Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 27;64(Pt 10):o2018. doi: 10.1107/S1600536808030274

3-(3-Chloro­benz­yl)-1H-isochromen-1-one

Obaid-Ur-Rehman Abid a, Ghulam Qadeer a, Nasim Hasan Rama a,*, Ales Ruzicka b, Zdenka Padelkova b
PMCID: PMC2959484  PMID: 21201213

Abstract

The asymmetric unit of the title compound, C16H11ClO2, a chemically synthesized isocoumarin, contains three independent mol­ecules. The benzopyran and benzene rings are approximately perpendicular to each other, forming dihedral angles ranging from 83.08 (14) to 87.43 (11)°. In the crystal structure, mol­ecules are linked by inter­molecular C—H⋯O hydrogen-bonding inter­actions, forming chains running parallel to the a axis.

Related literature

For the properties and applications of isocumarins, see: Barry (1964); Powers et al. (2002); Sturtz et al. (2002). For the crystal structure of a related compound, see: Abid et al. (2006). For related literature, see: Allen et al. (1987); Rossi et al. (2003); Thomas & Jens (1999).graphic file with name e-64-o2018-scheme1.jpg

Experimental

Crystal data

  • C16H11ClO2

  • M r = 270.70

  • Triclinic, Inline graphic

  • a = 8.1411 (8) Å

  • b = 15.0269 (14) Å

  • c = 16.4080 (16) Å

  • α = 91.696 (8)°

  • β = 98.478 (8)°

  • γ = 102.624 (6)°

  • V = 1933.4 (3) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 150 (1) K

  • 0.36 × 0.28 × 0.13 mm

Data collection

  • Bruker–Nonius KappaCCD area-detector diffractometer

  • Absorption correction: Gaussian (Coppens et al., 1970) T min = 0.930, T max = 0.978

  • 33806 measured reflections

  • 8770 independent reflections

  • 5387 reflections with I > 2σ(I)

  • R int = 0.096

Refinement

  • R[F 2 > 2σ(F 2)] = 0.093

  • wR(F 2) = 0.280

  • S = 1.15

  • 8770 reflections

  • 514 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwin­owski & Minor, 1997); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030274/rz2245sup1.cif

e-64-o2018-sup1.cif (27.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030274/rz2245Isup2.hkl

e-64-o2018-Isup2.hkl (428.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C216—H216⋯O11 0.93 2.56 3.437 (6) 158
C116—H116⋯O21 0.93 2.58 3.396 (6) 147
C26—H26⋯O22i 0.93 2.45 3.339 (7) 161
C36—H36⋯O32i 0.93 2.52 3.409 (6) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge the financial support of the Ministry of Education of the Czech Republic (Project VZ0021627501) and the Higher Education Commission, Islamabad, Pakistan.

supplementary crystallographic information

Comment

The isocoumarin nucleus is an abundant structural motif in natural products (Barry, 1964). Many constituents of the steadily growing class of known isocoumarins exhibit valuable biological properties such as antifungal (Sturtz et al., 2002), antitumor or cytotoxic, anti-inflammatory, anti-allergic (Rossi et al., 2003) and enzyme inhibitory activity (Powers et al.,2002). Naturally occurring halo-isocoumarins and their halogeno-3,4-dihydroiscoumarin derivatives are very rare. However, a few examples of naturally occurring chlorine containing isocoumarins are known (Thomas & Jens, 1999). In view of the importance of this class of compounds, the title compound, an isocoumarine derivative containing a 3-chlorobenzyl substituent, has been synthesized and its crystal structure is reported here.

The asymmetric unit of the title compound contains three crystallographically independent molecules of similar geometry (Fig.1). The molecules are not planar, the dihedral angles formed by the benzopyran ring with the corresponding benzene ring being 83.08 (14), 87.43 (11) and 84.25 (14)° for the molecules containing Cl11, Cl21 and Cl31, respectively. The bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable with those reported for 3-(2-chlorobenzyl)isocoumarin (Abid et al., 2006). In the crystal packing, molecules are linked by intermolecular C—H···O hydrogen bonds (Table 1) into chains running parallel to the a axis (Fig. 2).

Experimental

A mixture of 2-(3-chlorophenyl)acetic acid (4.76 g, 28 mmol) and thionyl chloride (2.94 ml, 34 mmol) was heated for 30 min in the presence of a few drops of DMF under reflux at 343 K to give 2-(3-chlorophenyl)acetyl chloride. Completion of the reaction was indicated by the disappearance of gas evolution. The removal of excess thionyl chloride was carried out under reduced pressure to afford 2-(3-chlorophenyl)acetyl chloride. Homophthalic acid (1.3 g, 7.2 mmol) was then added and the solution was refluxed for 6 hrs at 473 K with stirring. The reaction mixture was extracted with ethyl acetate (3 times 100 ml), and an aqueous solution of sodium carbonate (5%, 200 ml) was added to remove the unreacted homophthalic acid. The organic layer was separated, concentrated and chromatographed on silica gel using petroleum ether (313–353 K fractions) as eluent to afford the title compound (yield 62%; m.p. 350–351 K). Colourless single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution.

Refinement

H atoms were positioned geometrically with C—H = 0.93–0.97Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C). The poor diffraction quality of the crystal may account for the high Rint, weighted and unweighted R factors.

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed approximately along the a axis. Intermolecular C—H···O hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

C16H11ClO2 Z = 6
Mr = 270.70 F(000) = 840
Triclinic, P1 Dx = 1.395 Mg m3
Hall symbol: -P 1 Melting point: 350(1) K
a = 8.1411 (8) Å Mo Kα radiation, λ = 0.71073 Å
b = 15.0269 (14) Å Cell parameters from 33934 reflections
c = 16.4080 (16) Å θ = 1–27.5°
α = 91.696 (8)° µ = 0.29 mm1
β = 98.478 (8)° T = 150 K
γ = 102.624 (6)° Block, colourless
V = 1933.4 (3) Å3 0.36 × 0.28 × 0.13 mm

Data collection

Bruker–Nonius KappaCCD area-detector diffractometer 8770 independent reflections
Radiation source: fine-focus sealed tube 5387 reflections with I > 2σ(I)
graphite Rint = 0.096
Detector resolution: 9.091 pixels mm-1 θmax = 27.5°, θmin = 1.8°
φ and ω scans to fill the Ewald sphere h = −10→10
Absorption correction: integration (Gaussian; Coppens et al., 1970) k = −19→19
Tmin = 0.930, Tmax = 0.978 l = −21→21
33806 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.093 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.280 H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0832P)2 + 3.9759P] where P = (Fo2 + 2Fc2)/3
8770 reflections (Δ/σ)max < 0.001
514 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl11 −0.0861 (2) 0.69111 (11) 0.78787 (9) 0.0721 (4)
Cl31 −0.1878 (2) 0.34414 (12) 0.45567 (9) 0.0764 (5)
Cl21 −0.2374 (3) 0.96729 (13) −0.13645 (9) 0.0865 (6)
O12 −0.3053 (4) 0.8902 (2) 0.4163 (2) 0.0466 (8)
C34 −0.0819 (5) 0.5570 (3) 0.1009 (2) 0.0369 (9)
O32 −0.4217 (4) 0.5627 (2) 0.09538 (19) 0.0452 (7)
O22 −0.3792 (4) 0.7443 (2) 0.2320 (2) 0.0506 (8)
C14 0.0400 (6) 0.8964 (3) 0.4355 (2) 0.0383 (9)
C23 −0.1317 (6) 0.8252 (3) 0.1859 (3) 0.0401 (10)
H23 −0.0798 0.8699 0.1540 0.048*
C19 −0.0270 (6) 0.9565 (3) 0.3839 (3) 0.0386 (9)
C11 −0.2077 (6) 0.9547 (3) 0.3750 (3) 0.0438 (10)
O31 −0.4003 (4) 0.6731 (2) 0.0103 (2) 0.0534 (8)
O11 −0.2803 (5) 1.0049 (3) 0.3363 (2) 0.0646 (10)
C31 −0.3272 (6) 0.6231 (3) 0.0492 (3) 0.0394 (9)
C29 −0.1117 (6) 0.7056 (3) 0.2811 (2) 0.0413 (10)
C35 0.0900 (6) 0.5559 (3) 0.1035 (3) 0.0456 (11)
H35 0.1377 0.5156 0.1362 0.055*
C24 −0.0311 (6) 0.7732 (3) 0.2336 (3) 0.0391 (9)
O21 −0.3788 (5) 0.6358 (3) 0.3182 (2) 0.0649 (10)
C110 −0.3759 (6) 0.7710 (3) 0.5034 (3) 0.0513 (12)
H110A −0.4632 0.7392 0.4590 0.062*
H110B −0.4276 0.8088 0.5360 0.062*
C32 −0.3542 (5) 0.5006 (3) 0.1420 (2) 0.0370 (9)
C311 −0.4318 (5) 0.3711 (3) 0.2324 (3) 0.0416 (10)
C13 −0.0723 (6) 0.8334 (3) 0.4773 (3) 0.0414 (10)
H13 −0.0287 0.7937 0.5124 0.050*
C22 −0.2965 (6) 0.8114 (3) 0.1858 (3) 0.0417 (10)
C21 −0.2929 (6) 0.6906 (3) 0.2800 (3) 0.0471 (11)
C113 −0.1807 (6) 0.6609 (3) 0.6859 (3) 0.0458 (11)
C112 −0.2401 (6) 0.7239 (3) 0.6380 (3) 0.0476 (11)
H112 −0.2317 0.7824 0.6608 0.057*
C212 −0.3309 (6) 0.9170 (3) 0.0091 (3) 0.0516 (12)
H212 −0.3752 0.8590 −0.0166 0.062*
C12 −0.2366 (6) 0.8308 (3) 0.4666 (3) 0.0400 (10)
C39 −0.1497 (5) 0.6193 (3) 0.0524 (2) 0.0349 (9)
C18 0.0777 (7) 1.0171 (3) 0.3405 (3) 0.0488 (11)
H18 0.0315 1.0559 0.3054 0.059*
C310 −0.4898 (6) 0.4452 (3) 0.1844 (3) 0.0458 (11)
H310A −0.5882 0.4181 0.1435 0.055*
H310B −0.5251 0.4859 0.2219 0.055*
C33 −0.1936 (6) 0.4969 (3) 0.1461 (3) 0.0402 (10)
H33 −0.1513 0.4549 0.1787 0.048*
C211 −0.3426 (6) 0.9338 (3) 0.0915 (3) 0.0472 (11)
C17 0.2471 (7) 1.0200 (3) 0.3494 (3) 0.0548 (13)
H17 0.3164 1.0606 0.3203 0.066*
C38 −0.0470 (6) 0.6788 (3) 0.0070 (3) 0.0443 (10)
H38 −0.0921 0.7204 −0.0250 0.053*
C312 −0.3485 (6) 0.3892 (3) 0.3126 (3) 0.0443 (10)
H312 −0.3297 0.4475 0.3380 0.053*
C313 −0.2922 (6) 0.3210 (4) 0.3550 (3) 0.0505 (12)
C111 −0.3126 (6) 0.7018 (3) 0.5568 (3) 0.0456 (11)
C26 0.2337 (7) 0.7326 (4) 0.2817 (3) 0.0620 (14)
H26 0.3502 0.7408 0.2815 0.074*
C15 0.2150 (6) 0.9013 (4) 0.4447 (3) 0.0514 (12)
H15 0.2634 0.8635 0.4800 0.062*
C210 −0.4238 (6) 0.8580 (4) 0.1400 (3) 0.0551 (13)
H210A −0.4842 0.8822 0.1790 0.066*
H210B −0.5065 0.8132 0.1025 0.066*
C214 −0.1859 (7) 1.0727 (3) 0.0021 (4) 0.0608 (14)
H214 −0.1334 1.1192 −0.0279 0.073*
C316 −0.4589 (7) 0.2834 (4) 0.1968 (3) 0.0588 (13)
H316 −0.5154 0.2699 0.1429 0.071*
C36 0.1877 (6) 0.6143 (3) 0.0579 (3) 0.0533 (12)
H36 0.3019 0.6129 0.0597 0.064*
C114 −0.1934 (9) 0.5750 (4) 0.6558 (4) 0.0702 (17)
H114 −0.1541 0.5325 0.6889 0.084*
C25 0.1436 (6) 0.7850 (4) 0.2350 (3) 0.0537 (12)
H25 0.1998 0.8289 0.2038 0.064*
C213 −0.2522 (7) 0.9871 (3) −0.0338 (3) 0.0531 (12)
C27 0.1542 (8) 0.6675 (4) 0.3290 (3) 0.0605 (14)
H27 0.2174 0.6330 0.3612 0.073*
C37 0.1202 (6) 0.6752 (3) 0.0099 (3) 0.0521 (12)
H37 0.1887 0.7140 −0.0210 0.062*
C315 −0.4023 (8) 0.2162 (3) 0.2408 (4) 0.0642 (15)
H315 −0.4212 0.1575 0.2162 0.077*
C216 −0.2756 (7) 1.0201 (4) 0.1280 (3) 0.0584 (13)
H216 −0.2832 1.0321 0.1831 0.070*
C314 −0.3189 (7) 0.2345 (3) 0.3200 (4) 0.0571 (13)
H314 −0.2811 0.1891 0.3497 0.068*
C16 0.3164 (7) 0.9627 (4) 0.4017 (3) 0.0583 (13)
H16 0.4327 0.9652 0.4078 0.070*
C28 −0.0167 (7) 0.6535 (3) 0.3290 (3) 0.0540 (13)
H28 −0.0702 0.6095 0.3610 0.065*
C215 −0.1957 (9) 1.0890 (4) 0.0837 (4) 0.0730 (17)
H215 −0.1498 1.1469 0.1093 0.088*
C115 −0.2687 (11) 0.5514 (4) 0.5746 (4) 0.089 (2)
H115 −0.2785 0.4924 0.5527 0.107*
C116 −0.3259 (9) 0.6148 (4) 0.5254 (3) 0.0667 (16)
H116 −0.3745 0.5980 0.4707 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl11 0.0741 (10) 0.0797 (10) 0.0526 (8) 0.0050 (8) −0.0034 (7) 0.0057 (7)
Cl31 0.0903 (11) 0.0920 (11) 0.0506 (8) 0.0367 (9) −0.0020 (7) 0.0105 (7)
Cl21 0.1028 (13) 0.0933 (12) 0.0544 (8) −0.0025 (10) 0.0208 (8) 0.0008 (8)
O12 0.0378 (17) 0.0530 (19) 0.0531 (18) 0.0140 (14) 0.0116 (14) 0.0182 (15)
C34 0.032 (2) 0.043 (2) 0.036 (2) 0.0082 (17) 0.0075 (17) 0.0017 (17)
O32 0.0337 (16) 0.0549 (19) 0.0517 (18) 0.0161 (14) 0.0098 (14) 0.0185 (15)
O22 0.0402 (18) 0.057 (2) 0.057 (2) 0.0092 (15) 0.0171 (15) 0.0186 (16)
C14 0.041 (2) 0.042 (2) 0.035 (2) 0.0130 (18) 0.0101 (18) 0.0014 (18)
C23 0.041 (2) 0.041 (2) 0.041 (2) 0.0087 (18) 0.0126 (19) 0.0096 (18)
C19 0.043 (2) 0.038 (2) 0.037 (2) 0.0101 (18) 0.0108 (18) 0.0015 (17)
C11 0.049 (3) 0.045 (3) 0.041 (2) 0.016 (2) 0.009 (2) 0.0130 (19)
O31 0.0475 (19) 0.057 (2) 0.061 (2) 0.0210 (16) 0.0082 (16) 0.0224 (16)
O11 0.061 (2) 0.073 (2) 0.072 (2) 0.029 (2) 0.0198 (19) 0.036 (2)
C31 0.044 (2) 0.039 (2) 0.038 (2) 0.0132 (19) 0.0074 (18) 0.0084 (18)
C29 0.053 (3) 0.039 (2) 0.031 (2) 0.0072 (19) 0.0074 (19) 0.0004 (17)
C35 0.035 (2) 0.047 (3) 0.058 (3) 0.0152 (19) 0.009 (2) 0.011 (2)
C24 0.042 (2) 0.036 (2) 0.040 (2) 0.0106 (18) 0.0081 (18) 0.0016 (18)
O21 0.067 (2) 0.063 (2) 0.063 (2) −0.0004 (19) 0.0221 (19) 0.0241 (18)
C110 0.042 (3) 0.057 (3) 0.056 (3) 0.008 (2) 0.013 (2) 0.019 (2)
C32 0.036 (2) 0.041 (2) 0.033 (2) 0.0084 (18) 0.0047 (17) 0.0063 (17)
C311 0.032 (2) 0.045 (2) 0.047 (2) 0.0045 (18) 0.0101 (18) 0.011 (2)
C13 0.047 (3) 0.042 (2) 0.041 (2) 0.018 (2) 0.0117 (19) 0.0103 (19)
C22 0.048 (3) 0.039 (2) 0.038 (2) 0.0057 (19) 0.0154 (19) 0.0094 (18)
C21 0.056 (3) 0.041 (2) 0.043 (2) 0.003 (2) 0.012 (2) 0.006 (2)
C113 0.047 (3) 0.048 (3) 0.041 (2) 0.004 (2) 0.012 (2) 0.011 (2)
C112 0.049 (3) 0.037 (2) 0.055 (3) 0.002 (2) 0.011 (2) 0.004 (2)
C212 0.045 (3) 0.047 (3) 0.058 (3) 0.003 (2) 0.002 (2) 0.005 (2)
C12 0.040 (2) 0.039 (2) 0.043 (2) 0.0098 (18) 0.0086 (18) 0.0100 (18)
C39 0.033 (2) 0.036 (2) 0.034 (2) 0.0064 (16) 0.0062 (16) 0.0011 (16)
C18 0.055 (3) 0.042 (2) 0.050 (3) 0.007 (2) 0.015 (2) 0.008 (2)
C310 0.038 (2) 0.053 (3) 0.048 (3) 0.010 (2) 0.011 (2) 0.012 (2)
C33 0.044 (2) 0.040 (2) 0.040 (2) 0.0149 (19) 0.0073 (19) 0.0097 (18)
C211 0.040 (3) 0.046 (3) 0.057 (3) 0.012 (2) 0.006 (2) 0.015 (2)
C17 0.060 (3) 0.049 (3) 0.055 (3) 0.001 (2) 0.027 (2) 0.003 (2)
C38 0.047 (3) 0.043 (2) 0.044 (2) 0.009 (2) 0.011 (2) 0.0070 (19)
C312 0.044 (3) 0.043 (2) 0.048 (2) 0.0092 (19) 0.011 (2) 0.008 (2)
C313 0.050 (3) 0.060 (3) 0.045 (3) 0.014 (2) 0.016 (2) 0.012 (2)
C111 0.043 (3) 0.044 (2) 0.049 (3) 0.0022 (19) 0.014 (2) 0.011 (2)
C26 0.051 (3) 0.075 (4) 0.068 (3) 0.027 (3) 0.013 (3) 0.015 (3)
C15 0.041 (3) 0.060 (3) 0.056 (3) 0.015 (2) 0.011 (2) 0.007 (2)
C210 0.042 (3) 0.064 (3) 0.063 (3) 0.015 (2) 0.014 (2) 0.018 (3)
C214 0.065 (3) 0.044 (3) 0.068 (3) −0.001 (2) 0.009 (3) 0.011 (2)
C316 0.061 (3) 0.058 (3) 0.054 (3) 0.009 (3) 0.005 (2) −0.002 (2)
C36 0.036 (2) 0.055 (3) 0.071 (3) 0.009 (2) 0.014 (2) 0.007 (2)
C114 0.103 (5) 0.044 (3) 0.066 (4) 0.020 (3) 0.011 (3) 0.014 (3)
C25 0.047 (3) 0.064 (3) 0.056 (3) 0.018 (2) 0.018 (2) 0.014 (2)
C213 0.052 (3) 0.055 (3) 0.050 (3) 0.007 (2) 0.007 (2) 0.011 (2)
C27 0.069 (4) 0.063 (3) 0.052 (3) 0.027 (3) −0.001 (3) 0.009 (2)
C37 0.047 (3) 0.049 (3) 0.061 (3) 0.006 (2) 0.019 (2) 0.012 (2)
C315 0.076 (4) 0.038 (3) 0.080 (4) 0.013 (3) 0.019 (3) 0.002 (3)
C216 0.071 (4) 0.055 (3) 0.052 (3) 0.022 (3) 0.006 (3) 0.004 (2)
C314 0.063 (3) 0.042 (3) 0.072 (4) 0.017 (2) 0.020 (3) 0.019 (2)
C16 0.042 (3) 0.066 (3) 0.068 (3) 0.007 (2) 0.020 (2) 0.006 (3)
C28 0.076 (4) 0.045 (3) 0.041 (2) 0.012 (2) 0.009 (2) 0.011 (2)
C215 0.098 (5) 0.043 (3) 0.068 (4) 0.006 (3) −0.004 (3) 0.003 (3)
C115 0.153 (7) 0.049 (3) 0.065 (4) 0.034 (4) −0.001 (4) −0.002 (3)
C116 0.104 (5) 0.051 (3) 0.043 (3) 0.014 (3) 0.010 (3) 0.006 (2)

Geometric parameters (Å, °)

Cl11—C113 1.737 (5) C212—H212 0.9299
Cl31—C313 1.730 (5) C39—C38 1.395 (6)
Cl21—C213 1.728 (5) C18—C17 1.356 (7)
O12—C11 1.375 (5) C18—H18 0.9300
O12—C12 1.384 (5) C310—H310A 0.9700
C34—C35 1.398 (6) C310—H310B 0.9700
C34—C39 1.398 (6) C33—H33 0.9300
C34—C33 1.439 (6) C211—C216 1.374 (7)
O32—C31 1.377 (5) C211—C210 1.499 (7)
O32—C32 1.378 (5) C17—C16 1.382 (8)
O22—C21 1.374 (6) C17—H17 0.9299
O22—C22 1.394 (5) C38—C37 1.369 (7)
C14—C15 1.395 (6) C38—H38 0.9300
C14—C19 1.398 (6) C312—C313 1.377 (6)
C14—C13 1.432 (6) C312—H312 0.9300
C23—C22 1.311 (6) C313—C314 1.365 (7)
C23—C24 1.422 (6) C111—C116 1.366 (7)
C23—H23 0.9299 C26—C25 1.367 (7)
C19—C18 1.394 (6) C26—C27 1.375 (8)
C19—C11 1.451 (6) C26—H26 0.9301
C11—O11 1.197 (5) C15—C16 1.381 (7)
O31—C31 1.199 (5) C15—H15 0.9300
C31—C39 1.452 (6) C210—H210A 0.9700
C29—C28 1.396 (7) C210—H210B 0.9701
C29—C24 1.406 (6) C214—C213 1.360 (7)
C29—C21 1.440 (7) C214—C215 1.371 (8)
C35—C36 1.368 (7) C214—H214 0.9301
C35—H35 0.9300 C316—C315 1.379 (8)
C24—C25 1.391 (7) C316—H316 0.9300
O21—C21 1.211 (5) C36—C37 1.378 (7)
C110—C12 1.498 (6) C36—H36 0.9300
C110—C111 1.506 (6) C114—C115 1.383 (8)
C110—H110A 0.9700 C114—H114 0.9300
C110—H110B 0.9699 C25—H25 0.9300
C32—C33 1.313 (6) C27—C28 1.361 (8)
C32—C310 1.503 (6) C27—H27 0.9299
C311—C312 1.379 (6) C37—H37 0.9301
C311—C316 1.383 (7) C315—C314 1.364 (8)
C311—C310 1.502 (6) C315—H315 0.9299
C13—C12 1.315 (6) C216—C215 1.383 (8)
C13—H13 0.9301 C216—H216 0.9300
C22—C210 1.500 (7) C314—H314 0.9300
C113—C114 1.346 (7) C16—H16 0.9300
C113—C112 1.372 (6) C28—H28 0.9300
C112—C111 1.375 (7) C215—H215 0.9301
C112—H112 0.9301 C115—C116 1.379 (8)
C212—C213 1.378 (7) C115—H115 0.9299
C212—C211 1.388 (7) C116—H116 0.9301
C11—O12—C12 122.6 (3) C216—C211—C212 119.0 (4)
C35—C34—C39 118.9 (4) C216—C211—C210 120.8 (5)
C35—C34—C33 123.0 (4) C212—C211—C210 120.2 (5)
C39—C34—C33 118.0 (4) C18—C17—C16 120.0 (5)
C31—O32—C32 122.6 (3) C18—C17—H17 119.9
C21—O22—C22 122.0 (4) C16—C17—H17 120.1
C15—C14—C19 118.3 (4) C37—C38—C39 119.5 (4)
C15—C14—C13 122.7 (4) C37—C38—H38 120.3
C19—C14—C13 119.0 (4) C39—C38—H38 120.2
C22—C23—C24 121.3 (4) C313—C312—C311 119.9 (4)
C22—C23—H23 119.3 C313—C312—H312 120.1
C24—C23—H23 119.4 C311—C312—H312 120.0
C18—C19—C14 120.6 (4) C314—C313—C312 121.6 (5)
C18—C19—C11 120.0 (4) C314—C313—Cl31 118.7 (4)
C14—C19—C11 119.4 (4) C312—C313—Cl31 119.7 (4)
O11—C11—O12 116.5 (4) C116—C111—C112 118.1 (5)
O11—C11—C19 126.5 (4) C116—C111—C110 120.6 (5)
O12—C11—C19 117.0 (4) C112—C111—C110 121.4 (4)
O31—C31—O32 116.6 (4) C25—C26—C27 120.9 (5)
O31—C31—C39 126.7 (4) C25—C26—H26 119.7
O32—C31—C39 116.6 (3) C27—C26—H26 119.4
C28—C29—C24 120.2 (4) C16—C15—C14 120.0 (5)
C28—C29—C21 120.3 (4) C16—C15—H15 120.0
C24—C29—C21 119.4 (4) C14—C15—H15 120.0
C36—C35—C34 119.7 (4) C211—C210—C22 112.5 (4)
C36—C35—H35 120.2 C211—C210—H210A 109.4
C34—C35—H35 120.1 C22—C210—H210A 109.3
C25—C24—C29 118.0 (4) C211—C210—H210B 108.9
C25—C24—C23 123.3 (4) C22—C210—H210B 108.8
C29—C24—C23 118.7 (4) H210A—C210—H210B 107.9
C12—C110—C111 112.5 (4) C213—C214—C215 118.8 (5)
C12—C110—H110A 108.9 C213—C214—H214 120.7
C111—C110—H110A 109.0 C215—C214—H214 120.5
C12—C110—H110B 109.3 C315—C316—C311 120.4 (5)
C111—C110—H110B 109.3 C315—C316—H316 119.9
H110A—C110—H110B 107.8 C311—C316—H316 119.7
C33—C32—O32 121.5 (4) C35—C36—C37 121.2 (5)
C33—C32—C310 129.2 (4) C35—C36—H36 119.3
O32—C32—C310 109.3 (4) C37—C36—H36 119.5
C312—C311—C316 118.5 (4) C113—C114—C115 118.1 (5)
C312—C311—C310 120.7 (4) C113—C114—H114 120.9
C316—C311—C310 120.8 (4) C115—C114—H114 121.0
C12—C13—C14 120.7 (4) C26—C25—C24 120.7 (5)
C12—C13—H13 119.6 C26—C25—H25 119.6
C14—C13—H13 119.6 C24—C25—H25 119.7
C23—C22—O22 120.9 (4) C214—C213—C212 121.9 (5)
C23—C22—C210 129.5 (4) C214—C213—Cl21 118.3 (4)
O22—C22—C210 109.6 (4) C212—C213—Cl21 119.8 (4)
O21—C21—O22 115.7 (5) C28—C27—C26 120.3 (5)
O21—C21—C29 126.7 (5) C28—C27—H27 119.8
O22—C21—C29 117.6 (4) C26—C27—H27 120.0
C114—C113—C112 121.4 (5) C38—C37—C36 120.4 (4)
C114—C113—Cl11 118.4 (4) C38—C37—H37 119.8
C112—C113—Cl11 120.2 (4) C36—C37—H37 119.8
C113—C112—C111 121.1 (4) C314—C315—C316 120.9 (5)
C113—C112—H112 119.5 C314—C315—H315 119.5
C111—C112—H112 119.4 C316—C315—H315 119.6
C213—C212—C211 119.3 (5) C211—C216—C215 120.5 (5)
C213—C212—H212 120.4 C211—C216—H216 119.7
C211—C212—H212 120.3 C215—C216—H216 119.8
C13—C12—O12 121.1 (4) C315—C314—C313 118.6 (5)
C13—C12—C110 129.7 (4) C315—C314—H314 120.9
O12—C12—C110 109.2 (4) C313—C314—H314 120.4
C38—C39—C34 120.3 (4) C15—C16—C17 120.8 (5)
C38—C39—C31 119.4 (4) C15—C16—H16 119.5
C34—C39—C31 120.3 (4) C17—C16—H16 119.6
C17—C18—C19 120.2 (5) C27—C28—C29 119.9 (5)
C17—C18—H18 119.8 C27—C28—H28 120.1
C19—C18—H18 120.0 C29—C28—H28 120.0
C311—C310—C32 113.3 (4) C214—C215—C216 120.5 (5)
C311—C310—H310A 109.2 C214—C215—H215 119.9
C32—C310—H310A 109.0 C216—C215—H215 119.6
C311—C310—H310B 108.8 C116—C115—C114 120.9 (5)
C32—C310—H310B 108.6 C116—C115—H115 119.8
H310A—C310—H310B 107.7 C114—C115—H115 119.4
C32—C33—C34 121.0 (4) C111—C116—C115 120.5 (5)
C32—C33—H33 119.5 C111—C116—H116 119.9
C34—C33—H33 119.5 C115—C116—H116 119.7

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C216—H216···O11 0.93 2.56 3.437 (6) 158.
C116—H116···O21 0.93 2.58 3.396 (6) 147.
C26—H26···O22i 0.93 2.45 3.339 (7) 161.
C36—H36···O32i 0.93 2.52 3.409 (6) 160.

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2245).

References

  1. Abid, O., Rama, N. H., Qadeer, G., Khan, G. S. & Lu, X.-M. (2006). Acta Cryst.E62, o2895–o2896.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  4. Barry, R. D. (1964). Chem. Rev.64, 239–241.
  5. Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.
  6. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Powers, J. C., Asgian, J. L., Ekici, D. & James, K. E. (2002). Chem. Rev.102, 4639–4643. [DOI] [PubMed]
  9. Rossi, R., Carpita, A., Bellina, F., Stabile, P. & Mannina, L. (2003). Tetrahedron, 59, 2067–2081.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  12. Sturtz, G., Meepagala, K. & Wedge, D. (2002). J. Agric. Food Chem.50, 6979–6984. [DOI] [PubMed]
  13. Thomas, L. & Jens, B. J. (1999). Nat. Prod.62, 1182–1187.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030274/rz2245sup1.cif

e-64-o2018-sup1.cif (27.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030274/rz2245Isup2.hkl

e-64-o2018-Isup2.hkl (428.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES