 (2) 0.040 (2) −0.0036 (16) 0.0079 (16) 0.0057 (16)
C5 0.0222 (17) 0.0316 (19) 0.039 (2) −0.0077 (15) 0.0074 (15) −0.0011 (15)
C6 0.0162 (16) 0.0350 (19) 0.0337 (19) 0.0002 (14) −0.0021 (14) −0.0057 (15)
C7 0.0195 (16) 0.0326 (19) 0.0299 (18) 0.0024 (14) −0.0019 (14) −0.0050 (14)
C8 0.0214 (16) 0.0276 (17) 0.0253 (17) 0.0036 (14) −0.0025 (13) −0.0005 (13)
C9 0.0294 (19) 0.041 (2) 0.0278 (19) 0.0015 (16) −0.0038 (15) 0.0064 (15)
C10 0.0212 (17) 0.035 (2) 0.035 (2) 0.0064 (15) −0.0023 (15) −0.0025 (15)
C11 0.037 (2) 0.041 (2) 0.040 (2) 0.0059 (18) −0.0092 (17) −0.0046 (18)
O1 0.0170 (12) 0.0495 (17) 0.0534 (18) −0.0039 (12) −0.0007 (12) 0.0014 (13)
O2 0.0312 (16) 0.061 (2) 0.0326 (16) 0.0038 (15) −0.0087 (13) 0.0010 (14)
O3 0.0160 (11) 0.0413 (15) 0.0321 (14) −0.0044 (10) −0.0046 (10) 0.0130 (11)
O5 0.0263 (14) 0.096 (3) 0.0377 (16) 0.0102 (17) 0.0005 (12) −0.0210 (17)
N1 0.0200 (14) 0.0247 (14) 0.0264 (15) 0.0009 (11) 0.0005 (11) 0.0007 (11)
N2 0.0162 (13) 0.0282 (15) 0.0308 (16) −0.0025 (11) 0.0039 (11) −0.0015 (12)
Cl1 0.0355 (5) 0.0293 (5) 0.0518 (6) −0.0015 (4) −0.0037 (4) 0.0049 (4)

Geometric parameters (Å, °)

Cu1—O3 1.949 (2) C6—N2 1.438 (4)
Cu1—O3i 2.001 (2) C7—C8 1.382 (5)
Cu1—N1 2.033 (3) C7—C10 1.508 (5)
Cu1—O5 2.184 (3) C8—N1 1.375 (4)
Cu1—Cl1 2.2361 (11) C8—C9 1.496 (5)
Cu1—Cl1 2.2361 (11) C9—H9A 0.9600
C1—N1 1.336 (4) C9—H9B 0.9600
C1—N2 1.365 (4) C9—H9C 0.9600
C1—C2 1.434 (5) C10—C11 1.505 (5)
C2—O3 1.320 (4) C10—H10A 0.9700
C2—C3 1.363 (5) C10—H10B 0.9700
C3—C4 1.403 (5) C11—O2 1.419 (5)
C3—H3A 0.9300 C11—H11A 0.9700
C4—C5 1.344 (5) C11—H11B 0.9700
C4—H4A 0.9300 O2—H2A 0.75 (6)
C5—N2 1.377 (4) O3—Cu1i 2.001 (2)
C5—H5A 0.9300 O5—H5C 0.8200
C6—O1 1.225 (4) O5—H5D 0.9599
C6—C7 1.407 (5) Cl1—Cl1 0.000 (3)
O3—Cu1—O3i 74.24 (11) N1—C8—C7 122.1 (3)
O3—Cu1—N1 81.74 (10) N1—C8—C9 116.6 (3)
O3i—Cu1—N1 155.95 (11) C7—C8—C9 121.3 (3)
O3—Cu1—O5 104.82 (13) C8—C9—H9A 109.5
O3i—Cu1—O5 90.24 (11) C8—C9—H9B 109.5
N1—Cu1—O5 97.00 (11) H9A—C9—H9B 109.5
O3—Cu1—Cl1 149.96 (9) C8—C9—H9C 109.5
O3i—Cu1—Cl1 95.88 (7) H9A—C9—H9C 109.5
N1—Cu1—Cl1 104.60 (8) H9B—C9—H9C 109.5
O5—Cu1—Cl1 103.49 (10) C11—C10—C7 112.6 (3)
O3—Cu1—Cl1 149.96 (9) C11—C10—H10A 109.1
O3i—Cu1—Cl1 95.88 (7) C7—C10—H10A 109.1
N1—Cu1—Cl1 104.60 (8) C11—C10—H10B 109.1
O5—Cu1—Cl1 103.49 (10) C7—C10—H10B 109.1
Cl1—Cu1—Cl1 0.00 (7) H10A—C10—H10B 107.8
N1—C1—N2 122.8 (3) O2—C11—C10 113.2 (3)
N1—C1—C2 118.1 (3) O2—C11—H11A 108.9
N2—C1—C2 119.1 (3) C10—C11—H11A 108.9
O3—C2—C3 126.4 (3) O2—C11—H11B 108.9
O3—C2—C1 114.4 (3) C10—C11—H11B 108.9
C3—C2—C1 119.2 (3) H11A—C11—H11B 107.8
C2—C3—C4 119.5 (3) C11—O2—H2A 111 (5)
C2—C3—H3A 120.3 C2—O3—Cu1 115.4 (2)
C4—C3—H3A 120.3 C2—O3—Cu1i 138.3 (2)
C5—C4—C3 121.1 (3) Cu1—O3—Cu1i 105.76 (11)
C5—C4—H4A 119.4 Cu1—O5—H5C 109.5
C3—C4—H4A 119.4 Cu1—O5—H5D 109.3
C4—C5—N2 120.3 (3) H5C—O5—H5D 109.3
C4—C5—H5A 119.8 C1—N1—C8 118.1 (3)
N2—C5—H5A 119.8 C1—N1—Cu1 110.0 (2)
O1—C6—C7 127.3 (3) C8—N1—Cu1 131.7 (2)
O1—C6—N2 117.9 (3) C1—N2—C5 120.7 (3)
C7—C6—N2 114.8 (3) C1—N2—C6 121.2 (3)
C8—C7—C6 120.9 (3) C5—N2—C6 118.1 (3)
C8—C7—C10 123.3 (3) Cl1—Cl1—Cu1 0(10)
C6—C7—C10 115.9 (3)
N1—C1—C2—O3 −0.1 (5) N2—C1—N1—C8 −0.2 (5)
N2—C1—C2—O3 −179.9 (3) C2—C1—N1—C8 180.0 (3)
N1—C1—C2—C3 −178.9 (3) N2—C1—N1—Cu1 −175.7 (3)
N2—C1—C2—C3 1.2 (5) C2—C1—N1—Cu1 4.4 (4)
O3—C2—C3—C4 179.3 (3) C7—C8—N1—C1 −1.7 (5)
C1—C2—C3—C4 −2.1 (5) C9—C8—N1—C1 177.1 (3)
C2—C3—C4—C5 1.3 (6) C7—C8—N1—Cu1 172.7 (3)
C3—C4—C5—N2 0.4 (6) C9—C8—N1—Cu1 −8.5 (5)
O1—C6—C7—C8 177.8 (4) O3—Cu1—N1—C1 −5.3 (2)
N2—C6—C7—C8 −3.3 (5) O3i—Cu1—N1—C1 −2.7 (4)
O1—C6—C7—C10 −0.8 (6) O5—Cu1—N1—C1 −109.3 (2)
N2—C6—C7—C10 178.0 (3) Cl1—Cu1—N1—C1 144.7 (2)
C6—C7—C8—N1 3.5 (5) Cl1—Cu1—N1—C1 144.7 (2)
C10—C7—C8—N1 −177.9 (3) O3—Cu1—N1—C8 −180.0 (3)
C6—C7—C8—C9 −175.2 (3) O3i—Cu1—N1—C8 −177.5 (3)
C10—C7—C8—C9 3.4 (5) O5—Cu1—N1—C8 76.0 (3)
C8—C7—C10—C11 −101.0 (4) Cl1—Cu1—N1—C8 −30.0 (3)
C6—C7—C10—C11 77.6 (4) Cl1—Cu1—N1—C8 −30.0 (3)
C7—C10—C11—O2 173.1 (3) N1—C1—N2—C5 −179.5 (3)
C3—C2—O3—Cu1 174.0 (3) C2—C1—N2—C5 0.4 (5)
C1—C2—O3—Cu1 −4.7 (4) N1—C1—N2—C6 0.1 (5)
C3—C2—O3—Cu1i 3.6 (6) C2—C1—N2—C6 180.0 (3)
C1—C2—O3—Cu1i −175.1 (2) C4—C5—N2—C1 −1.2 (5)
O3i—Cu1—O3—C2 −173.4 (3) C4—C5—N2—C6 179.2 (3)
N1—Cu1—O3—C2 5.6 (2) O1—C6—N2—C1 −179.5 (3)
O5—Cu1—O3—C2 100.7 (2) C7—C6—N2—C1 1.6 (5)
Cl1—Cu1—O3—C2 −99.4 (3) O1—C6—N2—C5 0.1 (5)
Cl1—Cu1—O3—C2 −99.4 (3) C7—C6—N2—C5 −178.8 (3)
O3i—Cu1—O3—Cu1i 0.0 O3—Cu1—Cl1—Cl1 0.0 (5)
N1—Cu1—O3—Cu1i 178.93 (14) O3i—Cu1—Cl1—Cl1 0.0 (5)
O5—Cu1—O3—Cu1i −85.97 (13) N1—Cu1—Cl1—Cl1 0.0 (5)
Cl1—Cu1—O3—Cu1i 74.01 (18) O5—Cu1—Cl1—Cl1 0.0 (5)
Cl1—Cu1—O3—Cu1i 74.01 (18)

Symmetry codes: (i) −x, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5C···O2ii 0.82 2.13 2.742 (4) 131.
O5—H5D···O1iii 0.96 2.11 2.788 (4) 127.
O2—H2A···Cl1iv 0.75 (6) 2.37 (6) 3.078 (4) 158 (6)
C9—H9A···Cl1 0.96 2.49 3.275 (4) 139.
C3—H3A···Cl1i 0.93 2.72 3.387 (4) 130.

Symmetry codes: (ii) −x+1, −y+2, −z+2; (iii) x−1, y, z; (iv) x+1/2, −y+3/2, z+1/2; (i) −x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2256).

References

  1. Bayot, D., Degand, M., Tinant, B. & Devillers, M. (2006). Inorg. Chem. Commun.359, 1390–1394.
  2. Chen, K., Zhang, Y.-L., Feng, M.-Q. & Liu, C.-H. (2007). Acta Cryst. E63, m2033.
  3. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Sun, Y., Jiang, X.-D. & Li, X.-B. (2008). Acta Cryst. E64, m801. [DOI] [PMC free article] [PubMed]
  6. Wu, H., Dong, X.-W., Liu, H.-Y. & Ma, J.-F. (2006). Acta Cryst. E62, m281–m282.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808028687/sg2256sup1.cif

e-64-m1262-sup1.cif (19.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028687/sg2256Isup2.hkl

e-64-m1262-Isup2.hkl (138.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES