Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 18;64(Pt 11):m1446. doi: 10.1107/S1600536808031656

Di-μ-chlorido-bis­{[2-(8-quinol­yloxy)­acetato-κ3 N,O 1,O 2]copper(II)}

Zhi-hong Wang a, Jun Fan a, Wei-guang Zhang a,*, Jun Wang a
PMCID: PMC2959508  PMID: 21580885

Abstract

The title compound, [Cu2(C11H8NO3)2Cl2], is a bicopper(II) complex. Each CuII ion is five-coordinated by two O atoms and one N atom from the (8-quinol­yloxy)acetate ligand, and by two μ2-chloride ligands, thus exhibiting a distorted square-pyramidal CuCl2NO2 coordination environment. Each (8-quinol­yloxy)acetate anion acts as a tridentate chelating ligand. In the crystal structure, adjacent quinolyl rings are involved in strong π–π stacking inter­actions, with inter­planar distances of 3.549 (5) and 3.763 (5) Å, thereby forming a two-dimensional planar network perpendicular to the ab plane. Furthermore, a weak inter­action [2.750 (4) Å] is observed within these planes between one CuII ion and a carboxyl­ate O atom from a ligand in an adjacent mol­ecule, which also contributes to the stability of the structure.

Related literature

For general background, see: Hong et al. (2006); Sudik et al. (2005); Dong et al. (2007); Tong et al., 1999. For related structures, see: Wang & Lu (2004); Wang et al. (2005). Koelsch (1931) reports the synthesis of the (8-quinol­yloxy)acetate ligand.graphic file with name e-64-m1446-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C11H8NO3)2Cl2]

  • M r = 602.35

  • Monoclinic, Inline graphic

  • a = 8.3796 (17) Å

  • b = 19.195 (4) Å

  • c = 13.392 (3) Å

  • β = 98.85 (3)°

  • V = 2128.4 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.29 mm−1

  • T = 298 (2) K

  • 0.36 × 0.30 × 0.24 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.462, T max = 0.582

  • 11625 measured reflections

  • 4179 independent reflections

  • 2737 reflections with I > 2σ(I)

  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.087

  • S = 1.01

  • 4179 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031656/zl2140sup1.cif

e-64-m1446-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031656/zl2140Isup2.hkl

e-64-m1446-Isup2.hkl (204.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (grant No. 20771040).

supplementary crystallographic information

Comment

Metal–polycarboxylate coordination polymers have attracted considerable attention in past decades, owing to their fascinating architectures and potential applications as new materials in gas absorption, catalysis and luminescence (Dong et al., 2007; Sudik et al., 2005). However, only a limited amount of work has been reported on the use of benzene polycarboxylate ligands that combine characteristics of both flexibility and rigidity (Hong et al., 2006; Wang & Lu, 2004; Wang et al., 2005).

Herein, we report the crystal structure of the title compound, (I). A perspective view of the binuclear copper complex (I), showing the atomic numbering scheme, is depicted in Fig. 1. The coordination geometry around the CuII ion may be described as a slightly distorted square pyramid, the basal plane being defined by one N atom, two O atoms from (8-quinolyloxy)acetate and one chloride anion; the apical position is occupied by another bridging chloride anion from the adjacent copper(II) unit, this atom being coordinated at a longer distance [Cu1—Cl2 = 2.823 (14) Å and Cu2—Cl1 = 2.776 (12) Å]. Thus, two chlorides form bi-bridges between two CuII ions, which link two CuII units to generate a binuclear complex. Each (8-quinolyloxy)acetate molecule acts as a tridentate chelating ligand. The inequivalence of the carboxylate C—O distances may be correlated with their involvement in bonding with the CuII centres.

In the crystal structure, adjacent quinolinyl rings are involved in strong π-π stacking attractions by partial overlapping of π-electron densities (Tong et al., 1999). The centroid-centroid separation between rings A (atoms N1/C1—C4/C9) and Bi [atoms C15—C20; symmetry code: (i): - x, 1/2 + y, 1/2 - z] is 3.763 (5) Å, and the other between rings C (atoms C4—C9) and Dj [atoms N2/C12—C15/C20; symmetry code: (j): 1- x, 1/2 + y, 1/2 - z] is 3.549 (5) Å. Considering these π-π intermolecular attractions, they imply the formation of a two-dimensional planar network perpendicular to the ab plane (Fig. 2). Furthermore, a weak interaction [2.750 (4) Å] is observed between the atom Cu1 and carboxylate oxygen atom O6k [symmetry code: (k): -1+x,y,z] from the ligand in adjacent CuII unit, thus contributing to the two-dimensional network's stability (Fig. 2).

Experimental

The ligand quinolin-8-yloxyacetic acid was prepared according to the general procedure reported by Koelsch (1931). An aqueous solution of CuCl2.2 H2O (0.057 g, 0.33 mmol) was added dropwise to the mixture of Y(NO3)3.6 H2O (0.064 g, 0.17 mmol) and quinolin-8-yloxyacetic acid (0.103 g, 0.50 mmol) in aqueous solution at 343 K, and the pH value was adjusted to be about 5 with NaOH. After stirring for 0.5 h, the resulting green solution was filtered. Slow evaporation from the filtrate for several weeks yielded green block-like crystals suitable for X-ray analysis. IR (KBr pellet, cm-1): 3051, 1650, 1628, 1505, 1429, 1379, 1317, 1263, 1115, 837, 772.

Refinement

All the H atoms were placed in calculated positions and were allowed to ride on their parent atoms; C—H = 0.93 (aromatic C—H) and 0.97 (methylene) Å and Uiso(H) = 1.2 Ueq of the carrier atom.

Figures

Fig. 1.

Fig. 1.

An ORTEP-3 (Farrugia, 1997) plot of (I), with displacement ellipsoids at the 50% probability level. All H atoms are drawn as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The packing diagram of (I), viewed perpendicular to the ab plane, showing the two-dimensional planar network generated by the π-π and weak Cu···O interactions. All H atoms have been omitted for clarity. [Symmetry codes: (i): -x, 1/2 + y, 1/2 - z; (j): 1 - x, 1/2 + y, 1/2 - z].

Crystal data

[Cu2(C11H8NO3)2Cl2] F(000) = 1208
Mr = 602.35 Dx = 1.880 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2969 reflections
a = 8.3796 (17) Å θ = 1.9–27.8°
b = 19.195 (4) Å µ = 2.30 mm1
c = 13.392 (3) Å T = 298 K
β = 98.85 (3)° Block, green
V = 2128.4 (8) Å3 0.36 × 0.30 × 0.24 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 4179 independent reflections
Radiation source: fine-focus sealed tube 2737 reflections with I > 2σ(I)
graphite Rint = 0.049
φ and ω scans θmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→10
Tmin = 0.462, Tmax = 0.582 k = −19→23
11625 measured reflections l = −16→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0256P)2 + 1.1172P] where P = (Fo2 + 2Fc2)/3
4179 reflections (Δ/σ)max = 0.001
307 parameters Δρmax = 0.44 e Å3
0 restraints Δρmin = −0.47 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8714 (5) −0.0068 (2) 0.8758 (3) 0.0368 (10)
H1 0.8366 0.0265 0.9181 0.044*
C2 0.8505 (5) −0.0778 (2) 0.8966 (3) 0.0432 (12)
H2 0.8054 −0.0908 0.9531 0.052*
C3 0.8959 (5) −0.1275 (2) 0.8345 (3) 0.0428 (12)
H3 0.8799 −0.1744 0.8473 0.051*
C4 0.9673 (5) −0.10730 (19) 0.7508 (3) 0.0325 (10)
C5 1.0242 (5) −0.1536 (2) 0.6825 (4) 0.0409 (12)
H5 1.0099 −0.2012 0.6900 0.049*
C6 1.0990 (5) −0.1304 (2) 0.6066 (4) 0.0434 (12)
H6 1.1356 −0.1624 0.5631 0.052*
C7 1.1226 (5) −0.05832 (19) 0.5921 (3) 0.0345 (10)
H7 1.1760 −0.0427 0.5403 0.041*
C8 1.0658 (5) −0.01268 (18) 0.6549 (3) 0.0282 (9)
C9 0.9887 (4) −0.03519 (19) 0.7356 (3) 0.0270 (9)
C10 1.1952 (5) 0.09524 (18) 0.6061 (3) 0.0322 (10)
H10A 1.1737 0.0926 0.5329 0.039*
H10B 1.3003 0.0748 0.6291 0.039*
C11 1.1912 (5) 0.17117 (19) 0.6411 (3) 0.0321 (10)
C12 0.6792 (5) 0.2987 (2) 0.6160 (3) 0.0381 (11)
H12 0.7235 0.2651 0.5784 0.046*
C13 0.6801 (5) 0.3683 (2) 0.5850 (3) 0.0437 (12)
H13 0.7255 0.3802 0.5282 0.052*
C14 0.6146 (5) 0.4184 (2) 0.6376 (3) 0.0404 (11)
H14 0.6133 0.4646 0.6163 0.049*
C15 0.5487 (5) 0.40025 (19) 0.7247 (3) 0.0302 (10)
C16 0.4806 (5) 0.4478 (2) 0.7871 (3) 0.0371 (11)
H16 0.4763 0.4950 0.7709 0.044*
C17 0.4217 (5) 0.4254 (2) 0.8700 (3) 0.0380 (11)
H17 0.3793 0.4578 0.9105 0.046*
C18 0.4230 (5) 0.35414 (19) 0.8967 (3) 0.0340 (10)
H18 0.3814 0.3392 0.9536 0.041*
C19 0.4869 (5) 0.30816 (18) 0.8366 (3) 0.0288 (9)
C20 0.5517 (4) 0.32890 (18) 0.7511 (3) 0.0273 (9)
C21 0.3712 (5) 0.20080 (18) 0.8940 (3) 0.0307 (10)
H21A 0.2681 0.2219 0.8677 0.037*
H21B 0.3863 0.2032 0.9672 0.037*
C22 0.3754 (5) 0.1251 (2) 0.8592 (3) 0.0323 (10)
Cl1 0.88233 (13) 0.17203 (5) 0.87627 (8) 0.0355 (3)
Cl2 0.68751 (13) 0.12051 (5) 0.62854 (8) 0.0378 (3)
Cu1 0.98473 (6) 0.11091 (2) 0.75955 (4) 0.03462 (16)
Cu2 0.59143 (6) 0.18353 (2) 0.74655 (4) 0.03365 (16)
N1 0.9383 (4) 0.01413 (15) 0.7986 (2) 0.0284 (8)
N2 0.6180 (4) 0.27902 (15) 0.6966 (2) 0.0284 (8)
O1 1.0725 (3) 0.05920 (12) 0.6493 (2) 0.0345 (7)
O2 1.0939 (3) 0.18630 (12) 0.7016 (2) 0.0350 (7)
O3 1.2868 (4) 0.21096 (14) 0.6113 (2) 0.0504 (9)
O4 0.5008 (3) 0.23677 (12) 0.85579 (19) 0.0296 (6)
O5 0.4801 (3) 0.10898 (12) 0.8035 (2) 0.0369 (7)
O6 0.2728 (4) 0.08555 (14) 0.8829 (2) 0.0501 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.037 (3) 0.038 (2) 0.040 (3) −0.0059 (19) 0.018 (2) −0.001 (2)
C2 0.047 (3) 0.042 (3) 0.043 (3) −0.010 (2) 0.017 (2) 0.015 (2)
C3 0.045 (3) 0.028 (2) 0.055 (3) −0.005 (2) 0.006 (2) 0.007 (2)
C4 0.031 (3) 0.025 (2) 0.040 (3) −0.0021 (17) 0.001 (2) 0.0057 (19)
C5 0.042 (3) 0.017 (2) 0.062 (3) 0.0001 (18) 0.002 (2) −0.002 (2)
C6 0.048 (3) 0.031 (2) 0.049 (3) 0.009 (2) 0.001 (2) −0.015 (2)
C7 0.039 (3) 0.032 (2) 0.032 (3) 0.0041 (18) 0.006 (2) −0.0038 (19)
C8 0.029 (2) 0.021 (2) 0.034 (2) 0.0002 (16) 0.0036 (19) −0.0039 (17)
C9 0.025 (2) 0.026 (2) 0.030 (2) 0.0031 (16) 0.0046 (18) 0.0019 (18)
C10 0.035 (3) 0.033 (2) 0.032 (2) −0.0030 (18) 0.0151 (19) 0.0014 (19)
C11 0.034 (3) 0.029 (2) 0.034 (3) −0.0018 (18) 0.008 (2) 0.0014 (19)
C12 0.042 (3) 0.039 (2) 0.036 (3) −0.007 (2) 0.015 (2) −0.004 (2)
C13 0.054 (3) 0.043 (3) 0.037 (3) −0.009 (2) 0.016 (2) 0.006 (2)
C14 0.048 (3) 0.031 (2) 0.043 (3) −0.006 (2) 0.009 (2) 0.008 (2)
C15 0.028 (2) 0.028 (2) 0.033 (3) −0.0051 (17) 0.0011 (19) 0.0008 (18)
C16 0.040 (3) 0.022 (2) 0.047 (3) 0.0005 (18) 0.000 (2) −0.004 (2)
C17 0.042 (3) 0.027 (2) 0.048 (3) 0.0005 (19) 0.014 (2) −0.009 (2)
C18 0.038 (3) 0.030 (2) 0.037 (3) −0.0006 (18) 0.017 (2) −0.0072 (19)
C19 0.031 (2) 0.023 (2) 0.032 (2) −0.0030 (17) 0.0058 (19) 0.0014 (18)
C20 0.028 (2) 0.022 (2) 0.032 (2) −0.0033 (16) 0.0042 (18) −0.0042 (17)
C21 0.032 (2) 0.028 (2) 0.036 (3) −0.0038 (17) 0.0158 (19) −0.0004 (18)
C22 0.038 (3) 0.029 (2) 0.030 (3) −0.0011 (18) 0.005 (2) 0.0003 (18)
Cl1 0.0459 (7) 0.0303 (5) 0.0342 (6) 0.0017 (4) 0.0184 (5) −0.0031 (4)
Cl2 0.0448 (7) 0.0367 (6) 0.0346 (6) 0.0054 (5) 0.0142 (5) −0.0073 (5)
Cu1 0.0460 (3) 0.0222 (3) 0.0414 (3) −0.0020 (2) 0.0248 (2) −0.0008 (2)
Cu2 0.0420 (3) 0.0234 (3) 0.0405 (3) −0.0009 (2) 0.0220 (2) −0.0033 (2)
N1 0.0268 (19) 0.0278 (17) 0.033 (2) −0.0023 (14) 0.0128 (15) 0.0011 (15)
N2 0.030 (2) 0.0251 (17) 0.032 (2) −0.0029 (14) 0.0101 (16) −0.0027 (15)
O1 0.0459 (19) 0.0225 (14) 0.0404 (18) −0.0029 (12) 0.0241 (14) 0.0024 (12)
O2 0.0457 (19) 0.0259 (14) 0.0383 (18) −0.0044 (13) 0.0220 (14) −0.0003 (13)
O3 0.055 (2) 0.0372 (17) 0.067 (2) −0.0154 (15) 0.0353 (18) −0.0038 (16)
O4 0.0359 (17) 0.0216 (13) 0.0355 (17) −0.0016 (11) 0.0192 (13) −0.0022 (12)
O5 0.0466 (19) 0.0231 (14) 0.0464 (19) −0.0008 (13) 0.0240 (15) −0.0021 (13)
O6 0.055 (2) 0.0334 (16) 0.070 (2) −0.0102 (15) 0.0363 (18) −0.0018 (16)

Geometric parameters (Å, °)

C1—N1 1.312 (5) C14—C15 1.409 (6)
C1—C2 1.409 (5) C14—H14 0.9300
C1—H1 0.9300 C15—C20 1.414 (5)
C2—C3 1.357 (6) C15—C16 1.416 (5)
C2—H2 0.9300 C16—C17 1.353 (6)
C3—C4 1.405 (6) C16—H16 0.9300
C3—H3 0.9300 C17—C18 1.414 (5)
C4—C5 1.408 (6) C17—H17 0.9300
C4—C9 1.414 (5) C18—C19 1.359 (5)
C5—C6 1.349 (6) C18—H18 0.9300
C5—H5 0.9300 C19—O4 1.396 (4)
C6—C7 1.416 (5) C19—C20 1.398 (5)
C6—H6 0.9300 C20—N2 1.372 (5)
C7—C8 1.351 (5) C21—O4 1.445 (4)
C7—H7 0.9300 C21—C22 1.528 (5)
C8—O1 1.383 (4) C21—H21A 0.9700
C8—C9 1.409 (5) C21—H21B 0.9700
C9—N1 1.377 (5) C22—O6 1.224 (5)
C10—O1 1.433 (4) C22—O5 1.274 (5)
C10—C11 1.533 (5) Cl1—Cu1 2.2290 (12)
C10—H10A 0.9700 Cl2—Cu2 2.2362 (12)
C10—H10B 0.9700 Cu1—O2 1.937 (3)
C11—O3 1.218 (5) Cu1—N1 1.985 (3)
C11—O2 1.269 (5) Cu1—O1 2.011 (3)
C12—N2 1.320 (5) Cu2—O5 1.929 (3)
C12—C13 1.400 (5) Cu2—N2 1.976 (3)
C12—H12 0.9300 Cu2—O4 2.026 (3)
C13—C14 1.357 (6) Cu1—Cl2 2.8232 (14)
C13—H13 0.9300 Cu2—Cl1 2.7761 (12)
N1—C1—C2 122.2 (4) C17—C16—H16 119.6
N1—C1—H1 118.9 C15—C16—H16 119.6
C2—C1—H1 118.9 C16—C17—C18 121.7 (4)
C3—C2—C1 120.2 (4) C16—C17—H17 119.1
C3—C2—H2 119.9 C18—C17—H17 119.1
C1—C2—H2 119.9 C19—C18—C17 117.8 (4)
C2—C3—C4 119.4 (4) C19—C18—H18 121.1
C2—C3—H3 120.3 C17—C18—H18 121.1
C4—C3—H3 120.3 C18—C19—O4 123.9 (4)
C3—C4—C5 124.9 (4) C18—C19—C20 122.6 (4)
C3—C4—C9 117.6 (4) O4—C19—C20 113.5 (3)
C5—C4—C9 117.4 (4) N2—C20—C19 118.5 (3)
C6—C5—C4 121.6 (4) N2—C20—C15 122.4 (4)
C6—C5—H5 119.2 C19—C20—C15 119.1 (4)
C4—C5—H5 119.2 O4—C21—C22 107.0 (3)
C5—C6—C7 121.1 (4) O4—C21—H21A 110.3
C5—C6—H6 119.5 C22—C21—H21A 110.3
C7—C6—H6 119.5 O4—C21—H21B 110.3
C8—C7—C6 118.6 (4) C22—C21—H21B 110.3
C8—C7—H7 120.7 H21A—C21—H21B 108.6
C6—C7—H7 120.7 O6—C22—O5 125.1 (4)
C7—C8—O1 126.2 (4) O6—C22—C21 117.4 (4)
C7—C8—C9 121.7 (3) O5—C22—C21 117.3 (3)
O1—C8—C9 112.0 (3) O2—Cu1—N1 158.25 (12)
N1—C9—C8 118.6 (3) O2—Cu1—O1 79.98 (11)
N1—C9—C4 121.8 (4) N1—Cu1—O1 80.80 (12)
C8—C9—C4 119.6 (4) O2—Cu1—Cl1 98.29 (9)
O1—C10—C11 106.5 (3) N1—Cu1—Cl1 101.28 (10)
O1—C10—H10A 110.4 O1—Cu1—Cl1 177.22 (8)
C11—C10—H10A 110.4 O5—Cu2—N2 155.37 (13)
O1—C10—H10B 110.4 O5—Cu2—O4 80.24 (11)
C11—C10—H10B 110.4 N2—Cu2—O4 81.42 (12)
H10A—C10—H10B 108.6 O5—Cu2—Cl2 97.29 (9)
O3—C11—O2 125.9 (4) N2—Cu2—Cl2 101.01 (10)
O3—C11—C10 116.7 (4) O4—Cu2—Cl2 177.52 (8)
O2—C11—C10 117.3 (3) C1—N1—C9 118.8 (3)
N2—C12—C13 122.4 (4) C1—N1—Cu1 128.2 (3)
N2—C12—H12 118.8 C9—N1—Cu1 113.0 (2)
C13—C12—H12 118.8 C12—N2—C20 118.4 (3)
C14—C13—C12 120.1 (4) C12—N2—Cu2 128.4 (3)
C14—C13—H13 119.9 C20—N2—Cu2 113.0 (3)
C12—C13—H13 119.9 C8—O1—C10 122.8 (3)
C13—C14—C15 119.7 (4) C8—O1—Cu1 115.4 (2)
C13—C14—H14 120.2 C10—O1—Cu1 115.1 (2)
C15—C14—H14 120.2 C11—O2—Cu1 118.3 (2)
C14—C15—C20 117.0 (4) C19—O4—C21 119.2 (3)
C14—C15—C16 125.0 (4) C19—O4—Cu2 113.1 (2)
C20—C15—C16 118.0 (4) C21—O4—Cu2 113.6 (2)
C17—C16—C15 120.7 (4) C22—O5—Cu2 118.1 (2)
N1—C1—C2—C3 −1.9 (7) O1—Cu1—N1—C1 179.2 (4)
C1—C2—C3—C4 1.5 (7) Cl1—Cu1—N1—C1 −2.7 (4)
C2—C3—C4—C5 177.9 (4) O2—Cu1—N1—C9 −27.2 (5)
C2—C3—C4—C9 0.1 (6) O1—Cu1—N1—C9 0.9 (3)
C3—C4—C5—C6 −176.6 (4) Cl1—Cu1—N1—C9 179.0 (2)
C9—C4—C5—C6 1.2 (6) C13—C12—N2—C20 0.6 (6)
C4—C5—C6—C7 −0.4 (7) C13—C12—N2—Cu2 175.1 (3)
C5—C6—C7—C8 −1.2 (6) C19—C20—N2—C12 −179.9 (4)
C6—C7—C8—O1 −177.3 (4) C15—C20—N2—C12 −0.8 (6)
C6—C7—C8—C9 1.9 (6) C19—C20—N2—Cu2 4.7 (4)
C7—C8—C9—N1 178.0 (3) C15—C20—N2—Cu2 −176.2 (3)
O1—C8—C9—N1 −2.7 (5) O5—Cu2—N2—C12 −138.4 (4)
C7—C8—C9—C4 −1.0 (6) O4—Cu2—N2—C12 179.4 (4)
O1—C8—C9—C4 178.2 (3) Cl2—Cu2—N2—C12 −1.1 (4)
C3—C4—C9—N1 −1.6 (6) O5—Cu2—N2—C20 36.4 (5)
C5—C4—C9—N1 −179.5 (3) O4—Cu2—N2—C20 −5.8 (2)
C3—C4—C9—C8 177.4 (4) Cl2—Cu2—N2—C20 173.7 (2)
C5—C4—C9—C8 −0.5 (6) C7—C8—O1—C10 −27.5 (6)
O1—C10—C11—O3 −179.3 (4) C9—C8—O1—C10 153.3 (3)
O1—C10—C11—O2 3.5 (5) C7—C8—O1—Cu1 −177.4 (3)
N2—C12—C13—C14 −0.8 (7) C9—C8—O1—Cu1 3.4 (4)
C12—C13—C14—C15 1.2 (7) C11—C10—O1—C8 −163.9 (3)
C13—C14—C15—C20 −1.4 (6) C11—C10—O1—Cu1 −13.9 (4)
C13—C14—C15—C16 178.5 (4) O2—Cu1—O1—C8 167.3 (3)
C14—C15—C16—C17 −179.3 (4) N1—Cu1—O1—C8 −2.5 (2)
C20—C15—C16—C17 0.6 (6) O2—Cu1—O1—C10 15.1 (2)
C15—C16—C17—C18 −1.1 (6) N1—Cu1—O1—C10 −154.7 (3)
C16—C17—C18—C19 0.5 (6) O3—C11—O2—Cu1 −167.7 (3)
C17—C18—C19—O4 177.8 (3) C10—C11—O2—Cu1 9.2 (5)
C17—C18—C19—C20 0.6 (6) N1—Cu1—O2—C11 14.9 (5)
C18—C19—C20—N2 178.1 (4) O1—Cu1—O2—C11 −13.4 (3)
O4—C19—C20—N2 0.6 (5) Cl1—Cu1—O2—C11 168.8 (3)
C18—C19—C20—C15 −1.0 (6) C18—C19—O4—C21 39.6 (5)
O4—C19—C20—C15 −178.5 (3) C20—C19—O4—C21 −143.0 (3)
C14—C15—C20—N2 1.3 (6) C18—C19—O4—Cu2 177.1 (3)
C16—C15—C20—N2 −178.7 (3) C20—C19—O4—Cu2 −5.4 (4)
C14—C15—C20—C19 −179.6 (4) C22—C21—O4—C19 152.5 (3)
C16—C15—C20—C19 0.4 (5) C22—C21—O4—Cu2 15.1 (4)
O4—C21—C22—O6 −179.0 (3) O5—Cu2—O4—C19 −157.3 (2)
O4—C21—C22—O5 −2.6 (5) N2—Cu2—O4—C19 6.2 (2)
C2—C1—N1—C9 0.5 (6) O5—Cu2—O4—C21 −17.3 (2)
C2—C1—N1—Cu1 −177.8 (3) N2—Cu2—O4—C21 146.2 (3)
C8—C9—N1—C1 −177.7 (3) O6—C22—O5—Cu2 163.8 (3)
C4—C9—N1—C1 1.3 (6) C21—C22—O5—Cu2 −12.3 (5)
C8—C9—N1—Cu1 0.7 (4) N2—Cu2—O5—C22 −25.9 (5)
C4—C9—N1—Cu1 179.7 (3) O4—Cu2—O5—C22 16.5 (3)
O2—Cu1—N1—C1 151.1 (3) Cl2—Cu2—O5—C22 −163.8 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2140).

References

  1. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dong, Y. B., Jiang, Y. Y., Li, J., Ma, J. P., Liu, F. L., Tang, B., Huang, R. Q. & Batten, S. R. (2007). J. Am. Chem. Soc.129, 4520–4521. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Hong, X. L., Li, Y. Z., Hu, H. M., Pan, Y., Bai, J. F. & You, X. Z. (2006). Cryst. Growth Des.6, 1221–1226.
  6. Koelsch, C. F. (1931). J. Am. Chem. Soc.53, 304–305.
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sudik, A. C., Millward, A. R., Ockwig, N. W., Cote, A. P., Kim, J. & Yaghi, O. M. (2005). J. Am. Chem. Soc.127, 7110–7118. [DOI] [PubMed]
  10. Tong, M. L., Lee, H. K., Chen, X. M., Huang, R. B. & Mak, T. C. W. (1999). J. Chem. Soc. Dalton Trans. pp. 3657–3659.
  11. Wang, Y.-H. & Lu, F. (2004). Acta Cryst. C60, m557–m559. [DOI] [PubMed]
  12. Wang, Y. H., Song, R. F. & Zhang, F. Y. (2005). J. Mol. Struct.752, 104–109.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031656/zl2140sup1.cif

e-64-m1446-sup1.cif (23.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031656/zl2140Isup2.hkl

e-64-m1446-Isup2.hkl (204.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES