Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 4;64(Pt 11):o2050. doi: 10.1107/S1600536808030018

(Z)-Methyl 4-[3-(3-oxoquinuclidin-2-yl­idenemeth­yl)-1H-indol-1-ylmeth­yl]benzoate

Thirupathi Reddy Yerram Reddy a, Narsimha Reddy Penthala a, Sean Parkin b, Peter A Crooks a,*
PMCID: PMC2959505  PMID: 21580918

Abstract

The title compound, C25H24N2O3 was prepared by the reaction of (Z)-2-(1H-indol-3-ylmethyl­ene)-1-aza­bicyclo­[2.2.2]octan-3-one with methyl p-(bromo­meth­yl)benzoate, under phase-transfer catalytic (PTC) conditions using triethyl­benzyl­ammonium chloride and 50% w/v aqueous NaOH solution in dichloro­methane. The crystal structure indicates the presence of a double bond with Z geometry connecting the aza­bicyclic and indole groups.

Related literature

For related structures, see: Mason et al. (2003); Zarza et al. (1988). For related bond angles, see: Wilson (1992).graphic file with name e-64-o2050-scheme1.jpg

Experimental

Crystal data

  • C25H24N2O3

  • M r = 400.46

  • Triclinic, Inline graphic

  • a = 9.8597 (3) Å

  • b = 10.3037 (3) Å

  • c = 11.3515 (4) Å

  • α = 106.6470 (14)°

  • β = 111.4372 (13)°

  • γ = 92.7863 (15)°

  • V = 1013.13 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 90.0 (2) K

  • 0.55 × 0.50 × 0.25 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) T min = 0.954, T max = 0.979

  • 11866 measured reflections

  • 3974 independent reflections

  • 2132 reflections with I > 2σ(I)

  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.152

  • S = 0.97

  • 3974 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELX97 and local procedures.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030018/om2262sup1.cif

e-64-o2050-sup1.cif (22.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030018/om2262Isup2.hkl

e-64-o2050-Isup2.hkl (194.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This investigation was supported by NIH/National Cancer Institute grant PO1 CA104457.

supplementary crystallographic information

Comment

X-ray crystallography confirmed the molecular structure and the atom connectivity for the title compound, as illustrated in Fig. 1. The indole ring is planar with bond distances and angles comparable with those previously reported for other indole derivatives (Mason et al., 2003; Zarza, et al., 1988). The compound is the Z isomer, having the C11—C17 bond in a trans position with respect to the C3—C10 bond. The double bond (C10=C11) has a nearly planar atomic arrangement, since the r.m.s. deviation from the best plane passing through atoms N2, C11, C17, C10 and C3 is 0.0150 (14) Å. Deviations from ideal geometry are observed in the bond angles around atoms C3, C10 and C11. The C10=C11—C17 bond angle is close to the standard planar triangular value of 120°, whereas the C2=C3—C10, C3—C10=C11 and C10=C11—C17 bond angles are more distorted due to the strain induced by the C10=C11—C18=O1 conjugated double bond linkage. These bond angle deformations, which require little energy, are needed to release the intramolecular interactions between non-bonded atoms. In this molecule, the azabicyclic system presents very small distortions around atoms N2, C13, C14, C15, C16 and C17. The value of the C2—C3—C10—C11 torsion angle [-6.3 (4)°] indicates the deviation of the indole ring from the plane of the double bond connected to the azabicyclic ring. The C3—C10 bond length, when compared with the standard value for a single bond connecting a Car atom to a Csp2 atom (1.470 (15) Å; Wilson, 1992), suggests extensive conjugation, beginning at atom O1 and extending through to the indole ring. The bond angles in the azabicyclic system at C13, C14 and C15 are, on average, smaller than the standard tetrahedral value of 109.5°, while the bond angles at C12 and C16 are, on average, slightly larger than the ideal tetrahedral bond angle.

There are no significant intermolecular hydrogen-bonding interactions in the crystal structure. The packing is essentially stabilized via van der Waals forces.

Experimental

To a stirred solution of diisopropylamine (1.923 g, 19 mmol) in THF (20 ml) at 273 K under nitrogen was added a solution of 2.0 M n-butyllithium (9 ml, 18.8 mmol) and the mixture stirred at 273 K for 30 min. To this solution at 273 K, was added 1-aza-bicyclo[2.2.2]octan-3-one hydrochloride (1.5 g, 9.28 mmol) in one portion and stirring continued until the mixture completely dissolved (20 min). The temperature was lowered to 195 K and a solution of 1-acetyl-1H-indole-3-carboxaldehyde (1.722 g, 9.2 mmol) in THF (25 ml) was added dropwise. Stirring was continued for 30 min at this temperature and then for 90 min at 273 K. The reaction mixture was poured into saturated NaHCO3 at 273 K and the resulting solution was extracted with CHCl3 (3 x 15 ml). The combined organic extracts were dried over anhydrous Na2SO4 and evaporated to afford (Z)-2-(1-acetyl- 1H-indol-3-ylmethylene)-1-azabicyclo[2.2.2]octan-3-one, which was subsequently refluxed with sodium hydroxide solution (25 ml, 1 N) for 30 min. The reaction mixture was cooled to room temperature, and the yellow solid that separated was collected by filtration, washed with cold water and dried to afford the (Z)-2-(1H-indol-3-ylmethylene) -1-azabicyclo[2.2.2]octan-3-one.

To a stirred mixture of (Z)-2-(1H-indol-3-ylmethylene) -1-azabicyclo[2.2.2]octan-3-one (1.0 g, 3.96 mmol), 50% w/v aqueous NaOH solution (1.52 g, 19 mmol) and benzyltriethylammonium chloride (0.172 g, 0.75 mmol) in dichloromethane (DCM, 25 ml) at room temperature was added methyl-p-(bromomethyl)benzoate (1.0 g, 4.0 mmol) in one portion, then the reaction mixture was stirred vigorously for 1 hr until no (Z)-2-(1H-indol-3-ylmethylene)-1-azabicyclo[2.2.2] octan-3-one was detected by TLC. The organic layer was separated, washed exhaustively with water, dried with Na2SO4 and evaporated to afford the crude product. Crystallization from methanol gave a yellow crystalline product of compound (I) that was suitable for X-ray analysis. 1H NMR (CDCl3): δ 1.98–2.00 (m, 4H), 2.61 (p, 1H), 2.93–3.02 (m, 2H), 3.08–3.15 (m, 2H), 3.88 (s, 3H), 5.42 (s, 2H), 7.14–7.22 (m, 5H), 7.47 (s, 1H), 7.87 (d, J = 7.2 Hz, 2H), 7.90 (d, J = 7.2 Hz, 1H), 8.38 (s, 1H); 13C NMR (CDCl3): δ 27.1, 41.1, 48.1, 51.0, 52.7, 110.6, 111.5, 118.2, 119.7, 121.6, 123.3, 126.9, 127.1, 129.3, 130.2, 130.6, 134.6, 136.4, 141.3, 142.2, 166.9, 205.6.

Refinement

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C—H distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), 1.00 Å (R3CH) and 0.95 Å (CArH) with Uiso(H) values set to either 1.5Ueq (RCH3 only) or 1.2Ueq of the attached C atom.

Figures

Fig. 1.

Fig. 1.

A view of the molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Reaction scheme.

Crystal data

C25H24N2O3 Z = 2
Mr = 400.46 F(000) = 424
Triclinic, P1 Dx = 1.313 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.8597 (3) Å Cell parameters from 3599 reflections
b = 10.3037 (3) Å θ = 1.0–27.5°
c = 11.3515 (4) Å µ = 0.09 mm1
α = 106.6470 (14)° T = 90 K
β = 111.4372 (13)° Irregular block, colourless
γ = 92.7863 (15)° 0.55 × 0.50 × 0.25 mm
V = 1013.13 (6) Å3

Data collection

Nonius KappaCCD diffractometer 3974 independent reflections
Radiation source: fine-focus sealed tube 2132 reflections with I > 2σ(I)
graphite Rint = 0.068
Detector resolution: 18 pixels mm-1 θmax = 26.0°, θmin = 2.0°
ω scans at fixed χ = 55° h = −12→11
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) k = −12→12
Tmin = 0.954, Tmax = 0.979 l = −13→13
11866 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152 H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0735P)2] where P = (Fo2 + 2Fc2)/3
3974 reflections (Δ/σ)max = 0.002
272 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.4526 (2) 0.7860 (2) 0.42974 (19) 0.0196 (5)
N2 0.7265 (2) 0.6780 (2) 0.19469 (19) 0.0217 (5)
O1 0.58592 (19) 0.79547 (19) −0.09183 (17) 0.0349 (5)
O2 −0.05653 (18) 0.23941 (17) 0.44169 (17) 0.0270 (5)
O3 −0.11508 (18) 0.24052 (17) 0.23058 (16) 0.0274 (5)
C2 0.5260 (3) 0.7563 (2) 0.3468 (2) 0.0206 (6)
H2 0.5975 0.6972 0.3523 0.025*
C3 0.4822 (3) 0.8236 (2) 0.2539 (2) 0.0204 (6)
C4 0.3734 (3) 0.9016 (2) 0.2827 (2) 0.0197 (6)
C5 0.2910 (3) 0.9933 (3) 0.2293 (2) 0.0229 (6)
H5 0.3002 1.0142 0.1560 0.027*
C6 0.1965 (3) 1.0527 (3) 0.2845 (3) 0.0254 (6)
H6 0.1414 1.1159 0.2495 0.031*
C7 0.1802 (3) 1.0215 (3) 0.3912 (3) 0.0277 (7)
H7 0.1130 1.0629 0.4263 0.033*
C8 0.2591 (3) 0.9322 (2) 0.4463 (2) 0.0222 (6)
H8 0.2475 0.9102 0.5182 0.027*
C9 0.3569 (3) 0.8754 (2) 0.3919 (2) 0.0194 (6)
C10 0.5266 (3) 0.8148 (3) 0.1450 (2) 0.0214 (6)
H10 0.4756 0.8624 0.0864 0.026*
C11 0.6295 (3) 0.7491 (3) 0.1140 (2) 0.0208 (6)
C12 0.7098 (3) 0.5330 (3) 0.1114 (3) 0.0268 (7)
H12A 0.6084 0.4851 0.0846 0.032*
H12B 0.7800 0.4860 0.1652 0.032*
C13 0.7389 (3) 0.5234 (3) −0.0153 (3) 0.0319 (7)
H13A 0.8200 0.4708 −0.0171 0.038*
H13B 0.6490 0.4752 −0.0964 0.038*
C14 0.7819 (3) 0.6700 (3) −0.0135 (2) 0.0256 (6)
H14 0.8014 0.6682 −0.0944 0.031*
C15 0.9188 (3) 0.7419 (3) 0.1160 (3) 0.0314 (7)
H15A 0.9490 0.8368 0.1202 0.038*
H15B 1.0020 0.6915 0.1173 0.038*
C16 0.8814 (3) 0.7456 (3) 0.2379 (3) 0.0272 (7)
H16A 0.9500 0.6982 0.2926 0.033*
H16B 0.8952 0.8424 0.2945 0.033*
C17 0.6562 (3) 0.7455 (3) −0.0068 (2) 0.0236 (6)
C18 0.4596 (3) 0.7224 (3) 0.5299 (2) 0.0222 (6)
H18A 0.4622 0.7937 0.6110 0.027*
H18B 0.5527 0.6849 0.5552 0.027*
C19 0.3302 (3) 0.6077 (2) 0.4828 (2) 0.0184 (6)
C20 0.3106 (3) 0.5504 (3) 0.5739 (2) 0.0206 (6)
H20 0.3792 0.5828 0.6646 0.025*
C21 0.1933 (3) 0.4476 (2) 0.5343 (2) 0.0214 (6)
H21 0.1813 0.4099 0.5978 0.026*
C22 0.0920 (3) 0.3983 (2) 0.4013 (2) 0.0183 (6)
C23 0.1106 (3) 0.4535 (3) 0.3092 (2) 0.0221 (6)
H23 0.0423 0.4200 0.2183 0.027*
C24 0.2288 (3) 0.5577 (2) 0.3496 (2) 0.0207 (6)
H24 0.2409 0.5953 0.2861 0.025*
C25 −0.0330 (3) 0.2863 (2) 0.3636 (2) 0.0208 (6)
C26 −0.2337 (3) 0.1258 (3) 0.1858 (3) 0.0345 (7)
H26A −0.1959 0.0566 0.2275 0.052*
H26B −0.2716 0.0847 0.0882 0.052*
H26C −0.3137 0.1587 0.2117 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0217 (12) 0.0210 (12) 0.0198 (11) 0.0051 (10) 0.0104 (10) 0.0090 (10)
N2 0.0193 (12) 0.0247 (12) 0.0204 (11) 0.0035 (10) 0.0062 (10) 0.0086 (10)
O1 0.0373 (12) 0.0493 (13) 0.0296 (11) 0.0136 (10) 0.0170 (10) 0.0235 (10)
O2 0.0263 (10) 0.0302 (11) 0.0287 (11) 0.0038 (9) 0.0131 (9) 0.0131 (9)
O3 0.0243 (10) 0.0293 (11) 0.0234 (10) −0.0036 (9) 0.0053 (9) 0.0076 (8)
C2 0.0196 (14) 0.0180 (14) 0.0250 (15) 0.0046 (12) 0.0105 (12) 0.0059 (12)
C3 0.0188 (14) 0.0230 (14) 0.0203 (14) −0.0009 (12) 0.0079 (12) 0.0092 (12)
C4 0.0174 (13) 0.0189 (14) 0.0209 (14) −0.0009 (12) 0.0064 (12) 0.0058 (12)
C5 0.0209 (14) 0.0250 (15) 0.0214 (14) 0.0007 (13) 0.0072 (12) 0.0078 (12)
C6 0.0239 (15) 0.0237 (14) 0.0306 (15) 0.0050 (13) 0.0109 (13) 0.0113 (13)
C7 0.0215 (15) 0.0276 (15) 0.0343 (16) 0.0041 (13) 0.0138 (13) 0.0068 (13)
C8 0.0211 (14) 0.0208 (14) 0.0241 (15) −0.0015 (12) 0.0109 (13) 0.0046 (12)
C9 0.0147 (13) 0.0180 (14) 0.0199 (14) −0.0027 (12) 0.0030 (12) 0.0040 (11)
C10 0.0185 (14) 0.0221 (14) 0.0221 (14) 0.0020 (12) 0.0059 (12) 0.0080 (12)
C11 0.0200 (14) 0.0245 (14) 0.0176 (13) 0.0011 (12) 0.0067 (12) 0.0077 (12)
C12 0.0257 (15) 0.0233 (15) 0.0303 (15) 0.0039 (13) 0.0112 (13) 0.0071 (13)
C13 0.0362 (17) 0.0305 (16) 0.0279 (15) 0.0064 (14) 0.0147 (14) 0.0050 (13)
C14 0.0269 (15) 0.0337 (16) 0.0207 (14) 0.0060 (14) 0.0145 (13) 0.0085 (13)
C15 0.0232 (15) 0.0402 (17) 0.0320 (16) 0.0006 (14) 0.0134 (13) 0.0111 (14)
C16 0.0216 (15) 0.0319 (16) 0.0267 (15) 0.0032 (13) 0.0092 (13) 0.0083 (13)
C17 0.0217 (14) 0.0268 (15) 0.0215 (14) −0.0020 (13) 0.0080 (12) 0.0083 (12)
C18 0.0246 (14) 0.0255 (14) 0.0198 (14) 0.0056 (12) 0.0093 (12) 0.0112 (12)
C19 0.0200 (14) 0.0180 (13) 0.0208 (14) 0.0053 (12) 0.0110 (12) 0.0072 (12)
C20 0.0198 (14) 0.0256 (15) 0.0201 (14) 0.0081 (12) 0.0086 (12) 0.0113 (12)
C21 0.0235 (14) 0.0239 (14) 0.0242 (15) 0.0076 (13) 0.0143 (12) 0.0118 (12)
C22 0.0186 (14) 0.0187 (13) 0.0213 (14) 0.0079 (12) 0.0108 (12) 0.0073 (12)
C23 0.0226 (14) 0.0232 (14) 0.0193 (14) 0.0051 (12) 0.0078 (12) 0.0056 (12)
C24 0.0234 (15) 0.0241 (14) 0.0196 (14) 0.0041 (13) 0.0118 (12) 0.0100 (12)
C25 0.0212 (15) 0.0215 (14) 0.0246 (15) 0.0103 (12) 0.0116 (13) 0.0101 (13)
C26 0.0282 (16) 0.0317 (16) 0.0336 (17) −0.0053 (14) 0.0063 (14) 0.0058 (14)

Geometric parameters (Å, °)

N1—C2 1.364 (3) C12—H12B 0.9900
N1—C9 1.392 (3) C13—C14 1.541 (3)
N1—C18 1.449 (3) C13—H13A 0.9900
N2—C11 1.450 (3) C13—H13B 0.9900
N2—C12 1.486 (3) C14—C17 1.508 (3)
N2—C16 1.487 (3) C14—C15 1.536 (3)
O1—C17 1.228 (3) C14—H14 1.0000
O2—C25 1.208 (3) C15—C16 1.549 (3)
O3—C25 1.349 (3) C15—H15A 0.9900
O3—C26 1.453 (3) C15—H15B 0.9900
C2—C3 1.377 (3) C16—H16A 0.9900
C2—H2 0.9500 C16—H16B 0.9900
C3—C10 1.435 (3) C18—C19 1.517 (3)
C3—C4 1.447 (3) C18—H18A 0.9900
C4—C5 1.401 (3) C18—H18B 0.9900
C4—C9 1.404 (3) C19—C20 1.392 (3)
C5—C6 1.378 (3) C19—C24 1.397 (3)
C5—H5 0.9500 C20—C21 1.375 (3)
C6—C7 1.398 (3) C20—H20 0.9500
C6—H6 0.9500 C21—C22 1.394 (3)
C7—C8 1.374 (3) C21—H21 0.9500
C7—H7 0.9500 C22—C23 1.386 (3)
C8—C9 1.392 (3) C22—C25 1.492 (3)
C8—H8 0.9500 C23—C24 1.389 (3)
C10—C11 1.343 (3) C23—H23 0.9500
C10—H10 0.9500 C24—H24 0.9500
C11—C17 1.478 (3) C26—H26A 0.9800
C12—C13 1.544 (3) C26—H26B 0.9800
C12—H12A 0.9900 C26—H26C 0.9800
C2—N1—C9 108.62 (19) C17—C14—H14 111.3
C2—N1—C18 125.6 (2) C15—C14—H14 111.3
C9—N1—C18 125.4 (2) C13—C14—H14 111.3
C11—N2—C12 109.37 (18) C14—C15—C16 109.1 (2)
C11—N2—C16 107.79 (19) C14—C15—H15A 109.9
C12—N2—C16 108.0 (2) C16—C15—H15A 109.9
C25—O3—C26 114.8 (2) C14—C15—H15B 109.9
N1—C2—C3 110.7 (2) C16—C15—H15B 109.9
N1—C2—H2 124.7 H15A—C15—H15B 108.3
C3—C2—H2 124.7 N2—C16—C15 111.3 (2)
C2—C3—C10 128.3 (2) N2—C16—H16A 109.4
C2—C3—C4 105.9 (2) C15—C16—H16A 109.4
C10—C3—C4 125.7 (2) N2—C16—H16B 109.4
C5—C4—C9 118.2 (2) C15—C16—H16B 109.4
C5—C4—C3 134.6 (2) H16A—C16—H16B 108.0
C9—C4—C3 107.2 (2) O1—C17—C11 125.4 (2)
C6—C5—C4 119.1 (2) O1—C17—C14 123.8 (2)
C6—C5—H5 120.4 C11—C17—C14 110.8 (2)
C4—C5—H5 120.4 N1—C18—C19 113.29 (19)
C5—C6—C7 121.2 (2) N1—C18—H18A 108.9
C5—C6—H6 119.4 C19—C18—H18A 108.9
C7—C6—H6 119.4 N1—C18—H18B 108.9
C8—C7—C6 121.4 (2) C19—C18—H18B 108.9
C8—C7—H7 119.3 H18A—C18—H18B 107.7
C6—C7—H7 119.3 C20—C19—C24 118.6 (2)
C7—C8—C9 116.9 (2) C20—C19—C18 119.7 (2)
C7—C8—H8 121.5 C24—C19—C18 121.6 (2)
C9—C8—H8 121.5 C21—C20—C19 121.0 (2)
N1—C9—C8 129.2 (2) C21—C20—H20 119.5
N1—C9—C4 107.7 (2) C19—C20—H20 119.5
C8—C9—C4 123.2 (2) C20—C21—C22 120.3 (2)
C11—C10—C3 129.5 (2) C20—C21—H21 119.9
C11—C10—H10 115.3 C22—C21—H21 119.9
C3—C10—H10 115.3 C23—C22—C21 119.5 (2)
C10—C11—N2 124.3 (2) C23—C22—C25 122.4 (2)
C10—C11—C17 122.2 (2) C21—C22—C25 118.1 (2)
N2—C11—C17 113.4 (2) C22—C23—C24 120.1 (2)
N2—C12—C13 111.7 (2) C22—C23—H23 120.0
N2—C12—H12A 109.3 C24—C23—H23 120.0
C13—C12—H12A 109.3 C23—C24—C19 120.6 (2)
N2—C12—H12B 109.3 C23—C24—H24 119.7
C13—C12—H12B 109.3 C19—C24—H24 119.7
H12A—C12—H12B 107.9 O2—C25—O3 123.6 (2)
C14—C13—C12 108.8 (2) O2—C25—C22 124.4 (2)
C14—C13—H13A 109.9 O3—C25—C22 111.9 (2)
C12—C13—H13A 109.9 O3—C26—H26A 109.5
C14—C13—H13B 109.9 O3—C26—H26B 109.5
C12—C13—H13B 109.9 H26A—C26—H26B 109.5
H13A—C13—H13B 108.3 O3—C26—H26C 109.5
C17—C14—C15 107.8 (2) H26A—C26—H26C 109.5
C17—C14—C13 107.2 (2) H26B—C26—H26C 109.5
C15—C14—C13 107.9 (2)
C9—N1—C2—C3 0.0 (3) C12—C13—C14—C15 57.9 (3)
C18—N1—C2—C3 173.2 (2) C17—C14—C15—C16 56.2 (3)
N1—C2—C3—C10 −176.5 (2) C13—C14—C15—C16 −59.3 (3)
N1—C2—C3—C4 0.3 (3) C11—N2—C16—C15 −58.5 (3)
C2—C3—C4—C5 177.7 (3) C12—N2—C16—C15 59.6 (3)
C10—C3—C4—C5 −5.4 (4) C14—C15—C16—N2 0.6 (3)
C2—C3—C4—C9 −0.5 (3) C10—C11—C17—O1 −2.9 (4)
C10—C3—C4—C9 176.4 (2) N2—C11—C17—O1 178.2 (2)
C9—C4—C5—C6 −0.7 (3) C10—C11—C17—C14 177.6 (2)
C3—C4—C5—C6 −178.7 (3) N2—C11—C17—C14 −1.3 (3)
C4—C5—C6—C7 −0.9 (4) C15—C14—C17—O1 123.5 (3)
C5—C6—C7—C8 1.0 (4) C13—C14—C17—O1 −120.5 (3)
C6—C7—C8—C9 0.6 (4) C15—C14—C17—C11 −57.0 (3)
C2—N1—C9—C8 179.3 (2) C13—C14—C17—C11 58.9 (3)
C18—N1—C9—C8 6.0 (4) C2—N1—C18—C19 −98.3 (3)
C2—N1—C9—C4 −0.4 (3) C9—N1—C18—C19 73.8 (3)
C18—N1—C9—C4 −173.6 (2) N1—C18—C19—C20 −170.9 (2)
C7—C8—C9—N1 178.2 (2) N1—C18—C19—C24 8.9 (3)
C7—C8—C9—C4 −2.3 (3) C24—C19—C20—C21 −0.6 (4)
C5—C4—C9—N1 −178.0 (2) C18—C19—C20—C21 179.2 (2)
C3—C4—C9—N1 0.5 (3) C19—C20—C21—C22 0.3 (4)
C5—C4—C9—C8 2.3 (3) C20—C21—C22—C23 0.2 (3)
C3—C4—C9—C8 −179.1 (2) C20—C21—C22—C25 179.8 (2)
C2—C3—C10—C11 −6.3 (4) C21—C22—C23—C24 −0.4 (3)
C4—C3—C10—C11 177.4 (2) C25—C22—C23—C24 180.0 (2)
C3—C10—C11—N2 −4.2 (4) C22—C23—C24—C19 0.1 (4)
C3—C10—C11—C17 177.0 (2) C20—C19—C24—C23 0.4 (3)
C12—N2—C11—C10 123.9 (3) C18—C19—C24—C23 −179.4 (2)
C16—N2—C11—C10 −118.9 (3) C26—O3—C25—O2 −1.8 (3)
C12—N2—C11—C17 −57.2 (3) C26—O3—C25—C22 176.60 (19)
C16—N2—C11—C17 60.0 (3) C23—C22—C25—O2 −176.8 (2)
C11—N2—C12—C13 55.9 (3) C21—C22—C25—O2 3.6 (4)
C16—N2—C12—C13 −61.2 (3) C23—C22—C25—O3 4.8 (3)
N2—C12—C13—C14 1.8 (3) C21—C22—C25—O3 −174.8 (2)
C12—C13—C14—C17 −58.0 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2262).

References

  1. Mason, M. R., Barnard, T. S., Segla, M. F., Xie, B. & Kirschbaum, K. (2003). J. Chem. Crystallogr 33, 531–540.
  2. Nonius (1998). COLLECT Nonius, BV, Delft, The Netherlands.
  3. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Wilson, A. J. C. (1992). International Tables for X-ray Crystallography, Vol. C, Table 9.5.1.1. Dordrecht: Kluwer Academic Publishers.
  6. Zarza, P. M., Gill, P., Díaz González, M. C., Martin Reyes, M. G., Arrieta, J. M., Nastopoulos, V., Germain, G. & Debaerdemaeker, T. (1988). Acta Cryst C44, 678–681.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808030018/om2262sup1.cif

e-64-o2050-sup1.cif (22.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808030018/om2262Isup2.hkl

e-64-o2050-Isup2.hkl (194.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES