Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Sep 6;64(Pt 10):m1221. doi: 10.1107/S1600536808027116

Bis(2,6-dimethyl­phenyl isocyanide-κC)gold(I) tetra­fluorido­borate

Timi P Singa a, Antonio G DiPasquale a, Arnold L Rheingold a, Clifford P Kubiak a,*
PMCID: PMC2959487  PMID: 21200982

Abstract

In the title compound, [Au(C9H9N)2]BF4, the AuI cation adopts an almost linear AuC2 geometry. The cation is bowed due to crystal packing effects, and the dihedral angle between the xylyl rings is 52.3 (7)°.

Related literature

For related literature, see: Balch & Parks (1973, 1974); Bonati & Minghetti (1973); Schmidbaur et al. (1997, 2002).graphic file with name e-64-m1221-scheme1.jpg

Experimental

Crystal data

  • [Au(C9H9N)2]BF4

  • M r = 546.15

  • Monoclinic, Inline graphic

  • a = 13.1930 (15) Å

  • b = 10.7840 (13) Å

  • c = 13.6260 (15) Å

  • β = 105.034 (2)°

  • V = 1872.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.90 mm−1

  • T = 208 (2) K

  • 0.20 × 0.12 × 0.07 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.301, T max = 0.608 (expected range = 0.285–0.575)

  • 18352 measured reflections

  • 3302 independent reflections

  • 3011 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.174

  • S = 1.10

  • 3302 reflections

  • 241 parameters

  • H-atom parameters constrained

  • Δρmax = 2.19 e Å−3

  • Δρmin = −1.01 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808027116/hb2785sup1.cif

e-64-m1221-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027116/hb2785Isup2.hkl

e-64-m1221-Isup2.hkl (162KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Au1—C1 2.068 (9)
Au1—C10 2.035 (8)

Acknowledgments

This work was supported by funding from the NSF, and conducted at the University of California, San Diego.

supplementary crystallographic information

Comment

Gold bis-isocyanide complexes of the type (RNC)2AuI have been studied as precursors to the related carbene complexes of gold (Balch & Parks, 1973; Bonati & Minghetti, 1973; Balch & Parks, 1974). These early examples were characterized by NMR, IR, elemental analysis, and conductivity studies. More recently bis(tert-butyl isocyanide)gold(I) (Schmidbaur et al., 2002) and various aromatic isocyanide complexes of gold (Schmidbaur et al., 1997) have been studied by x-ray crystallography. Here, the title compound, (I), has been structurally characterised (Fig. 1).

The structure of the cation in (I) is nearly linear, with the C—Au—C bond angle at 171.2 (7)°. The bow in the structure is due to the crystal packing, and has been observed in bis(isonitrile) gold cations containing methyl, tert-butyl, phenyl, or mesistyl groups attached to the isonitrile groups (Schmidbaur et al., 1997). The Au—C distances in (I) are given in Table 1. Both these bond lengths are slightly longer than the gold-carbon bond distances given for the phenyl and mesityl analogues of (I) (Schmidbaur et al., 1997). The bond length between C1—N1 is 1.124 (11)Å, and the length between C10 and N2 is 1.154 (11)Å. These length are, again, slightly longer than those reported for the phenyl and mesityl analogues, but the difference between the C1—N1 bond and the C10—N2 bond in (I) is also present in the isocyanide complexes studied (Schmidbauret al., 1997, Schmidbaur et al., 2002). The slightly longer bond lengths in (I) could be due to decreased electron density in the C1—N1 and C10—N2 bonds. That electron density would be shifted toward the xylyl ring through resonance stabilization. The xylyl groups of the cation in (I) define planes that are orientated at an angle of 52.3 (7)°.

Experimental

HAuCl4.H2O (Acros Organics, 0.5 g) was dissolved in ethyl acetate resulting in a pale yellow solution. The dimethyl phenyl isocyanide (Aldrich, 0.5 g) was added following the complete dissolution of the HAuCl4.H2O. Upon addition, the solution immediately became cloudy and brown in color. Methanol was added drop-wise until the precipitate was dissolved. AgBF4 (Aldrich, 0.25 g) was added resulting in the product formation and precipitation of AgCl. The solvent was removed in vacuo and reddish-brown crystals were obtained (90% yield, crude product). The solid was suspended in diethyl ether and allowed to stir for an hour. The solid was filtered, then dissolved in dichloromethane and subsequent recrystallisations yielded pure white powder (12% yield). Colourless blocks of (I) were obtained through the slow diffusion of diethyl ether into a dichloromethane solution. IR (KBr) \vCN 2224 cm-1; 1H NMR, acetone-d6, CH3 singlet 2.51ppm, Ar—H mult 7.34ppm; Molecular ion peak, ESI positive mode 459.06 m/z

Refinement

The H atoms were geometrically placed (C—H = 0.94-0.97Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing 50% displacement ellipsoids for the non-hydrogen atoms.

Crystal data

[Au(C9H9N)2]BF4 F(000) = 1040
Mr = 546.15 Dx = 1.938 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6164 reflections
a = 13.1930 (15) Å θ = 2.5–28.2°
b = 10.7840 (13) Å µ = 7.90 mm1
c = 13.6260 (15) Å T = 208 K
β = 105.034 (2)° Block, colorless
V = 1872.3 (4) Å3 0.20 × 0.12 × 0.07 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 3302 independent reflections
Radiation source: fine-focus sealed tube 3011 reflections with I > 2σ(I)
graphite Rint = 0.028
ω scans θmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −15→15
Tmin = 0.301, Tmax = 0.608 k = −12→12
18352 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1125P)2 + 10.5769P] where P = (Fo2 + 2Fc2)/3
3302 reflections (Δ/σ)max = 0.001
241 parameters Δρmax = 2.19 e Å3
0 restraints Δρmin = −1.02 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9280 (7) 0.0807 (7) 0.3856 (6) 0.0336 (17)
C2 0.8668 (5) 0.1409 (6) 0.5405 (5) 0.0222 (13)
C3 0.7920 (6) 0.0703 (7) 0.5708 (7) 0.0355 (18)
C4 0.7599 (6) 0.1149 (9) 0.6546 (6) 0.043 (2)
H4 0.7089 0.0706 0.6773 0.051*
C5 0.8002 (6) 0.2200 (9) 0.7038 (6) 0.044 (2)
H5 0.7760 0.2480 0.7590 0.053*
C6 0.8765 (6) 0.2866 (8) 0.6739 (6) 0.0399 (18)
H6 0.9052 0.3579 0.7104 0.048*
C7 0.9112 (5) 0.2494 (7) 0.5905 (5) 0.0285 (14)
C8 0.7478 (9) −0.0460 (10) 0.5127 (11) 0.067 (3)
H8A 0.7995 −0.1119 0.5291 0.101*
H8B 0.7308 −0.0293 0.4403 0.101*
H8C 0.6848 −0.0712 0.5315 0.101*
C9 0.9954 (7) 0.3209 (9) 0.5590 (7) 0.049 (2)
H9A 1.0151 0.3926 0.6028 0.073*
H9B 0.9692 0.3481 0.4891 0.073*
H9C 1.0562 0.2681 0.5647 0.073*
C10 1.0572 (6) 0.0646 (6) 0.1430 (6) 0.0292 (16)
C11 1.1341 (5) 0.1056 (7) −0.0065 (5) 0.0229 (13)
C12 1.2073 (5) 0.0216 (7) −0.0291 (6) 0.0288 (15)
C13 1.2437 (6) 0.0482 (8) −0.1132 (7) 0.0386 (19)
H13 1.2922 −0.0052 −0.1311 0.046*
C14 1.2092 (6) 0.1533 (8) −0.1714 (6) 0.0375 (17)
H14 1.2359 0.1710 −0.2274 0.045*
C15 1.1366 (6) 0.2318 (7) −0.1482 (6) 0.0335 (16)
H15 1.1132 0.3012 −0.1896 0.040*
C16 1.0972 (5) 0.2104 (6) −0.0645 (5) 0.0268 (14)
C17 1.2444 (8) −0.0907 (9) 0.0365 (8) 0.050 (2)
H17A 1.1842 −0.1371 0.0449 0.075*
H17B 1.2867 −0.0642 0.1025 0.075*
H17C 1.2863 −0.1430 0.0043 0.075*
C18 1.0179 (6) 0.2961 (8) −0.0383 (6) 0.0393 (17)
H18A 1.0034 0.3644 −0.0863 0.059*
H18B 1.0456 0.3283 0.0299 0.059*
H18C 0.9535 0.2509 −0.0416 0.059*
B1 0.9656 (9) 0.3821 (9) 0.2329 (7) 0.044 (2)
N1 0.9001 (5) 0.1048 (6) 0.4545 (5) 0.0264 (12)
N2 1.0945 (5) 0.0817 (6) 0.0764 (5) 0.0270 (13)
F1 0.9014 (4) 0.2940 (4) 0.1733 (4) 0.0481 (12)
F2 1.0249 (6) 0.4422 (6) 0.1808 (6) 0.075 (2)
F3 0.9000 (8) 0.4761 (9) 0.2512 (10) 0.128 (4)
F4 1.0161 (12) 0.3331 (11) 0.3187 (7) 0.190 (8)
Au1 0.98971 (3) 0.06293 (4) 0.26147 (3) 0.0551 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.041 (4) 0.031 (4) 0.028 (4) −0.002 (3) 0.008 (3) 0.004 (3)
C2 0.018 (3) 0.032 (3) 0.016 (3) 0.000 (2) 0.004 (2) 0.003 (2)
C3 0.028 (4) 0.045 (5) 0.035 (4) −0.007 (3) 0.011 (3) 0.012 (3)
C4 0.019 (3) 0.074 (6) 0.040 (4) 0.009 (4) 0.017 (3) 0.028 (5)
C5 0.036 (4) 0.075 (6) 0.025 (4) 0.023 (4) 0.015 (3) 0.016 (4)
C6 0.044 (4) 0.048 (5) 0.026 (4) 0.006 (4) 0.007 (3) −0.006 (3)
C7 0.026 (3) 0.038 (4) 0.023 (3) −0.006 (3) 0.010 (3) 0.002 (3)
C8 0.063 (7) 0.061 (6) 0.083 (8) −0.039 (5) 0.029 (6) −0.014 (6)
C9 0.046 (5) 0.052 (5) 0.053 (5) −0.030 (4) 0.024 (4) −0.012 (4)
C10 0.022 (3) 0.035 (4) 0.030 (4) 0.005 (3) 0.006 (3) 0.000 (3)
C11 0.018 (3) 0.035 (3) 0.019 (3) −0.004 (3) 0.010 (2) −0.006 (3)
C12 0.020 (3) 0.036 (4) 0.031 (4) 0.006 (3) 0.007 (3) −0.001 (3)
C13 0.028 (4) 0.053 (5) 0.040 (5) 0.004 (3) 0.017 (3) −0.008 (4)
C14 0.032 (4) 0.057 (5) 0.028 (4) −0.004 (3) 0.016 (3) −0.001 (3)
C15 0.035 (4) 0.041 (4) 0.026 (3) −0.005 (3) 0.010 (3) 0.003 (3)
C16 0.021 (3) 0.032 (3) 0.027 (3) −0.001 (3) 0.006 (3) −0.006 (3)
C17 0.045 (5) 0.050 (5) 0.058 (6) 0.020 (4) 0.020 (4) 0.016 (4)
C18 0.039 (4) 0.044 (4) 0.038 (4) 0.010 (3) 0.015 (3) −0.003 (3)
B1 0.071 (6) 0.039 (5) 0.034 (5) −0.022 (5) 0.037 (5) −0.011 (4)
N1 0.031 (3) 0.026 (3) 0.023 (3) 0.000 (2) 0.009 (2) 0.002 (2)
N2 0.022 (3) 0.033 (3) 0.025 (3) −0.001 (2) 0.004 (3) −0.003 (2)
F1 0.052 (3) 0.035 (2) 0.047 (3) 0.000 (2) −0.006 (2) −0.006 (2)
F2 0.083 (5) 0.083 (5) 0.083 (5) −0.011 (3) 0.064 (4) 0.005 (3)
F3 0.130 (7) 0.099 (6) 0.200 (11) −0.054 (6) 0.125 (8) −0.093 (7)
F4 0.266 (14) 0.155 (9) 0.072 (6) −0.145 (10) −0.096 (8) 0.055 (6)
Au1 0.0669 (3) 0.0573 (3) 0.0455 (3) 0.00923 (16) 0.0225 (2) 0.00368 (15)

Geometric parameters (Å, °)

Au1—C1 2.068 (9) C11—N2 1.387 (10)
Au1—C10 2.035 (8) C11—C16 1.392 (10)
C1—N1 1.124 (11) C11—C12 1.414 (10)
C2—C3 1.391 (10) C12—C13 1.382 (12)
C2—C7 1.403 (10) C12—C17 1.510 (11)
C2—N1 1.409 (9) C13—C14 1.390 (12)
C3—C4 1.403 (13) C13—H13 0.9400
C3—C8 1.517 (12) C14—C15 1.375 (11)
C4—C5 1.353 (14) C14—H14 0.9400
C4—H4 0.9400 C15—C16 1.390 (10)
C5—C6 1.381 (13) C15—H15 0.9400
C5—H5 0.9400 C16—C18 1.507 (10)
C6—C7 1.391 (11) C17—H17A 0.9700
C6—H6 0.9400 C17—H17B 0.9700
C7—C9 1.503 (10) C17—H17C 0.9700
C8—H8A 0.9700 C18—H18A 0.9700
C8—H8B 0.9700 C18—H18B 0.9700
C8—H8C 0.9700 C18—H18C 0.9700
C9—H9A 0.9700 B1—F4 1.299 (14)
C9—H9B 0.9700 B1—F2 1.351 (11)
C9—H9C 0.9700 B1—F1 1.386 (11)
C10—N2 1.154 (11) B1—F3 1.397 (15)
N1—C1—Au1 171.2 (7) C13—C12—C17 121.9 (7)
C3—C2—C7 123.5 (7) C11—C12—C17 121.3 (7)
C3—C2—N1 119.6 (7) C12—C13—C14 120.6 (7)
C7—C2—N1 116.9 (6) C12—C13—H13 119.7
C2—C3—C4 116.2 (7) C14—C13—H13 119.7
C2—C3—C8 120.3 (8) C15—C14—C13 121.0 (7)
C4—C3—C8 123.5 (8) C15—C14—H14 119.5
C5—C4—C3 121.8 (7) C13—C14—H14 119.5
C5—C4—H4 119.1 C14—C15—C16 121.2 (7)
C3—C4—H4 119.1 C14—C15—H15 119.4
C4—C5—C6 120.8 (7) C16—C15—H15 119.4
C4—C5—H5 119.6 C15—C16—C11 116.7 (6)
C6—C5—H5 119.6 C15—C16—C18 121.6 (7)
C5—C6—C7 120.7 (8) C11—C16—C18 121.7 (6)
C5—C6—H6 119.6 C12—C17—H17A 109.5
C7—C6—H6 119.6 C12—C17—H17B 109.5
C6—C7—C2 116.9 (6) H17A—C17—H17B 109.5
C6—C7—C9 120.6 (7) C12—C17—H17C 109.5
C2—C7—C9 122.4 (7) H17A—C17—H17C 109.5
C3—C8—H8A 109.5 H17B—C17—H17C 109.5
C3—C8—H8B 109.5 C16—C18—H18A 109.5
H8A—C8—H8B 109.5 C16—C18—H18B 109.5
C3—C8—H8C 109.5 H18A—C18—H18B 109.5
H8A—C8—H8C 109.5 C16—C18—H18C 109.5
H8B—C8—H8C 109.5 H18A—C18—H18C 109.5
C7—C9—H9A 109.5 H18B—C18—H18C 109.5
C7—C9—H9B 109.5 F4—B1—F2 115.9 (12)
H9A—C9—H9B 109.5 F4—B1—F1 110.0 (8)
C7—C9—H9C 109.5 F2—B1—F1 111.8 (8)
H9A—C9—H9C 109.5 F4—B1—F3 109.4 (12)
H9B—C9—H9C 109.5 F2—B1—F3 102.4 (8)
N2—C10—Au1 171.3 (6) F1—B1—F3 106.8 (9)
N2—C11—C16 117.5 (6) C1—N1—C2 177.2 (7)
N2—C11—C12 118.8 (6) C10—N2—C11 176.8 (7)
C16—C11—C12 123.7 (6) C10—Au1—C1 173.7 (3)
C13—C12—C11 116.8 (7)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2785).

References

  1. Balch, A. & Parks, J. E. (1973). J. Organomet. Chem.57, C103–C106.
  2. Balch, A. & Parks, J. E. (1974). J. Organomet. Chem.71, 453–463.
  3. Bonati, F. & Minghetti, G. (1973). Gazz. Chim. Ital.103, 373–386.
  4. Bruker (2003). SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2006). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst 38, 381–388.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  9. Schmidbaur, H., Angermaier, K., Bauer, A., Sladek, A. & Schneider, W. (1997). Z. Naturforsch.52, 53–56.
  10. Schmidbaur, H., Ehlich, H. & Schier, A. (2002). Z. Naturforsch. Teil B, 57, 890–894.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808027116/hb2785sup1.cif

e-64-m1221-sup1.cif (17.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808027116/hb2785Isup2.hkl

e-64-m1221-Isup2.hkl (162KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES