Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 18;64(Pt 11):o2138. doi: 10.1107/S160053680803359X

1-(4-Nitro­benzo­yl)-3-(4-nitro­phen­yl)­thio­urea acetone hemisolvate

Liang Xian a,*, Lujuan Cui a, Ming Cheng a
PMCID: PMC2959497  PMID: 21580998

Abstract

In the title compound, C14H10N4O5S·0.5C3H6O, the nitro­benzoyl and nitro­phenyl groups have trans and cis configurations, respectively, with respect to the thio­urea S atom. The mol­ecular conformation is stabilized by intra­molecular N—H⋯O and C—H⋯S hydrogen bonds. The acetone solvent mol­ecule possesses a crystallographically imposed twofold axis. In the crystal packing, thio­urea mol­ecules are linked by inter­molecular C—H⋯O hydrogen-bond inter­actions to form chains running parallel to the c axis. The chains are further bridged via N—H⋯O and C—H⋯O hydrogen bonds involving the acetone mol­ecules.

Related literature

For general background on the chemistry of thio­urea derivatives, see: Choi et al. (2008); Jones et al. (2008); Kushwaha et al. (2008); Su et al. (2006). For related structures, see: Su (2005, 2007). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-64-o2138-scheme1.jpg

Experimental

Crystal data

  • C14H10N4O5S·0.5C3H6O

  • M r = 375.36

  • Monoclinic, Inline graphic

  • a = 30.828 (14) Å

  • b = 7.534 (3) Å

  • c = 15.224 (7) Å

  • β = 107.262 (12)°

  • V = 3377 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 (2) K

  • 0.34 × 0.31 × 0.27 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.924, T max = 0.941

  • 9659 measured reflections

  • 3926 independent reflections

  • 2804 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.133

  • S = 1.05

  • 3926 reflections

  • 245 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680803359X/rz2253sup1.cif

e-64-o2138-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803359X/rz2253Isup2.hkl

e-64-o2138-Isup2.hkl (192.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯S1 0.93 2.79 3.235 (2) 111
N2—H2A⋯O3 0.90 (3) 1.88 (3) 2.659 (3) 144 (2)
C2—H2⋯O4i 0.93 2.48 3.394 (3) 167
C12—H12⋯O5ii 0.93 2.54 3.318 (3) 141
N3—H3A⋯O6 0.86 (2) 2.442 (19) 3.300 (2) 175 (2)
C13—H13⋯O6 0.93 2.59 3.207 (3) 124
C14—H14B⋯O5iii 0.96 2.56 3.446 (3) 154
C14—H14C⋯O4iv 0.96 2.52 3.476 (3) 175

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

Financial support of this work by the Foundation of Northwest University for Nationalities is acknowledged.

supplementary crystallographic information

Comment

Thiourea and its derivatives are broadly applied in anion recognition, nonlinear optics and catalysis, and display also high bioactivity and good coordination ability (Choi et al., 2008; Kushwaha et al., 2008; Jones et al. 2008; Su et al., 2006). As part of our research on thiourea coordination chemistry, we are interested in the study of the influence of noncovalent interactions, especially hydrogen bonds and π-π stacking interactions, on the coordination modes of benzoylthiourea with transition metal ions. In the present paper, the crystal structure of the title compound is reported.

In the molecule of the title compound (Fig. 1), the nitrobenzoyl and nitrophenyl groups have trans and cis configurations, respectively, with respect of the thiourea S atom. The dihedral angle formed by the two aromatic rings is 7.68 (6)°. The molecular conformation is stabilized by intramolecular N—H···O and C—H···S hydrogen bonds (Table 1) forming six-membered rings of graph set S(6) (Bernstein et al., 1995). This conformation is similar to that reported for N-(4-chlorophenyl)-N'-(4-nitrobenzoyl)urea (Su, 2005) and for N-(p-nitrobenzoyl)-N'-(p-chlorophenyl)thiourea (Su, 2007). The acetone solvent molecule has a crystallographically imposed twofold symmetry. In the crystal packing (Fig. 2), thiourea molecules are linked into chains running parallel to the c axis by intermolecular C—H···O hydrogen bonds (Table 1). These chains are further bridged via N—H···O and C—H···O hydrogen bonds (Table 1) involving the acetone molecules.

Experimental

All reagents and organic solvents were of analytical reagent grade and commercially available. p-Nitrobenzoyl chloride (1.86 g) was treated with ammonium thiocyanate (1.20 g) in CH2Cl2 under solid-liquid phase transfer catalysis conditions, using 3% polyethylene glycol-400 as catalyst, to give the corresponding benzoyl isothiocyanate, which was reacted with p-nitroaniline (1.38 g) to give the title compound. The solid was separated from the liquid phase by filtration, washed with CH2Cl2 and then dried in air. Yellow single crystals suitable for X-ray analysis were obtained after one week by slow evaporation of an acetone solution. The infrared spectrum was recorded in the range of 4000–400 cm-1 on a Nicolet NEXUS 670 F T—IR spectrometer, using KBr pellets. 1H NMR spectrum was obtained on an INOVA-400 MHz superconduction spectrometer, DMSO-d6 was used as solvent and TMS as internal standard, and the chemical shifts are expressed as delta. Elemental analyses were carried out on a PE-2400 elemental analysis instrument. Melting point determination was performed in YRT-3 melting point instrument (Tianjin) and was uncorrected. Melting Point: 201–204°C. Elemental analysis (%) found (calcd.): C, 50.25(49.6); H, 3.55(3.47); N, 11.30(14.93); S, 8.50(8.53). IR (KBr, cm-1): 3385 (N—H), 3064, 1680 (C=O), 1571(C=C), 1318, 1259(C=S), 1137, 1106. 1H NMR(delta, p.p.m.): 2.50 (s, 6H, 2CH3); 8.07–8.38 (m, 8H, 2C6H4); 12.15 (s, 1H, NH); 12.61 (s, 1H, NH).

Refinement

All H atoms bound to C atoms were placed in calculated positions and refined using the riding model approximation, with C—H = 0.93-0.96 Å and with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(C) for methyl H atoms. The H atoms bound to N atoms were located in a difference Fourier map and refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C14H10N4O5S·0.5C3H6O F(000) = 1552
Mr = 375.36 Dx = 1.477 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3344 reflections
a = 30.828 (14) Å θ = 2.7–28.3°
b = 7.534 (3) Å µ = 0.23 mm1
c = 15.224 (7) Å T = 296 K
β = 107.262 (12)° Block, yellow
V = 3377 (3) Å3 0.34 × 0.31 × 0.27 mm
Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer 3926 independent reflections
Radiation source: fine-focus sealed tube 2804 reflections with I > 2σ(I)
graphite Rint = 0.023
φ and ω scans θmax = 28.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −39→32
Tmin = 0.924, Tmax = 0.941 k = −9→9
9659 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.063P)2 + 1.6044P] where P = (Fo2 + 2Fc2)/3
3926 reflections (Δ/σ)max = 0.001
245 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.28 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.06837 (2) 0.61209 (9) 0.99931 (4) 0.0607 (2)
N2 0.15507 (6) 0.7121 (2) 1.02255 (11) 0.0464 (4)
C8 0.11880 (6) 0.8073 (2) 0.72951 (12) 0.0378 (4)
O3 0.17768 (5) 0.7877 (2) 0.87122 (9) 0.0576 (4)
C7 0.13716 (6) 0.7739 (3) 0.83134 (12) 0.0418 (4)
C11 0.09121 (6) 0.8598 (2) 0.54287 (12) 0.0393 (4)
C3 0.21046 (6) 0.6165 (2) 1.30383 (12) 0.0406 (4)
N4 0.07617 (6) 0.8875 (2) 0.44189 (11) 0.0494 (4)
N1 0.22987 (6) 0.5784 (2) 1.40277 (11) 0.0501 (4)
N3 0.10573 (6) 0.7234 (2) 0.87465 (11) 0.0443 (4)
C6 0.17262 (6) 0.6799 (2) 1.11874 (12) 0.0402 (4)
O4 0.10416 (6) 0.8676 (3) 0.39985 (10) 0.0737 (5)
C12 0.06084 (7) 0.8910 (3) 0.59207 (13) 0.0473 (5)
H12 0.0315 0.9292 0.5624 0.057*
O1 0.20702 (6) 0.6125 (2) 1.45421 (11) 0.0714 (5)
C10 0.13499 (7) 0.8041 (3) 0.58343 (13) 0.0450 (5)
H10 0.1548 0.7844 0.5487 0.054*
C5 0.21595 (7) 0.6070 (3) 1.15057 (13) 0.0440 (5)
H5 0.2322 0.5810 1.1095 0.053*
C4 0.23498 (6) 0.5731 (3) 1.24383 (13) 0.0433 (4)
H4 0.2637 0.5222 1.2656 0.052*
C13 0.07482 (6) 0.8645 (3) 0.68621 (13) 0.0455 (5)
H13 0.0548 0.8850 0.7204 0.055*
C9 0.14873 (6) 0.7782 (3) 0.67771 (13) 0.0434 (4)
H9 0.1783 0.7409 0.7069 0.052*
C2 0.16818 (7) 0.6953 (3) 1.27367 (13) 0.0467 (5)
H2 0.1527 0.7270 1.3153 0.056*
C20 0.11244 (7) 0.6852 (3) 0.96836 (13) 0.0420 (4)
C1 0.14910 (7) 0.7265 (3) 1.18041 (13) 0.0479 (5)
H1 0.1206 0.7787 1.1591 0.057*
O2 0.26788 (6) 0.5125 (3) 1.42899 (10) 0.0722 (5)
O5 0.03714 (6) 0.9316 (3) 0.40451 (10) 0.0722 (5)
O6 0.0000 0.6468 (3) 0.7500 0.0792 (8)
C15 0.0000 0.4863 (4) 0.7500 0.0500 (7)
C14 −0.03535 (9) 0.3861 (3) 0.7781 (2) 0.0754 (7)
H14A −0.0541 0.4678 0.7990 0.113*
H14B −0.0210 0.3057 0.8270 0.113*
H14C −0.0538 0.3203 0.7265 0.113*
H3A 0.0780 (7) 0.711 (3) 0.8413 (14) 0.049 (6)*
H2A 0.1744 (9) 0.733 (4) 0.9897 (18) 0.081 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0563 (4) 0.0823 (4) 0.0462 (3) −0.0144 (3) 0.0194 (3) 0.0088 (3)
N2 0.0452 (10) 0.0642 (11) 0.0310 (8) −0.0001 (8) 0.0131 (7) 0.0046 (7)
C8 0.0392 (10) 0.0399 (10) 0.0344 (9) −0.0020 (7) 0.0112 (7) 0.0026 (7)
O3 0.0408 (8) 0.0929 (12) 0.0379 (7) −0.0029 (7) 0.0096 (6) 0.0058 (7)
C7 0.0420 (10) 0.0464 (11) 0.0371 (10) −0.0002 (8) 0.0122 (8) 0.0013 (8)
C11 0.0419 (10) 0.0420 (10) 0.0339 (9) −0.0017 (8) 0.0111 (8) 0.0008 (7)
C3 0.0459 (11) 0.0421 (10) 0.0321 (9) −0.0038 (8) 0.0091 (8) 0.0008 (7)
N4 0.0564 (11) 0.0560 (11) 0.0353 (9) 0.0027 (8) 0.0126 (8) −0.0015 (7)
N1 0.0566 (11) 0.0545 (10) 0.0368 (9) −0.0028 (8) 0.0099 (8) 0.0020 (7)
N3 0.0400 (9) 0.0574 (10) 0.0340 (8) −0.0039 (8) 0.0089 (7) 0.0049 (7)
C6 0.0458 (10) 0.0433 (10) 0.0317 (9) −0.0013 (8) 0.0119 (8) 0.0012 (8)
O4 0.0754 (12) 0.1094 (15) 0.0437 (9) 0.0136 (10) 0.0289 (8) 0.0056 (9)
C12 0.0370 (10) 0.0629 (13) 0.0415 (10) 0.0084 (9) 0.0108 (8) 0.0091 (9)
O1 0.0845 (12) 0.0950 (13) 0.0394 (8) 0.0095 (10) 0.0257 (8) 0.0075 (8)
C10 0.0427 (11) 0.0536 (12) 0.0426 (10) 0.0032 (9) 0.0189 (8) −0.0015 (9)
C5 0.0419 (10) 0.0553 (12) 0.0379 (10) −0.0018 (8) 0.0164 (8) −0.0049 (8)
C4 0.0382 (10) 0.0493 (11) 0.0411 (10) 0.0002 (8) 0.0096 (8) −0.0024 (8)
C13 0.0395 (10) 0.0596 (12) 0.0415 (10) 0.0052 (9) 0.0184 (8) 0.0060 (9)
C9 0.0351 (10) 0.0529 (12) 0.0415 (10) 0.0047 (8) 0.0101 (8) 0.0021 (8)
C2 0.0505 (12) 0.0576 (12) 0.0359 (10) 0.0067 (9) 0.0187 (8) 0.0008 (9)
C20 0.0487 (11) 0.0420 (10) 0.0363 (10) 0.0010 (8) 0.0138 (8) 0.0027 (8)
C1 0.0477 (11) 0.0570 (12) 0.0390 (10) 0.0132 (9) 0.0130 (8) 0.0037 (9)
O2 0.0641 (10) 0.0925 (13) 0.0481 (9) 0.0169 (9) −0.0016 (7) 0.0059 (9)
O5 0.0597 (10) 0.1078 (14) 0.0417 (8) 0.0188 (9) 0.0038 (7) 0.0013 (9)
O6 0.0867 (19) 0.0590 (15) 0.111 (2) 0.000 0.0586 (17) 0.000
C15 0.0476 (16) 0.060 (2) 0.0417 (15) 0.000 0.0121 (12) 0.000
C14 0.0655 (16) 0.0731 (17) 0.096 (2) −0.0050 (13) 0.0367 (15) 0.0070 (14)

Geometric parameters (Å, °)

S1—C20 1.659 (2) N3—H3A 0.86 (2)
N2—C20 1.344 (3) C6—C1 1.391 (3)
N2—C6 1.423 (2) C6—C5 1.392 (3)
N2—H2A 0.90 (3) C12—C13 1.383 (3)
C8—C13 1.389 (3) C12—H12 0.9300
C8—C9 1.397 (3) C10—C9 1.385 (3)
C8—C7 1.505 (3) C10—H10 0.9300
O3—C7 1.221 (2) C5—C4 1.389 (3)
C7—N3 1.378 (2) C5—H5 0.9300
C11—C10 1.373 (3) C4—H4 0.9300
C11—C12 1.382 (3) C13—H13 0.9300
C11—N4 1.483 (2) C9—H9 0.9300
C3—C2 1.381 (3) C2—C1 1.386 (3)
C3—C4 1.387 (3) C2—H2 0.9300
C3—N1 1.475 (2) C1—H1 0.9300
N4—O5 1.215 (2) O6—C15 1.209 (4)
N4—O4 1.227 (2) C15—C14 1.489 (3)
N1—O2 1.225 (2) C14—H14A 0.9600
N1—O1 1.226 (2) C14—H14B 0.9600
N3—C20 1.409 (2) C14—H14C 0.9600
C20—N2—C6 127.59 (17) C11—C10—H10 121.1
C20—N2—H2A 112.0 (17) C9—C10—H10 121.1
C6—N2—H2A 119.4 (17) C4—C5—C6 119.93 (17)
C13—C8—C9 119.73 (17) C4—C5—H5 120.0
C13—C8—C7 123.80 (16) C6—C5—H5 120.0
C9—C8—C7 116.46 (16) C3—C4—C5 118.84 (18)
O3—C7—N3 123.16 (17) C3—C4—H4 120.6
O3—C7—C8 120.96 (16) C5—C4—H4 120.6
N3—C7—C8 115.86 (16) C12—C13—C8 119.79 (17)
C10—C11—C12 122.83 (17) C12—C13—H13 120.1
C10—C11—N4 118.20 (16) C8—C13—H13 120.1
C12—C11—N4 118.96 (17) C10—C9—C8 120.85 (17)
C2—C3—C4 121.85 (17) C10—C9—H9 119.6
C2—C3—N1 118.69 (17) C8—C9—H9 119.6
C4—C3—N1 119.46 (18) C3—C2—C1 119.02 (18)
O5—N4—O4 122.79 (18) C3—C2—H2 120.5
O5—N4—C11 119.06 (17) C1—C2—H2 120.5
O4—N4—C11 118.14 (17) N2—C20—N3 114.45 (16)
O2—N1—O1 123.50 (18) N2—C20—S1 127.59 (15)
O2—N1—C3 118.07 (17) N3—C20—S1 117.96 (15)
O1—N1—C3 118.43 (18) C2—C1—C6 120.06 (18)
C7—N3—C20 128.92 (17) C2—C1—H1 120.0
C7—N3—H3A 117.7 (14) C6—C1—H1 120.0
C20—N3—H3A 113.4 (14) O6—C15—C14 120.45 (15)
C1—C6—C5 120.22 (17) C15—C14—H14A 109.5
C1—C6—N2 122.44 (18) C15—C14—H14B 109.5
C5—C6—N2 117.26 (16) H14A—C14—H14B 109.5
C11—C12—C13 118.96 (17) C15—C14—H14C 109.5
C11—C12—H12 120.5 H14A—C14—H14C 109.5
C13—C12—H12 120.5 H14B—C14—H14C 109.5
C11—C10—C9 117.83 (17)
C13—C8—C7—O3 −152.9 (2) C1—C6—C5—C4 2.9 (3)
C9—C8—C7—O3 26.9 (3) N2—C6—C5—C4 179.80 (17)
C13—C8—C7—N3 28.7 (3) C2—C3—C4—C5 −1.2 (3)
C9—C8—C7—N3 −151.55 (18) N1—C3—C4—C5 178.93 (17)
C10—C11—N4—O5 177.8 (2) C6—C5—C4—C3 −1.3 (3)
C12—C11—N4—O5 −2.3 (3) C11—C12—C13—C8 0.0 (3)
C10—C11—N4—O4 −3.4 (3) C9—C8—C13—C12 0.5 (3)
C12—C11—N4—O4 176.51 (19) C7—C8—C13—C12 −179.73 (18)
C2—C3—N1—O2 −178.25 (19) C11—C10—C9—C8 0.3 (3)
C4—C3—N1—O2 1.6 (3) C13—C8—C9—C10 −0.6 (3)
C2—C3—N1—O1 2.5 (3) C7—C8—C9—C10 179.60 (18)
C4—C3—N1—O1 −177.63 (19) C4—C3—C2—C1 2.1 (3)
O3—C7—N3—C20 2.4 (3) N1—C3—C2—C1 −178.03 (18)
C8—C7—N3—C20 −179.26 (18) C6—N2—C20—N3 −177.66 (18)
C20—N2—C6—C1 −43.5 (3) C6—N2—C20—S1 1.7 (3)
C20—N2—C6—C5 139.8 (2) C7—N3—C20—N2 4.1 (3)
C10—C11—C12—C13 −0.3 (3) C7—N3—C20—S1 −175.35 (17)
N4—C11—C12—C13 179.78 (18) C3—C2—C1—C6 −0.5 (3)
C12—C11—C10—C9 0.2 (3) C5—C6—C1—C2 −2.0 (3)
N4—C11—C10—C9 −179.88 (17) N2—C6—C1—C2 −178.72 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···S1 0.93 2.79 3.235 (2) 111
N2—H2A···O3 0.90 (3) 1.88 (3) 2.659 (3) 144 (2)
C2—H2···O4i 0.93 2.48 3.394 (3) 167
C12—H12···O5ii 0.93 2.54 3.318 (3) 141
N3—H3A···O6 0.86 (2) 2.442 (19) 3.300 (2) 175 (2)
C13—H13···O6 0.93 2.59 3.207 (3) 124
C14—H14B···O5iii 0.96 2.56 3.446 (3) 154
C14—H14C···O4iv 0.96 2.52 3.476 (3) 175

Symmetry codes: (i) x, y, z+1; (ii) −x, −y+2, −z+1; (iii) x, −y+1, z+1/2; (iv) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2253).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, M. K., Kim, H. N., Choi, H. J., Yoon, J. & Hyun, M. H. (2008). Tetrahedron Lett.49, 4522–4525.
  4. Jones, C. E. S., Turega, S. M., Clarke, M. L. & Philp, D. (2008). Tetrahedron Lett.49, 4666–4669.
  5. Kushwaha, S. K., Vijayan, N. & Bhagavannarayana, G. (2008). Mater. Lett.62, 3931–3933.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Su, B.-Q. (2005). Acta Cryst. E61, o3492–o3494.
  9. Su, B.-Q. (2007). J. Chem. Crystallogr.37, 87–90.
  10. Su, B.-Q., Liu, G.-L., Sheng, L., Wang, X.-Q. & Xian, L. (2006). Phosphorus Sulfur Slicon, 181, 745–750.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680803359X/rz2253sup1.cif

e-64-o2138-sup1.cif (19.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803359X/rz2253Isup2.hkl

e-64-o2138-Isup2.hkl (192.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES