Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 13;64(Pt 10):o1920. doi: 10.1107/S160053680802864X

3-(4-Methoxy­phen­yl)-1-(2-pyrrol­yl)prop-2-en-1-one

Dong-Qing Li a,*
PMCID: PMC2959486  PMID: 21201128

Abstract

The title mol­ecule, C14H13NO2, is almost flat with a dihedral angle of 8.0 (1)° between the pyrrole and benzene rings. The central C3O ketone unit has an s-cis conformation and is also coplanar with a torsion angle of −0.6 (3) °. An intra­molecular C—H⋯O hydrogen bond generates an S(5) ring motif. In addition, the meth­oxy group is coplanar with the attached benzene ring. In the crystal structure, neighboring mol­ecules are paired through N—H⋯O hydrogen bonds into centrosymmetric dimers with an R 2 2(10) motif.

Related literature

For the pharmaceutical and biological properties of chalcones, see: Lin et al. (2002); Modzelewska et al. (2006); Opletalova (2000); Opletalova & Sedivy (1999); Sogawa et al. (1994). For chalcones as non-linear optical materials, see: Agrinskaya et al. (1999); Indira et al. (2002). For related structures, see: Bukhari et al. (2008); Fun et al. (2008); Gong, et al. (2008).graphic file with name e-64-o1920-scheme1.jpg

Experimental

Crystal data

  • C14H13NO2

  • M r = 227.25

  • Monoclinic, Inline graphic

  • a = 5.0815 (7) Å

  • b = 17.172 (3) Å

  • c = 13.973 (2) Å

  • β = 97.878 (3)°

  • V = 1207.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.40 × 0.24 × 0.20 mm

Data collection

  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.967, T max = 0.988

  • 5842 measured reflections

  • 2369 independent reflections

  • 1809 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.124

  • S = 1.05

  • 2369 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680802864X/cs2091sup1.cif

e-64-o1920-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802864X/cs2091Isup2.hkl

e-64-o1920-Isup2.hkl (116.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1 0.93 2.52 2.838 (2) 100
N1—H1⋯O1i 0.86 2.03 2.8314 (17) 155

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Yulin Normal University for supporting this study.

supplementary crystallographic information

Comment

Chalcone derivatives have recently attracted extensive interest due to possessing a wide variety of pharmaceutical (Lin et al., 2002; Modzelewska et al., 2006; Sogawa et al., 1994) and biological properties (Opletalova, 2000; Opletalova & Sedivy, 1999). Some substituted chalcones also exhibit the potential applications as non-linear optical materials (Agrinskaya et al., 1999; Indira et al., 2002). Considering the importance of these types of compounds, a new chalcone compound was synthesized and its crystal structure is reported here.

The molecular structure of the title molecule (Fig. 1) is almost planar as indicated by a dihedral angle of 8.0 (1) ° between the pyrrole and benzene rings. The central O1/C5/C6/C7 ketone motif exhibits an s-cis conformation as usual in other related chalcone derivatives (Bukhari et al., 2008; Fun et al., 2008; Gong, et al., 2008;) and also coplanar with a torsion angle of -0.6 (3) °, meanwhile, O1 atom acts as an acceptor and is involved in an intramolecular C—H···O hydrogen bond (Table 1) to generate an S(5) ring motif. In the crystal packing, the compound can be stabilized by intermolecular N—H···O hydrogen bonds with –NH groups as donors to form centrosymmetric dimers with an R22(10) motif as shown in Fig. 2.

Experimental

The title compound was synthesized by the condensation of 2-acetylpyrrole (1.09 g, 10.0 mmol) and 4-methoxybenzaldehyde (1.06 g, 5.0 mmol) in methanol (30 ml) and ammonia (25%, 25 ml) in the presence of sodium hydroxide (0.56 g, 10 mmol). After refluxed at 358 K for 8 h, the contents of the flask were cooled to give a yellow crude precipitate which was separated by filtration, washed with water and iced ethanol. Recrystallization from ethanol afforded yellow prism-like crystals. Yield: 0.85 g (74.8%).

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic and ethylene; 0.96 Å, Uiso= 1.5Ueq (C) for CH3 atoms, and d(N—H) = 0.86 Å, Uiso=1.2Ueq (N) for pyrrole nitrogen atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level and H atoms as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Packing diagram of the title structure showing the N—H···.O hydrogen bonding interactions.

Crystal data

C14H13NO2 F(000) = 480
Mr = 227.25 Dx = 1.250 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1716 reflections
a = 5.0815 (7) Å θ = 2.4–25.8°
b = 17.172 (3) Å µ = 0.08 mm1
c = 13.973 (2) Å T = 293 K
β = 97.878 (3)° Prism, yellow
V = 1207.8 (3) Å3 0.40 × 0.24 × 0.20 mm
Z = 4

Data collection

Bruker APEX area-detector diffractometer 2369 independent reflections
Radiation source: fine-focus sealed tube 1809 reflections with I > 2σ(I)
graphite Rint = 0.020
φ and ω scans θmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −6→5
Tmin = 0.967, Tmax = 0.988 k = −20→21
5842 measured reflections l = −14→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.1497P] where P = (Fo2 + 2Fc2)/3
2369 reflections (Δ/σ)max < 0.001
155 parameters Δρmax = 0.13 e Å3
0 restraints Δρmin = −0.13 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 −0.2188 (3) 0.56328 (8) 0.38761 (9) 0.0567 (4)
H1 −0.1976 0.5437 0.4448 0.068*
O1 0.1957 (3) 0.45435 (7) 0.40994 (8) 0.0707 (4)
O2 0.9171 (3) 0.29580 (8) −0.06480 (9) 0.0769 (4)
C1 −0.0745 (3) 0.54326 (9) 0.31541 (10) 0.0520 (4)
C2 −0.1690 (4) 0.58892 (10) 0.23690 (12) 0.0634 (5)
H2 −0.1082 0.5885 0.1771 0.076*
C3 −0.3705 (4) 0.63554 (11) 0.26280 (13) 0.0707 (5)
H3 −0.4688 0.6721 0.2238 0.085*
C4 −0.3978 (3) 0.61792 (11) 0.35599 (12) 0.0634 (5)
H4 −0.5202 0.6401 0.3916 0.076*
C5 0.1294 (3) 0.48406 (9) 0.32984 (11) 0.0535 (4)
C6 0.2491 (3) 0.45958 (10) 0.24510 (11) 0.0570 (4)
H6 0.1913 0.4834 0.1862 0.068*
C7 0.4347 (3) 0.40549 (10) 0.24796 (11) 0.0556 (4)
H7 0.4909 0.3835 0.3081 0.067*
C8 0.5616 (3) 0.37631 (9) 0.16757 (11) 0.0517 (4)
C9 0.7403 (3) 0.31532 (10) 0.17995 (11) 0.0578 (4)
H9 0.7789 0.2930 0.2409 0.069*
C10 0.8645 (3) 0.28594 (10) 0.10527 (12) 0.0586 (4)
H10 0.9827 0.2445 0.1160 0.070*
C11 0.8105 (3) 0.31894 (10) 0.01503 (11) 0.0563 (4)
C12 0.6337 (4) 0.38052 (11) 0.00062 (12) 0.0714 (5)
H12 0.5978 0.4033 −0.0602 0.086*
C13 0.5110 (4) 0.40830 (11) 0.07518 (12) 0.0669 (5)
H13 0.3915 0.4494 0.0639 0.080*
C14 1.0982 (4) 0.23244 (12) −0.05485 (15) 0.0873 (6)
H14A 1.2445 0.2445 −0.0060 0.131*
H14B 1.1631 0.2235 −0.1153 0.131*
H14C 1.0094 0.1866 −0.0365 0.131*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0611 (8) 0.0626 (9) 0.0479 (7) −0.0046 (7) 0.0129 (6) −0.0043 (6)
O1 0.0880 (9) 0.0760 (8) 0.0520 (7) 0.0121 (7) 0.0233 (6) 0.0115 (6)
O2 0.0977 (9) 0.0780 (9) 0.0577 (7) 0.0310 (7) 0.0207 (7) 0.0018 (6)
C1 0.0533 (9) 0.0579 (10) 0.0459 (8) −0.0089 (7) 0.0107 (7) −0.0036 (7)
C2 0.0698 (11) 0.0717 (12) 0.0499 (9) 0.0006 (9) 0.0120 (8) 0.0007 (8)
C3 0.0771 (12) 0.0731 (12) 0.0605 (11) 0.0098 (10) 0.0042 (9) 0.0001 (9)
C4 0.0606 (10) 0.0670 (11) 0.0630 (10) 0.0017 (9) 0.0098 (8) −0.0132 (9)
C5 0.0581 (9) 0.0570 (10) 0.0468 (8) −0.0110 (8) 0.0120 (7) 0.0004 (7)
C6 0.0610 (10) 0.0631 (10) 0.0480 (8) −0.0034 (8) 0.0112 (7) 0.0020 (7)
C7 0.0607 (10) 0.0594 (10) 0.0473 (8) −0.0088 (8) 0.0097 (7) 0.0029 (7)
C8 0.0562 (9) 0.0501 (9) 0.0492 (8) −0.0053 (7) 0.0084 (7) 0.0006 (7)
C9 0.0609 (10) 0.0617 (11) 0.0499 (9) 0.0015 (8) 0.0049 (8) 0.0112 (7)
C10 0.0583 (10) 0.0567 (10) 0.0604 (10) 0.0089 (8) 0.0062 (8) 0.0056 (8)
C11 0.0636 (10) 0.0549 (10) 0.0507 (9) 0.0046 (8) 0.0096 (8) −0.0014 (7)
C12 0.0972 (14) 0.0701 (12) 0.0473 (9) 0.0254 (11) 0.0115 (9) 0.0082 (8)
C13 0.0855 (13) 0.0608 (11) 0.0553 (10) 0.0232 (9) 0.0137 (9) 0.0050 (8)
C14 0.1013 (15) 0.0851 (14) 0.0779 (13) 0.0345 (13) 0.0212 (11) −0.0047 (11)

Geometric parameters (Å, °)

N1—C4 1.339 (2) C7—C8 1.459 (2)
N1—C1 1.3699 (19) C7—H7 0.9300
N1—H1 0.8600 C8—C9 1.382 (2)
O1—C5 1.2342 (18) C8—C13 1.394 (2)
O2—C11 1.3644 (19) C9—C10 1.386 (2)
O2—C14 1.419 (2) C9—H9 0.9300
C1—C2 1.380 (2) C10—C11 1.375 (2)
C1—C5 1.446 (2) C10—H10 0.9300
C2—C3 1.386 (2) C11—C12 1.384 (2)
C2—H2 0.9300 C12—C13 1.371 (2)
C3—C4 1.362 (2) C12—H12 0.9300
C3—H3 0.9300 C13—H13 0.9300
C4—H4 0.9300 C14—H14A 0.9600
C5—C6 1.465 (2) C14—H14B 0.9600
C6—C7 1.320 (2) C14—H14C 0.9600
C6—H6 0.9300
C4—N1—C1 109.93 (14) C9—C8—C13 116.70 (15)
C4—N1—H1 125.0 C9—C8—C7 121.10 (14)
C1—N1—H1 125.0 C13—C8—C7 122.20 (15)
C11—O2—C14 117.91 (14) C8—C9—C10 122.74 (15)
N1—C1—C2 106.24 (15) C8—C9—H9 118.6
N1—C1—C5 121.30 (14) C10—C9—H9 118.6
C2—C1—C5 132.46 (15) C11—C10—C9 119.07 (15)
C1—C2—C3 108.04 (15) C11—C10—H10 120.5
C1—C2—H2 126.0 C9—C10—H10 120.5
C3—C2—H2 126.0 O2—C11—C10 125.29 (15)
C4—C3—C2 107.26 (17) O2—C11—C12 115.23 (14)
C4—C3—H3 126.4 C10—C11—C12 119.48 (15)
C2—C3—H3 126.4 C13—C12—C11 120.59 (16)
N1—C4—C3 108.52 (15) C13—C12—H12 119.7
N1—C4—H4 125.7 C11—C12—H12 119.7
C3—C4—H4 125.7 C12—C13—C8 121.42 (16)
O1—C5—C1 121.24 (14) C12—C13—H13 119.3
O1—C5—C6 121.48 (16) C8—C13—H13 119.3
C1—C5—C6 117.27 (14) O2—C14—H14A 109.5
C7—C6—C5 123.47 (15) O2—C14—H14B 109.5
C7—C6—H6 118.3 H14A—C14—H14B 109.5
C5—C6—H6 118.3 O2—C14—H14C 109.5
C6—C7—C8 127.43 (15) H14A—C14—H14C 109.5
C6—C7—H7 116.3 H14B—C14—H14C 109.5
C8—C7—H7 116.3
C4—N1—C1—C2 0.86 (18) C6—C7—C8—C9 −175.31 (17)
C4—N1—C1—C5 −178.71 (14) C6—C7—C8—C13 5.0 (3)
N1—C1—C2—C3 −0.38 (19) C13—C8—C9—C10 −0.4 (3)
C5—C1—C2—C3 179.11 (17) C7—C8—C9—C10 179.89 (15)
C1—C2—C3—C4 −0.2 (2) C8—C9—C10—C11 0.6 (3)
C1—N1—C4—C3 −1.01 (19) C14—O2—C11—C10 0.2 (3)
C2—C3—C4—N1 0.7 (2) C14—O2—C11—C12 −179.46 (18)
N1—C1—C5—O1 −6.2 (2) C9—C10—C11—O2 −179.72 (16)
C2—C1—C5—O1 174.32 (17) C9—C10—C11—C12 −0.1 (3)
N1—C1—C5—C6 172.35 (14) O2—C11—C12—C13 179.16 (17)
C2—C1—C5—C6 −7.1 (3) C10—C11—C12—C13 −0.5 (3)
O1—C5—C6—C7 −0.6 (3) C11—C12—C13—C8 0.6 (3)
C1—C5—C6—C7 −179.16 (15) C9—C8—C13—C12 −0.2 (3)
C5—C6—C7—C8 178.75 (15) C7—C8—C13—C12 179.49 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7···O1 0.93 2.52 2.838 (2) 100.
N1—H1···O1i 0.86 2.03 2.8314 (17) 155.

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CS2091).

References

  1. Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.
  2. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bukhari, M. H., Siddiqui, H. L., Tahir, M. N., Chaudhary, M. A. & Iqbal, A. (2008). Acta Cryst. E64, o867–o868. [DOI] [PMC free article] [PubMed]
  4. Fun, H.-K., Chantrapromma, S., Patil, P. S., Karthikeyan, M. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o956–o957. [DOI] [PMC free article] [PubMed]
  5. Gong, Z.-Q., Liu, G.-S. & Xia, H.-Y. (2008). Acta Cryst. E64, o151. [DOI] [PMC free article] [PubMed]
  6. Indira, J., Prakash Karat, P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.
  7. Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem.10, 2795–2802. [DOI] [PubMed]
  8. Modzelewska, A., Catherine Petit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). Bioorg. Med. Chem.14, 3491–3495. [DOI] [PubMed]
  9. Opletalova, V. (2000). Ceska Slov. Farm.49, 278–284. [PubMed]
  10. Opletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm.48, 252–255. [PubMed]
  11. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sogawa, S., Nihro, Y., Ueda, H., Miki, T., Matsumoto, H. & Satoh, T. (1994). Biol. Pharm. Bull.17, 251–256. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680802864X/cs2091sup1.cif

e-64-o1920-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680802864X/cs2091Isup2.hkl

e-64-o1920-Isup2.hkl (116.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES