Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 25;64(Pt 11):o2205. doi: 10.1107/S160053680803451X

2-[(4-Chloro­benz­yl)carbonyl­meth­yl]benzoic acid

Obaid-ur-Rahman Abid a, Ghulam Qadeer a,*, Nasim Hasan Rama a, Ales Ruzicka b
PMCID: PMC2959499  PMID: 21581063

Abstract

The title compound, C16H13ClO3, is an important inter­mediate in the conversion of isocoumarin to 3,4-dihydro­isocoumarin. The two aromatic rings are oriented at a dihedral angle of 67.18 (3)°. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers. There is also a C—H⋯π contact between the benzoic acid and 4-chloro­benzyl rings.

Related literature

For a related structure, see: Abid et al. (2006). For general background, see: Barry (1964); Powers et al. (2002); Rossi et al. (2003); Sturtz et al. (2002); Thomas & Jens (1999). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-o2205-scheme1.jpg

Experimental

Crystal data

  • C16H13ClO3

  • M r = 288.71

  • Monoclinic, Inline graphic

  • a = 5.5000 (4) Å

  • b = 13.2720 (6) Å

  • c = 18.8120 (7) Å

  • β = 94.371 (4)°

  • V = 1369.21 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 150 (1) K

  • 0.29 × 0.19 × 0.16 mm

Data collection

  • Bruker–Nonius Kappa CCD area-detector diffractometer

  • Absorption correction: integration (Coppens, 1970) T min = 0.936, T max = 0.962

  • 10076 measured reflections

  • 3010 independent reflections

  • 2284 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.118

  • S = 1.14

  • 3010 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: COLLECT and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803451X/hk2557sup1.cif

e-64-o2205-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803451X/hk2557Isup2.hkl

e-64-o2205-Isup2.hkl (147.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.81 2.626 (3) 176
C16—H16⋯Cg1ii 0.93 3.35 4.079 (3) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 is the centroid of the C2–C7 ring.

Acknowledgments

The authors gratefully acknowledge the financial support of the Ministry of Education of the Czech Republic (project No. VZ0021627501) and Higher Education Commission, Islam­a­bad, Pakistan.

supplementary crystallographic information

Comment

The isocoumarin nucleus is an abundant structural motif in natural products (Barry, 1964). Many constituents of the steadily growing class of known isocoumarins exhibit valuable biological properties such as antifungal (Sturtz et al., 2002), antitumor or cytotoxic, anti-inflammatory, anti-allergic (Rossi et al., 2003) and enzyme inhibitory activity (Powers et al., 2002). Naturally occurring haloisocoumarins and their halogeno-3,4-dihydroisocoumarin derivatives are very rare. However, a few examples of naturally occurring chlorine containing isocoumarins are known (Thomas & Jens, 1999). In view of the importance of this class of compounds, the title compound, an intermediate during the conversion of isocoumarin to 3,4-dihydroisocoumarin, has been synthesized, and we report herein its crystal structure.

In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges, and comparable with the corresponding values in 3-(2-chlorobenzyl)isocoumarin (Abid et al., 2006). Rings A (C2-C7) and B (C11-C16) are, of course, planar and the dihedral angle between them is A/B = 67.18 (3)°. The intramolecular C-H···O hydrogen bonds (Table 1) result in the formation of nonplanar five- and six-membered rings C (O2/C1/C2/C7/H7) and D (O1/C1-C3/C8/H8B). Ring C adopts envelope conformation with C1 atom displaced by -0.108 (3) Å from the plane of the other ring atoms, while ring D has twisted conformation.

In the crystal structure, intermolecular O-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure. There also exist a C—H···π contact (Table 1) between the benzoic acid and 4-chlorobenzyl rings.

Experimental

A solution of 3-(4-chlorobenzyl)isocoumarin (2.0 g, 7 mmol) in ethanol (50 ml) and potassium hydroxide (100 ml, 5%) were refluxed for 4 h. Ethanol was removed from the reaction mixture by distillation. Ice cold water (20 ml) was added and the reaction mixture was acidified with hydrochloric acid. It was extracted with dichloromethane (3 × 20 ml), and then dried and evaporated to yield the crude solid, which was recrystallized from methanol (yield; 85%; m.p. 414-415 K).

Refinement

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C,O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme.

Fig. 2.

Fig. 2.

A partial packing diagram. Hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

C16H13ClO3 F(000) = 600
Mr = 288.71 Dx = 1.401 Mg m3
Monoclinic, P21/c Melting point: 414(1) K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 5.5000 (4) Å Cell parameters from 10141 reflections
b = 13.2720 (6) Å θ = 1–27.5°
c = 18.8120 (7) Å µ = 0.28 mm1
β = 94.371 (4)° T = 150 K
V = 1369.21 (13) Å3 Block, colorless
Z = 4 0.29 × 0.19 × 0.16 mm

Data collection

Bruker–Nonius Kappa CCD area-detector diffractometer 3010 independent reflections
Radiation source: fine-focus sealed tube 2284 reflections with I > 2σ(I)
graphite Rint = 0.048
Detector resolution: 9.091 pixels mm-1 θmax = 27.5°, θmin = 1.9°
φ and ω scans h = −6→7
Absorption correction: integration (Coppens, 1970) k = −17→15
Tmin = 0.936, Tmax = 0.962 l = −21→24
10076 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0291P)2 + 0.9198P] where P = (Fo2 + 2Fc2)/3
3010 reflections (Δ/σ)max < 0.001
181 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.56140 (14) 0.35295 (5) 0.41926 (4) 0.0597 (2)
O1 0.1626 (3) −0.05908 (11) 0.44337 (9) 0.0445 (4)
O2 −0.1720 (3) −0.11437 (12) 0.48932 (9) 0.0446 (4)
H2 −0.1636 −0.0593 0.5091 0.054*
O3 0.0425 (3) −0.11324 (13) 0.27714 (9) 0.0487 (4)
C1 0.0174 (4) −0.12684 (15) 0.45249 (11) 0.0312 (4)
C2 0.0445 (4) −0.23057 (15) 0.42498 (10) 0.0313 (4)
C3 0.2232 (4) −0.25579 (16) 0.37852 (11) 0.0338 (5)
C4 0.2425 (5) −0.35656 (18) 0.35955 (13) 0.0470 (6)
H4 0.3604 −0.3753 0.3292 0.056*
C5 0.0930 (5) −0.42938 (18) 0.38464 (15) 0.0547 (7)
H5 0.1120 −0.4963 0.3714 0.066*
C6 −0.0840 (5) −0.40396 (18) 0.42911 (14) 0.0512 (6)
H6 −0.1869 −0.4529 0.4456 0.061*
C7 −0.1076 (4) −0.30469 (17) 0.44895 (12) 0.0410 (5)
H7 −0.2273 −0.2869 0.4790 0.049*
C8 0.3863 (4) −0.18048 (17) 0.34637 (12) 0.0378 (5)
H8A 0.5133 −0.2165 0.3238 0.045*
H8B 0.4648 −0.1402 0.3845 0.045*
C9 0.2595 (4) −0.11086 (16) 0.29233 (11) 0.0354 (5)
C10 0.4211 (4) −0.03623 (19) 0.25726 (13) 0.0458 (6)
H10A 0.5798 −0.0665 0.2528 0.055*
H10B 0.3504 −0.0211 0.2096 0.055*
C11 0.4526 (4) 0.06038 (17) 0.29935 (11) 0.0363 (5)
C12 0.6641 (4) 0.07862 (19) 0.34231 (13) 0.0437 (6)
H12 0.7855 0.0297 0.3464 0.052*
C13 0.6968 (4) 0.16829 (19) 0.37871 (13) 0.0459 (6)
H13 0.8396 0.1800 0.4072 0.055*
C14 0.5170 (4) 0.23985 (16) 0.37280 (11) 0.0391 (5)
C15 0.3062 (4) 0.22462 (18) 0.33044 (13) 0.0432 (5)
H15 0.1860 0.2740 0.3262 0.052*
C16 0.2761 (4) 0.13451 (18) 0.29391 (13) 0.0430 (5)
H16 0.1334 0.1235 0.2652 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0813 (5) 0.0436 (4) 0.0545 (4) −0.0193 (3) 0.0070 (3) −0.0008 (3)
O1 0.0533 (10) 0.0334 (8) 0.0491 (10) −0.0093 (7) 0.0181 (8) −0.0123 (7)
O2 0.0431 (9) 0.0377 (9) 0.0549 (10) −0.0034 (7) 0.0157 (8) −0.0169 (7)
O3 0.0400 (9) 0.0498 (10) 0.0547 (10) 0.0010 (8) −0.0064 (7) 0.0059 (8)
C1 0.0330 (11) 0.0308 (10) 0.0297 (10) 0.0027 (9) 0.0012 (8) −0.0025 (8)
C2 0.0362 (11) 0.0269 (10) 0.0300 (10) 0.0030 (9) −0.0028 (8) −0.0027 (8)
C3 0.0365 (11) 0.0342 (11) 0.0297 (10) 0.0071 (9) −0.0045 (8) −0.0057 (9)
C4 0.0560 (15) 0.0397 (13) 0.0446 (13) 0.0147 (11) −0.0015 (11) −0.0126 (11)
C5 0.0716 (18) 0.0266 (11) 0.0633 (17) 0.0077 (12) −0.0123 (14) −0.0102 (11)
C6 0.0652 (17) 0.0299 (12) 0.0567 (16) −0.0076 (12) −0.0075 (13) 0.0017 (11)
C7 0.0470 (13) 0.0343 (12) 0.0409 (12) −0.0043 (10) −0.0009 (10) −0.0001 (9)
C8 0.0331 (11) 0.0430 (12) 0.0375 (11) 0.0079 (10) 0.0042 (9) −0.0073 (10)
C9 0.0386 (12) 0.0345 (11) 0.0334 (11) 0.0041 (9) 0.0046 (9) −0.0085 (9)
C10 0.0484 (14) 0.0492 (14) 0.0414 (13) 0.0000 (11) 0.0139 (10) −0.0019 (11)
C11 0.0353 (11) 0.0410 (12) 0.0337 (11) −0.0017 (9) 0.0096 (9) 0.0053 (9)
C12 0.0346 (12) 0.0512 (14) 0.0449 (13) 0.0089 (10) 0.0005 (10) 0.0104 (11)
C13 0.0394 (13) 0.0566 (15) 0.0404 (12) −0.0076 (11) −0.0067 (10) 0.0060 (11)
C14 0.0453 (13) 0.0351 (11) 0.0371 (12) −0.0104 (10) 0.0052 (10) 0.0075 (9)
C15 0.0388 (12) 0.0393 (12) 0.0515 (14) 0.0029 (10) 0.0025 (10) 0.0069 (11)
C16 0.0324 (11) 0.0496 (14) 0.0463 (13) −0.0025 (10) −0.0024 (9) 0.0028 (11)

Geometric parameters (Å, °)

Cl1—C14 1.745 (2) C8—C9 1.505 (3)
O2—H2 0.8200 C8—H8A 0.9700
O3—C9 1.207 (3) C8—H8B 0.9700
C1—O1 1.223 (2) C9—C10 1.515 (3)
C1—O2 1.305 (2) C10—H10A 0.9700
C1—C2 1.482 (3) C10—H10B 0.9701
C3—C4 1.390 (3) C11—C10 1.510 (3)
C3—C2 1.404 (3) C11—C12 1.386 (3)
C4—H4 0.9300 C11—C16 1.381 (3)
C5—C4 1.376 (4) C12—H12 0.9300
C5—C6 1.373 (4) C13—C12 1.378 (4)
C5—H5 0.9300 C13—C14 1.369 (3)
C6—H6 0.9299 C13—H13 0.9300
C7—C2 1.389 (3) C15—C14 1.371 (3)
C7—C6 1.378 (3) C15—C16 1.383 (3)
C7—H7 0.9299 C15—H15 0.9299
C8—C3 1.501 (3) C16—H16 0.9299
C1—O2—H2 109.6 O3—C9—C8 122.9 (2)
O1—C1—O2 122.49 (19) O3—C9—C10 121.1 (2)
O1—C1—C2 123.35 (18) C8—C9—C10 116.01 (19)
O2—C1—C2 114.13 (18) C11—C10—C9 111.99 (18)
C7—C2—C3 120.05 (19) C11—C10—H10A 109.2
C7—C2—C1 117.74 (19) C9—C10—H10A 109.2
C3—C2—C1 122.16 (18) C11—C10—H10B 109.3
C4—C3—C2 117.4 (2) C9—C10—H10B 109.3
C4—C3—C8 118.5 (2) H10A—C10—H10B 107.9
C2—C3—C8 124.08 (18) C16—C11—C12 118.2 (2)
C5—C4—C3 121.9 (2) C16—C11—C10 120.9 (2)
C5—C4—H4 119.1 C12—C11—C10 120.8 (2)
C3—C4—H4 119.1 C13—C12—C11 120.8 (2)
C6—C5—C4 120.4 (2) C13—C12—H12 119.7
C6—C5—H5 119.8 C11—C12—H12 119.5
C4—C5—H5 119.7 C14—C13—C12 119.5 (2)
C5—C6—C7 119.1 (2) C14—C13—H13 120.2
C5—C6—H6 120.6 C12—C13—H13 120.2
C7—C6—H6 120.3 C13—C14—C15 121.2 (2)
C6—C7—C2 121.2 (2) C13—C14—Cl1 118.91 (18)
C6—C7—H7 119.5 C15—C14—Cl1 119.86 (18)
C2—C7—H7 119.3 C14—C15—C16 118.7 (2)
C3—C8—C9 114.86 (18) C14—C15—H15 120.7
C3—C8—H8A 108.7 C16—C15—H15 120.6
C9—C8—H8A 108.6 C11—C16—C15 121.5 (2)
C3—C8—H8B 108.4 C11—C16—H16 119.3
C9—C8—H8B 108.6 C15—C16—H16 119.2
H8A—C8—H8B 107.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.82 1.81 2.626 (3) 176
C7—H7···O2 0.93 2.32 2.669 (3) 102
C8—H8B···O1 0.97 2.33 2.790 (3) 108
C16—H16···Cg1ii 0.93 3.35 4.079 (3) 137

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2557).

References

  1. Abid, O., Rama, N. H., Qadeer, G., Khan, G. S. & Lu, X.-M. (2006). Acta Cryst. E62, o2895–o2896.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  4. Barry, R. D. (1964). Chem. Rev.64, 239–241.
  5. Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.
  6. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzimology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Powers, J. C., Asgian, J. L., Ekici, D. & James, K. E. (2002). Chem. Rev.102, 4639–4643. [DOI] [PubMed]
  9. Rossi, R., Carpita, A., Bellina, F., Stabile, P. & Mannina, L. (2003). Tetrahedron, 59, 2067–2081.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  12. Sturtz, G., Meepagala, K. & Wedge, D. (2002). J. Agric. Food Chem.50, 6979–6984. [DOI] [PubMed]
  13. Thomas, L. & Jens, B. (1999). J. Nat. Prod.62, 1182–1187.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680803451X/hk2557sup1.cif

e-64-o2205-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680803451X/hk2557Isup2.hkl

e-64-o2205-Isup2.hkl (147.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES