Abstract
In the title molecule, C9H9NO3S2, the essentially planar benzisothiazole ring system and the C—S—C atoms of the methylsulfanyl side chain form an angle of 64.45 (7)°. The structure is devoid of any classical hydrogen bonding. However, weak non-classical inter- and intramolecular hydrogen bonds of the type C—H⋯O are present.
Related literature
For related literature, see: Bernstein et al. (1994 ▶); Masashi et al. (1999 ▶); Nagasawa et al. (1995 ▶); Siddiqui et al. (2007a
▶,b
▶, 2008a
▶,b
▶); Xu et al. (2006 ▶); Liang (2006 ▶).
Experimental
Crystal data
C9H9NO3S2
M r = 243.29
Monoclinic,
a = 7.550 (3) Å
b = 17.332 (8) Å
c = 9.455 (3) Å
β = 124.26 (2)°
V = 1022.6 (7) Å3
Z = 4
Mo Kα radiation
μ = 0.51 mm−1
T = 173 (2) K
0.18 × 0.16 × 0.06 mm
Data collection
Nonius KappaCCD diffractometer
Absorption correction: multi-scan (SORTAV; Blessing, 1997 ▶) T min = 0.915, T max = 0.970
3975 measured reflections
2322 independent reflections
2004 reflections with I > 2σ(I)
R int = 0.024
Refinement
R[F 2 > 2σ(F 2)] = 0.035
wR(F 2) = 0.094
S = 1.05
2322 reflections
136 parameters
H-atom parameters constrained
Δρmax = 0.29 e Å−3
Δρmin = −0.45 e Å−3
Data collection: COLLECT (Hooft, 1998 ▶); cell refinement: HKL DENZO (Otwinowski & Minor, 1997 ▶); data reduction: SCALEPACK (Otwinowski & Minor, 1997 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶); software used to prepare material for publication: SHELXL97.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028109/lh2683sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028109/lh2683Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C2—H2⋯O2i | 0.95 | 2.49 | 3.390 (2) | 158 |
| C9—H9B⋯O3 | 0.98 | 2.56 | 3.383 (3) | 142 |
Symmetry code: (i)
.
supplementary crystallographic information
Comment
1,2-benzisothiazole-3-one 1,1-dioxide (saccharin) has been identified as an important molecular component in various classes of 5-HTla antagonists, analgesics and human mast cell tryptase inhibitors (Liang et al., 2006). Particularly, the substituted derivatives with e.g. N-hydroxy and N-alkyl substutuents have shown important biological activities (Nagasawa et al., 1995). Various biologically important saccharin skeletons and their N-alkyl derivatives were efficiently prepared (Xu et al., 2006) by chromium oxide-catalyzed oxidation of N-alkyl(o-methyl)arenesulfonamides in acetonitrile besides the already developed methodology utilizing irradiation techniques (Masashi et al., 1999) for similar type of conversions. In continuation of our research program on the synthesis of benzisothiazole derivatives (Siddiqui et al., 2007a,b,2008a,b), we report the synthesis (see Fig. 3) and crystal structure of the title compound, in this paper.
In the molecular structure (Fig. 1) the benzisothiazole rings system is essentially planar, the maximum deviation of any atom from the mean plane through S1/N1/C1–C7 being 0.0224 (8) Å for atom S1. The side chain comprising of atoms S2/C8/C9 is inclined at an angle 64.45 (7)° with the mean-plane of the benzisothiazole rings system. The structure is devoid of any classical hydrogen bonding. However, non-classical intermolecular hydrogen bond of the type C—H···O are present resulting in dimeric units in an R22(8) motif (Bernstein et al., 1994). In addition, intramolecular hydrogen bonds of the type C—H···O are also present in the structure resulting in an S(7) pattern (Bernstein et al., 1994) (details are in Fig. 2 and Table 1).
Experimental
A suspension of saccharin (I) (1.0 g, 5.46 mmol), sodium sulfite (1.4 g, 10.93 mmol) and an excess of 2-chloro-5-methylaniline (5 ml) was first stirred at room temperature (30 min.) and then under reflux (1.5 hrs). The reaction mixture turned orange red after reflux. Cooled the reaction mixture to room temperature and extracted the product with chloroform (3 X 25 ml). Concentrated the organic layer under reduced pressure (11 torr) to get light yellow product (II) (0.6 g, 2.46 mmol), yield = 45%. Recrystallization Solvent: MeOH:CH3CN (1:1). The solution was subjected to slow evaporation at 313 K to obtain colorless crystals.
Refinement
Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: aryl, methyl and methylene C—H distances were set to 0.95, 0.98 and 0.99 Å, respectively; in all these instances Uiso(H) = 1.2 Ueq(C). The final difference map was free of any chemically significant features.
Figures
Fig. 1.
ORTEP-3 (Farrugia, 1997) drawing of the title compound with displacement ellipsoids plotted at 50% probability level.
Fig. 2.
Hydrogen bonding interactions in the unit cell of the title compound indicated by dashed lines, H-atoms not involved in H-bonds have been excluded.
Fig. 3.
Reaction scheme.
Crystal data
| C9H9NO3S2 | F(000) = 504 |
| Mr = 243.29 | Dx = 1.580 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 2322 reflections |
| a = 7.550 (3) Å | θ = 4.0–27.5° |
| b = 17.332 (8) Å | µ = 0.51 mm−1 |
| c = 9.455 (3) Å | T = 173 K |
| β = 124.26 (2)° | Plate, colourless |
| V = 1022.6 (7) Å3 | 0.18 × 0.16 × 0.06 mm |
| Z = 4 |
Data collection
| Nonius KappaCCD diffractometer | 2322 independent reflections |
| Radiation source: fine-focus sealed tube | 2004 reflections with I > 2σ(I) |
| graphite | Rint = 0.024 |
| ω and φ scans | θmax = 27.5°, θmin = 4.0° |
| Absorption correction: multi-scan (SORTAV; Blessing, 1997) | h = −9→9 |
| Tmin = 0.915, Tmax = 0.970 | k = −22→19 |
| 3975 measured reflections | l = −12→12 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.094 | H-atom parameters constrained |
| S = 1.05 | w = 1/[σ2(Fo2) + (0.048P)2 + 0.474P] where P = (Fo2 + 2Fc2)/3 |
| 2322 reflections | (Δ/σ)max = 0.001 |
| 136 parameters | Δρmax = 0.29 e Å−3 |
| 0 restraints | Δρmin = −0.45 e Å−3 |
Special details
| Experimental. m.p. 405–406 K; IR (KBr, νmax, cm-1): CO 1731 (s), SO2 1332 and 1177; 1H-NMR (400 MHz, DMSO-d6) δ: 2.28 (s, 3H, CH3), 4.90 (s, 2H, CH2), 7.98–8.07 (m, 3H, aromatic), 8.13–8.34 (m, 1H, aromatic); 13C-NMR (100 MHz, DMSO-d6) δ: 158.3, 136.7, 135.9, 135.3, 125.9, 125.1, 121.6, 42.6, 15.5 LRMS (ES+): m/z: 244 [M]+ (63.5%). |
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1 | 1.06232 (7) | 0.08010 (3) | 0.35109 (5) | 0.02244 (14) | |
| S2 | 1.41986 (7) | 0.24291 (3) | 0.32581 (6) | 0.02667 (14) | |
| O1 | 0.9265 (2) | 0.19480 (7) | −0.03395 (16) | 0.0267 (3) | |
| O2 | 0.9634 (2) | 0.10390 (9) | 0.43595 (17) | 0.0340 (3) | |
| O3 | 1.2696 (2) | 0.04531 (9) | 0.45436 (16) | 0.0328 (3) | |
| N1 | 1.0689 (2) | 0.15451 (9) | 0.24102 (18) | 0.0235 (3) | |
| C1 | 0.8872 (3) | 0.02719 (10) | 0.1645 (2) | 0.0197 (3) | |
| C2 | 0.8048 (3) | −0.04560 (11) | 0.1537 (2) | 0.0244 (4) | |
| H2 | 0.8436 | −0.0741 | 0.2530 | 0.029* | |
| C3 | 0.6623 (3) | −0.07501 (10) | −0.0102 (2) | 0.0255 (4) | |
| H3 | 0.6023 | −0.1248 | −0.0231 | 0.031* | |
| C4 | 0.6060 (3) | −0.03308 (11) | −0.1554 (2) | 0.0249 (4) | |
| H4 | 0.5069 | −0.0543 | −0.2655 | 0.030* | |
| C5 | 0.6929 (3) | 0.03959 (11) | −0.1413 (2) | 0.0224 (4) | |
| H5 | 0.6559 | 0.0680 | −0.2404 | 0.027* | |
| C6 | 0.8348 (3) | 0.06950 (10) | 0.0209 (2) | 0.0192 (3) | |
| C7 | 0.9421 (3) | 0.14577 (10) | 0.0633 (2) | 0.0202 (3) | |
| C8 | 1.1816 (3) | 0.22693 (11) | 0.3227 (2) | 0.0253 (4) | |
| H8A | 1.2215 | 0.2273 | 0.4420 | 0.030* | |
| H8B | 1.0817 | 0.2704 | 0.2618 | 0.030* | |
| C9 | 1.6129 (3) | 0.18644 (12) | 0.5098 (2) | 0.0320 (4) | |
| H9A | 1.7529 | 0.1899 | 0.5261 | 0.038* | |
| H9B | 1.5664 | 0.1325 | 0.4916 | 0.038* | |
| H9C | 1.6244 | 0.2063 | 0.6117 | 0.038* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.0225 (2) | 0.0275 (2) | 0.0162 (2) | −0.00213 (16) | 0.01023 (18) | −0.00010 (16) |
| S2 | 0.0260 (3) | 0.0289 (3) | 0.0266 (2) | −0.00508 (18) | 0.0157 (2) | −0.00217 (18) |
| O1 | 0.0280 (7) | 0.0252 (7) | 0.0258 (6) | −0.0001 (5) | 0.0145 (6) | 0.0052 (5) |
| O2 | 0.0433 (8) | 0.0417 (8) | 0.0282 (7) | −0.0045 (7) | 0.0270 (6) | −0.0055 (6) |
| O3 | 0.0238 (7) | 0.0406 (8) | 0.0223 (6) | 0.0006 (6) | 0.0059 (6) | 0.0055 (6) |
| N1 | 0.0253 (8) | 0.0243 (8) | 0.0186 (7) | −0.0056 (6) | 0.0109 (6) | −0.0024 (6) |
| C1 | 0.0178 (8) | 0.0236 (9) | 0.0176 (7) | 0.0014 (6) | 0.0099 (7) | 0.0003 (6) |
| C2 | 0.0266 (9) | 0.0235 (9) | 0.0255 (8) | 0.0020 (7) | 0.0160 (8) | 0.0046 (7) |
| C3 | 0.0251 (9) | 0.0205 (9) | 0.0324 (9) | −0.0007 (7) | 0.0172 (8) | −0.0016 (7) |
| C4 | 0.0222 (8) | 0.0275 (9) | 0.0212 (8) | −0.0011 (7) | 0.0099 (7) | −0.0046 (7) |
| C5 | 0.0216 (8) | 0.0258 (9) | 0.0180 (8) | 0.0017 (7) | 0.0102 (7) | 0.0012 (7) |
| C6 | 0.0169 (8) | 0.0223 (8) | 0.0187 (8) | 0.0013 (6) | 0.0101 (7) | 0.0009 (6) |
| C7 | 0.0174 (8) | 0.0231 (9) | 0.0204 (8) | 0.0017 (6) | 0.0108 (7) | 0.0010 (6) |
| C8 | 0.0231 (9) | 0.0247 (9) | 0.0272 (9) | −0.0027 (7) | 0.0135 (8) | −0.0067 (7) |
| C9 | 0.0227 (9) | 0.0401 (11) | 0.0274 (9) | −0.0025 (8) | 0.0106 (8) | −0.0025 (8) |
Geometric parameters (Å, °)
| S1—O3 | 1.4304 (15) | C3—C4 | 1.392 (3) |
| S1—O2 | 1.4306 (14) | C3—H3 | 0.9500 |
| S1—N1 | 1.6754 (16) | C4—C5 | 1.392 (3) |
| S1—C1 | 1.7537 (18) | C4—H4 | 0.9500 |
| S2—C8 | 1.804 (2) | C5—C6 | 1.385 (2) |
| S2—C9 | 1.804 (2) | C5—H5 | 0.9500 |
| O1—C7 | 1.208 (2) | C6—C7 | 1.483 (2) |
| N1—C7 | 1.397 (2) | C8—H8A | 0.9900 |
| N1—C8 | 1.468 (2) | C8—H8B | 0.9900 |
| C1—C2 | 1.385 (3) | C9—H9A | 0.9800 |
| C1—C6 | 1.390 (2) | C9—H9B | 0.9800 |
| C2—C3 | 1.393 (3) | C9—H9C | 0.9800 |
| C2—H2 | 0.9500 | ||
| O3—S1—O2 | 117.06 (9) | C6—C5—C4 | 118.30 (16) |
| O3—S1—N1 | 110.18 (8) | C6—C5—H5 | 120.9 |
| O2—S1—N1 | 109.50 (9) | C4—C5—H5 | 120.9 |
| O3—S1—C1 | 112.44 (9) | C5—C6—C1 | 120.09 (16) |
| O2—S1—C1 | 112.28 (9) | C5—C6—C7 | 126.71 (15) |
| N1—S1—C1 | 92.68 (8) | C1—C6—C7 | 113.20 (15) |
| C8—S2—C9 | 100.92 (9) | O1—C7—N1 | 123.12 (16) |
| C7—N1—C8 | 121.81 (15) | O1—C7—C6 | 128.06 (15) |
| C7—N1—S1 | 115.07 (12) | N1—C7—C6 | 108.81 (14) |
| C8—N1—S1 | 122.85 (12) | N1—C8—S2 | 114.65 (12) |
| C2—C1—C6 | 122.64 (16) | N1—C8—H8A | 108.6 |
| C2—C1—S1 | 127.13 (13) | S2—C8—H8A | 108.6 |
| C6—C1—S1 | 110.22 (13) | N1—C8—H8B | 108.6 |
| C1—C2—C3 | 116.69 (16) | S2—C8—H8B | 108.6 |
| C1—C2—H2 | 121.7 | H8A—C8—H8B | 107.6 |
| C3—C2—H2 | 121.7 | S2—C9—H9A | 109.5 |
| C2—C3—C4 | 121.45 (17) | S2—C9—H9B | 109.5 |
| C2—C3—H3 | 119.3 | H9A—C9—H9B | 109.5 |
| C4—C3—H3 | 119.3 | S2—C9—H9C | 109.5 |
| C5—C4—C3 | 120.82 (16) | H9A—C9—H9C | 109.5 |
| C5—C4—H4 | 119.6 | H9B—C9—H9C | 109.5 |
| C3—C4—H4 | 119.6 | ||
| O3—S1—N1—C7 | 116.17 (13) | C4—C5—C6—C1 | 0.0 (3) |
| O2—S1—N1—C7 | −113.73 (13) | C4—C5—C6—C7 | −179.11 (16) |
| C1—S1—N1—C7 | 1.06 (13) | C2—C1—C6—C5 | 0.8 (3) |
| O3—S1—N1—C8 | −69.74 (16) | S1—C1—C6—C5 | −178.13 (13) |
| O2—S1—N1—C8 | 60.36 (16) | C2—C1—C6—C7 | −179.96 (15) |
| C1—S1—N1—C8 | 175.15 (14) | S1—C1—C6—C7 | 1.10 (18) |
| O3—S1—C1—C2 | 66.76 (18) | C8—N1—C7—O1 | 4.5 (3) |
| O2—S1—C1—C2 | −67.75 (18) | S1—N1—C7—O1 | 178.63 (14) |
| N1—S1—C1—C2 | 179.89 (16) | C8—N1—C7—C6 | −174.75 (14) |
| O3—S1—C1—C6 | −114.36 (13) | S1—N1—C7—C6 | −0.59 (17) |
| O2—S1—C1—C6 | 111.13 (13) | C5—C6—C7—O1 | −0.4 (3) |
| N1—S1—C1—C6 | −1.22 (13) | C1—C6—C7—O1 | −179.53 (17) |
| C6—C1—C2—C3 | −0.8 (3) | C5—C6—C7—N1 | 178.80 (16) |
| S1—C1—C2—C3 | 177.98 (13) | C1—C6—C7—N1 | −0.37 (19) |
| C1—C2—C3—C4 | 0.0 (3) | C7—N1—C8—S2 | −76.41 (19) |
| C2—C3—C4—C5 | 0.8 (3) | S1—N1—C8—S2 | 109.89 (14) |
| C3—C4—C5—C6 | −0.8 (3) | C9—S2—C8—N1 | −82.19 (15) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C2—H2···O2i | 0.95 | 2.49 | 3.390 (2) | 158 |
| C9—H9B···O3 | 0.98 | 2.56 | 3.383 (3) | 142 |
Symmetry codes: (i) −x+2, −y, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2683).
References
- Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH.
- Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
- Liang, X., Hong, S., Ying, L., Suhong, Z. & Mark, L. T. (2006). Tetrahedron, 62, 7902–7910
- Masashi, K., Hideo, T., Kentaro, Y. & Masataka, Y. (1999). Tetrahedron, 55, 14885–14900.
- Nagasawa, H. T., Kawle, S. P., Elberling, J. A., DeMaster, E. G. & Fukuto, J. M. (1995). J. Med. Chem.38, 1865–1871. [DOI] [PubMed]
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Parvez, M. (2007a). Acta Cryst. E63, o4116.
- Siddiqui, W. A., Ahmad, S., Siddiqui, H. L. & Parvez, M. (2008a). Acta Cryst. E64, o724. [DOI] [PMC free article] [PubMed]
- Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Parvez, M. & Rashid, R. (2008b). Acta Cryst. E64, o859. [DOI] [PMC free article] [PubMed]
- Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007b). Acta Cryst. E63, o4001.
- Xu, L., Shu, H., Liu, Y., Zhang, S. & Trudell, M. (2006). Tetrahedron, 62, 7902–7910.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808028109/lh2683sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536808028109/lh2683Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report



