Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 31;64(Pt 11):o2215. doi: 10.1107/S160053680803465X

Dimethyl 2-nitro­terephthalate

Pei Zou a,*, Min-Hao Xie a, Shi-Neng Luo a, Ya-Ling Liu a, Yong-Jun He a
PMCID: PMC2959495  PMID: 21581072

Abstract

In the mol­ecule of the title compound, C10H9NO6, the two ester groups and the nitro group are inclined at 9.2 (2), 123.3 (6) and 135.2 (5)°, respectively to the mean plane of the benzene ring. In the crystal structure, mol­ecules are stacked along the a axis, without any π–π inter­actions. The stacked columns are linked together by non-classical intermolecular interactions of the type C—H⋯O.

Related literature

For the use of the title compound in the preparation of 2-amino-dimethyl-terephthalic acid, an inter­mediate for dyes, see: Niu et al. (2002). For related structures, see: Brisse & Pérez (1976); Huang & Liang (2007).graphic file with name e-64-o2215-scheme1.jpg

Experimental

Crystal data

  • C10H9NO6

  • M r = 239.18

  • Monoclinic, Inline graphic

  • a = 6.9080 (14) Å

  • b = 12.662 (3) Å

  • c = 12.231 (2) Å

  • β = 98.18 (3)°

  • V = 1058.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 (2) K

  • 0.30 × 0.30 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (CAD-4 Software; Enraf–Nonius, 1989) T min = 0.963, T max = 0.987

  • 2052 measured reflections

  • 1889 independent reflections

  • 1245 reflections with I > 2σ(I)

  • R int = 0.057

  • 3 standard reflections every 200 reflections intensity decay: 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.078

  • wR(F 2) = 0.201

  • S = 1.00

  • 1889 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803465X/pv2115sup1.cif

e-64-o2215-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803465X/pv2115Isup2.hkl

e-64-o2215-Isup2.hkl (93KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O2i 0.96 2.59 3.523 (7) 164
C4—H4A⋯O2ii 0.93 2.54 3.185 (5) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge financial support from Jiangsu Institute of Nuclear Medicine.

supplementary crystallographic information

Comment

The title compound, (I), is useful as a raw material for the preparation of 2-amino-dimethyl-terephthalic acid, which is used as an important intermediate for dyes (Niu et al., 2002). The structures of dimethyl terephthalate (Brisse & Pérez, 1976) and dimethyl 2,3-dihydroxyterephthalate (Huang & Liang, 2007) which are closely related to the title compound have already been reported. In this article, we report the crystal structure of (I). A view of the molecule of (I) is presented in Fig. 1. The bond lengths and angles are within expected ranges. The C1/O1/C2/O2, C10/O6/C9/O5 and O3/N/O4 planes form dihedral angles of 9.2 (2), 123.3 (6) and 135.2 (5)°, respectively, with the C3—C8 plane. In the crystal structure, the molecules are stacked along the a axis, without any π-π interactions. The stacked columns are linked together by non-classical intermolecular interactions of the type C—H···O (Table 1).

Experimental

A sample of commercial 2-nitro-dimethyl-terephthalic acid (Aldrich) was crystalized by slow evaporation of a solution in methanol.

Refinement

Positional parameters of all the H atoms bonded to C atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with HC(aryl) = 0.93 Å and Uiso(H) = 1.2Ueq(C) or with HC(methyl) = 0.96 Å and Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the molecule of (I) with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.

Crystal data

C10H9NO6 F(000) = 496
Mr = 239.18 Dx = 1.500 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 25 reflections
a = 6.9080 (14) Å θ = 10–13°
b = 12.662 (3) Å µ = 0.13 mm1
c = 12.231 (2) Å T = 293 K
β = 98.18 (3)° Block, colourless
V = 1058.9 (4) Å3 0.30 × 0.30 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1245 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.057
graphite θmax = 25.3°, θmin = 2.3°
ω/2θ scans h = −8→8
Absorption correction: ψ scan (CAD-4 Software; Enraf–Nonius,1989) k = 0→15
Tmin = 0.963, Tmax = 0.987 l = 0→14
2052 measured reflections 3 standard reflections every 200 reflections
1889 independent reflections intensity decay: 2%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.078 H-atom parameters constrained
wR(F2) = 0.201 w = 1/[σ2(Fo2) + (0.05P)2 + 3.5P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max < 0.001
1889 reflections Δρmax = 0.29 e Å3
156 parameters Δρmin = −0.31 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.053 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O6 0.0321 (5) 0.4552 (3) 0.8800 (3) 0.0576 (9)
O2 0.7697 (5) 0.0539 (2) 1.0189 (3) 0.0634 (10)
O1 0.8957 (5) 0.2101 (3) 1.0787 (3) 0.0584 (9)
O5 0.0234 (5) 0.3733 (3) 0.7173 (3) 0.0633 (10)
O4 0.1497 (6) 0.0806 (3) 0.7385 (3) 0.0755 (12)
N 0.1105 (6) 0.1519 (3) 0.8006 (3) 0.0545 (11)
C3 0.5871 (6) 0.2093 (3) 0.9698 (3) 0.0397 (10)
O3 −0.0550 (5) 0.1733 (3) 0.8156 (4) 0.0806 (13)
C2 0.7594 (7) 0.1483 (3) 1.0248 (4) 0.0445 (11)
C8 0.5802 (7) 0.3193 (3) 0.9806 (4) 0.0489 (11)
H8A 0.6838 0.3561 1.0201 0.059*
C6 0.2593 (6) 0.3208 (3) 0.8712 (3) 0.0412 (10)
C7 0.4154 (7) 0.3717 (3) 0.9309 (4) 0.0516 (12)
H7A 0.4098 0.4447 0.9382 0.062*
C9 0.0911 (7) 0.3822 (3) 0.8120 (4) 0.0470 (11)
C10 −0.1157 (8) 0.5271 (4) 0.8335 (5) 0.0629 (14)
H10A −0.1305 0.5819 0.8859 0.094*
H10B −0.2373 0.4901 0.8155 0.094*
H10C −0.0790 0.5579 0.7677 0.094*
C5 0.2728 (6) 0.2107 (3) 0.8613 (3) 0.0386 (10)
C4 0.4337 (7) 0.1556 (3) 0.9090 (4) 0.0465 (11)
H4A 0.4398 0.0827 0.9006 0.056*
C1 1.0681 (8) 0.1571 (5) 1.1324 (5) 0.0769 (17)
H1A 1.1662 0.2086 1.1583 0.115*
H1B 1.1174 0.1106 1.0808 0.115*
H1C 1.0357 0.1170 1.1939 0.115*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O6 0.073 (2) 0.0433 (18) 0.060 (2) 0.0163 (17) 0.0214 (17) −0.0090 (16)
O2 0.075 (2) 0.0335 (18) 0.087 (3) 0.0090 (17) 0.0289 (19) 0.0070 (17)
O1 0.062 (2) 0.0383 (18) 0.076 (2) 0.0080 (16) 0.0165 (18) 0.0019 (17)
O5 0.065 (2) 0.075 (3) 0.049 (2) 0.0151 (19) 0.0045 (17) −0.0057 (18)
O4 0.099 (3) 0.048 (2) 0.081 (3) −0.005 (2) 0.017 (2) −0.028 (2)
N 0.063 (3) 0.042 (2) 0.061 (3) −0.017 (2) 0.019 (2) −0.001 (2)
C3 0.051 (3) 0.029 (2) 0.044 (2) 0.0019 (19) 0.0248 (19) 0.0009 (18)
O3 0.052 (2) 0.083 (3) 0.113 (3) −0.017 (2) 0.036 (2) −0.010 (3)
C2 0.054 (3) 0.032 (2) 0.053 (3) 0.001 (2) 0.025 (2) 0.004 (2)
C8 0.064 (3) 0.027 (2) 0.058 (3) −0.002 (2) 0.015 (2) −0.005 (2)
C6 0.053 (3) 0.029 (2) 0.045 (2) 0.0025 (19) 0.020 (2) −0.0016 (19)
C7 0.071 (3) 0.023 (2) 0.061 (3) 0.006 (2) 0.010 (2) −0.004 (2)
C9 0.059 (3) 0.036 (2) 0.052 (3) −0.002 (2) 0.025 (2) −0.002 (2)
C10 0.068 (3) 0.052 (3) 0.071 (3) 0.018 (3) 0.021 (3) 0.002 (3)
C5 0.048 (2) 0.030 (2) 0.043 (2) 0.0010 (19) 0.0230 (19) −0.0007 (18)
C4 0.059 (3) 0.023 (2) 0.065 (3) −0.007 (2) 0.035 (2) −0.005 (2)
C1 0.076 (4) 0.059 (4) 0.099 (5) 0.016 (3) 0.026 (3) 0.006 (3)

Geometric parameters (Å, °)

O6—C9 1.345 (5) C8—H8A 0.9300
O6—C10 1.425 (6) C6—C7 1.373 (6)
O2—C2 1.200 (5) C6—C5 1.404 (6)
O1—C2 1.325 (5) C6—C9 1.497 (6)
O1—C1 1.442 (6) C7—H7A 0.9300
O5—C9 1.191 (5) C10—H10A 0.9600
O4—N 1.234 (5) C10—H10B 0.9600
N—O3 1.214 (5) C10—H10C 0.9600
N—C5 1.458 (6) C5—C4 1.371 (6)
C3—C4 1.383 (6) C4—H4A 0.9300
C3—C8 1.401 (6) C1—H1A 0.9600
C3—C2 1.496 (6) C1—H1B 0.9600
C8—C7 1.381 (6) C1—H1C 0.9600
C9—O6—C10 117.2 (4) O5—C9—C6 126.3 (4)
C2—O1—C1 115.7 (4) O6—C9—C6 109.9 (4)
O3—N—O4 123.5 (4) O6—C10—H10A 109.5
O3—N—C5 118.7 (4) O6—C10—H10B 109.5
O4—N—C5 117.8 (4) H10A—C10—H10B 109.5
C4—C3—C8 120.4 (4) O6—C10—H10C 109.5
C4—C3—C2 119.2 (4) H10A—C10—H10C 109.5
C8—C3—C2 120.5 (4) H10B—C10—H10C 109.5
O2—C2—O1 125.0 (4) C4—C5—C6 121.9 (4)
O2—C2—C3 122.5 (4) C4—C5—N 118.4 (4)
O1—C2—C3 112.5 (4) C6—C5—N 119.7 (4)
C7—C8—C3 118.3 (4) C5—C4—C3 119.4 (4)
C7—C8—H8A 120.9 C5—C4—H4A 120.3
C3—C8—H8A 120.9 C3—C4—H4A 120.3
C7—C6—C5 117.1 (4) O1—C1—H1A 109.5
C7—C6—C9 120.7 (4) O1—C1—H1B 109.5
C5—C6—C9 122.0 (4) H1A—C1—H1B 109.5
C6—C7—C8 123.0 (4) O1—C1—H1C 109.5
C6—C7—H7A 118.5 H1A—C1—H1C 109.5
C8—C7—H7A 118.5 H1B—C1—H1C 109.5
O5—C9—O6 123.7 (5)
C1—O1—C2—O2 0.6 (7) C7—C6—C9—O6 −48.0 (5)
C1—O1—C2—C3 −179.0 (4) C5—C6—C9—O6 137.2 (4)
C4—C3—C2—O2 −0.5 (6) C7—C6—C5—C4 0.1 (6)
C8—C3—C2—O2 178.9 (4) C9—C6—C5—C4 175.1 (4)
C4—C3—C2—O1 179.1 (4) C7—C6—C5—N 179.0 (4)
C8—C3—C2—O1 −1.4 (6) C9—C6—C5—N −6.1 (6)
C4—C3—C8—C7 1.3 (7) O3—N—C5—C4 135.0 (5)
C2—C3—C8—C7 −178.2 (4) O4—N—C5—C4 −43.2 (6)
C5—C6—C7—C8 −0.3 (7) O3—N—C5—C6 −43.9 (6)
C9—C6—C7—C8 −175.3 (4) O4—N—C5—C6 138.0 (4)
C3—C8—C7—C6 −0.4 (7) C6—C5—C4—C3 0.7 (6)
C10—O6—C9—O5 −1.9 (7) N—C5—C4—C3 −178.1 (4)
C10—O6—C9—C6 174.5 (4) C8—C3—C4—C5 −1.5 (6)
C7—C6—C9—O5 128.2 (5) C2—C3—C4—C5 178.0 (4)
C5—C6—C9—O5 −46.5 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1B···O2i 0.96 2.59 3.523 (7) 164
C4—H4A···O2ii 0.93 2.54 3.185 (5) 127

Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2115).

References

  1. Brisse, F. & Pérez, S. (1976). Acta Cryst. B32, 2110–2115.
  2. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. Huang, J.-Y. & Liang, H.-Z. (2007). Acta Cryst. E63, o3019–o3020.
  5. Niu, T. S., Niu, X. Y., Yang, G. S. & Hou, J. Q. (2002). Appl. Chem. Ind.34, 176–177.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803465X/pv2115sup1.cif

e-64-o2215-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803465X/pv2115Isup2.hkl

e-64-o2215-Isup2.hkl (93KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES