Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 9;64(Pt 11):m1369. doi: 10.1107/S1600536808023817

Potassium l-2-nitrimino-1,3-diazepane-4-carboxyl­ate monohydrate

Harutyun A Karapetyan a,*
PMCID: PMC2959513  PMID: 21580827

Abstract

The title compound, K+·C6H9N4O4 ·H2O, crystallizes with the K atoms located on special positions related by pseudocentres of symmetry. Each K atom is coordinated by six O-atom donors. The N and water H atoms are involved in inter- and intra­molecular N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonding. The data indicate inversion twinning.

Related literature

For related literature, see: Apreyan & Petrosyan (2008); Apreyan et al. (2008a ,b ); Karapetyan (2008a ,b ); Karapetyan et al. (2007); Kurtz & Perry (1968); Paul et al. (1961); Petrosyan et al. (2005).graphic file with name e-64-m1369-scheme1.jpg

Experimental

Crystal data

  • K+·C6H9N4O4 ·H2O

  • M r = 258.29

  • Orthorhombic, Inline graphic

  • a = 7.3883 (15) Å

  • b = 10.087 (2) Å

  • c = 29.031 (6) Å

  • V = 2163.5 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 293 (2) K

  • 0.21 × 0.14 × 0.11 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 5030 measured reflections

  • 3141 independent reflections

  • 1736 reflections with I > 2σ(I)

  • R int = 0.030

  • 3 standard reflections every 400 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065

  • wR(F 2) = 0.193

  • S = 1.04

  • 3141 reflections

  • 154 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.39 e Å−3

  • Absolute structure: Flack (1983), 1350 Friedel pairs

  • Flack parameter: 0.48 (20)

Data collection: DATCOL in CAD-4 Software (Enraf–Nonius, 1988); cell refinement: LS in CAD-4 Software; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808023817/hg2410sup1.cif

e-64-m1369-sup1.cif (22KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023817/hg2410Isup2.hkl

e-64-m1369-Isup2.hkl (154.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H11⋯O1i 0.87 (2) 2.09 (5) 2.885 (5) 153 (10)
O5—H10⋯O3ii 0.856 (19) 2.03 (4) 2.793 (4) 148 (6)
N2—H9⋯N3iii 0.86 2.39 3.080 (4) 138
N1—H2⋯O3 0.86 2.09 2.561 (5) 114

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The author expresses his thanks to Dr R. A. Apreyan and Dr A. M. Petrosyan for providing the crystals and to Dr R. A. Tamazyan for valuable discussion of the results.

supplementary crystallographic information

Comment

Cyclic L-2-nitrimino-1,3-diazepane-4-carboxylic acid (L-NIDCA), produced by elimination of amine from L-nitroarginine (Paul et al., 1961) , may generate new non-linear optical materials like L-nitroarginine itself [Apreyan et al. (2008a, 2008b); Karapetyan et al.(2007); Petrosyan et al. (2005); the crystal structures of L-NIDCA and its monohydrate have been recently reported [Karapetyan (2008a, 2008b)].

This paper presents a structural study of the potassium salt of L-NIDCA monohydrate. The structure was solved and refined in the orthorhombic unit cell with I222 space group. The choice of the non-centric space group was based on the generation of second harmonic observed on a powder sample (YAG:Nd laser, Kurtz-Perry method [Kurtz & Perry,1968]). In this structure, two independent potassium cations occupy special positions. These potassium atoms are located about pseudo-inversion centers, which is most likely the reason for the presence of high level pseudosymmetry in the structure. Both potassium cations are coordinated by six oxygen atoms with K···O bond lengths in the ranges 2.712 (5)-2.815 (7) Å for K1 and 2.642 (5)-2.783 (6) Å for K2.

A view of the asymmetric unit is shown in Fig. 1. The high value of Ueq of atom C3 of the 1,3-diazepane ring compared to those of its neighbors indicates potential disorder of this atom. In the crystal structure, the nitrogen-bound H atoms and the water H atoms are involved in N—H···O, N—H···N and O—H···O hydrogen bonding (Table 1), one of them being intra- and the other three intermolecular, linking anions and water molecules in infinite layers parallel to the bc plane (Fig. 2).

Experimental

The title compound was synthesized from a mixture of aqueous solutions containing L-nitroarginine (2 g, Sigma-Aldrich) and KOH (0.512 g) at room temperature. Single crystals of the title compound were obtained by slow evaporation of the solution. At 97° C decomposition of the crystals was observed.

Refinement

The data set was collected in a full sphere of reciprocal space. Space group I222 was chosen on the basis of the powder second harmonic of YAG:Nb laser generation property of the crystals of the title compound. In spite of the fact that all H atoms appear in difference Fourier maps in reasonable positions, they became unacceptable after refinement. Because of this, all the H atoms except those belonging to the water molecule were placed in geometrically calculated positions and included in the refinement in a riding model approximation, with Uiso(H) = 1.2Ueq(carrier atom). The positions of the H atoms of the water molecule were located in difference Fourier maps and included in the refinement with fixed O—H (0.85 Å), H···H (1.35 Å) distances and isotropic temperature parameters Uiso(H) = 1.4Ueq(O). The absolute configuration has been determined using L-nitroarginine of known absolute configuration.

Figures

Fig. 1.

Fig. 1.

A perspective view of the asymmetric unit, showing the atomic numbering and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing of the molecules. For clarity, only the donors in the original molecule and their corresponding acceptors are labelled. Symmetry codes are: (i) x, y - 1, z; (ii)-x + 1/2, y - 1/2, -z + 1/2; (iii) x, 2 - y, 1 - z. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

K+·C6H9N4O4·H2O F(000) = 1072
Mr = 258.29 Dx = 1.586 Mg m3
Orthorhombic, I222 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: I 2 2 Cell parameters from 24 reflections
a = 7.3883 (15) Å θ = 14–16°
b = 10.087 (2) Å µ = 0.51 mm1
c = 29.031 (6) Å T = 293 K
V = 2163.5 (8) Å3 Prism, yellow
Z = 8 0.21 × 0.14 × 0.11 mm

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.030
Radiation source: fine-focus sealed tube θmax = 30.0°, θmin = 2.1°
graphite h = −10→10
ω/2θ scans k = −13→13
5030 measured reflections l = −38→38
3141 independent reflections 3 standard reflections every 400 reflections
1726 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.193 w = 1/[σ2(Fo2) + (0.0676P)2 + 6.1136P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3141 reflections Δρmax = 0.43 e Å3
154 parameters Δρmin = −0.39 e Å3
3 restraints Absolute structure: Flack (1983), 1350 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.48 (20)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
K1 0.5000 0.5000 0.26313 (7) 0.0481 (5)
K2 0.0000 0.5000 0.26268 (8) 0.0536 (5)
O1 0.2429 (10) 0.6833 (3) 0.28276 (9) 0.0510 (8)
O2 0.2513 (10) 0.8993 (3) 0.29658 (9) 0.0618 (10)
O3 0.2476 (15) 1.1286 (3) 0.37039 (10) 0.0905 (16)
O4 0.2389 (10) 1.2557 (3) 0.42935 (11) 0.0723 (12)
O5 0.2461 (12) 0.3267 (3) 0.30317 (11) 0.0644 (10)
N1 0.2755 (14) 0.8784 (3) 0.38382 (11) 0.0630 (19)
H2 0.3373 0.9320 0.3670 0.076*
N2 0.2659 (10) 0.8275 (3) 0.46137 (11) 0.0583 (14)
H9 0.3224 0.8526 0.4858 0.070*
N3 0.2516 (11) 1.0441 (3) 0.44244 (10) 0.0490 (10)
N4 0.2478 (12) 1.1416 (3) 0.41290 (11) 0.0526 (10)
C1 0.2419 (12) 0.7820 (4) 0.30906 (13) 0.0433 (11)
C2 0.2101 (7) 0.7544 (4) 0.36059 (14) 0.0397 (12)
H1 0.0794 0.7470 0.3657 0.048*
C3 0.294 (2) 0.6381 (6) 0.37834 (19) 0.118 (5)
H4 0.4240 0.6514 0.3793 0.142*
H3 0.2697 0.5645 0.3578 0.142*
C4 0.2262 (15) 0.6022 (4) 0.42740 (17) 0.069 (2)
H5 0.1150 0.5526 0.4232 0.082*
H6 0.3139 0.5404 0.4399 0.082*
C5 0.1931 (9) 0.6894 (5) 0.46054 (17) 0.0601 (19)
H7 0.2319 0.6481 0.4891 0.072*
H8 0.0624 0.6974 0.4624 0.072*
C6 0.2498 (15) 0.9152 (4) 0.42687 (13) 0.0475 (10)
H10 0.288 (8) 0.279 (5) 0.3251 (13) 0.07 (2)*
H11 0.288 (14) 0.287 (8) 0.2790 (13) 0.16 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
K1 0.0547 (12) 0.0388 (11) 0.0507 (11) 0.0026 (10) 0.000 0.000
K2 0.0566 (12) 0.0404 (12) 0.0637 (13) −0.0021 (11) 0.000 0.000
O1 0.070 (2) 0.0423 (15) 0.0409 (14) 0.000 (3) 0.008 (3) −0.0129 (13)
O2 0.115 (3) 0.0374 (15) 0.0326 (13) 0.013 (4) −0.002 (4) 0.0002 (11)
O3 0.202 (5) 0.0350 (16) 0.0343 (15) −0.001 (5) −0.009 (5) 0.0075 (12)
O4 0.136 (4) 0.0279 (13) 0.0534 (18) 0.006 (4) −0.007 (4) −0.0024 (13)
O5 0.103 (3) 0.0470 (17) 0.0436 (17) −0.009 (4) −0.003 (4) 0.0143 (15)
N1 0.134 (6) 0.0286 (16) 0.0266 (16) −0.021 (4) 0.012 (3) −0.0014 (12)
N2 0.115 (4) 0.0309 (16) 0.0291 (15) −0.017 (3) 0.012 (4) −0.0006 (13)
N3 0.087 (3) 0.0286 (14) 0.0312 (15) 0.007 (4) 0.006 (4) 0.0001 (12)
N4 0.088 (3) 0.0310 (16) 0.0393 (17) 0.005 (4) 0.014 (4) 0.0017 (13)
C1 0.057 (3) 0.039 (2) 0.0339 (18) 0.007 (4) −0.010 (3) −0.0022 (15)
C2 0.049 (3) 0.0352 (19) 0.0344 (19) 0.004 (2) −0.002 (2) −0.0046 (16)
C3 0.267 (17) 0.043 (3) 0.043 (3) 0.046 (7) −0.002 (6) 0.008 (2)
C4 0.125 (6) 0.029 (2) 0.052 (2) −0.013 (4) −0.008 (5) 0.0091 (18)
C5 0.098 (6) 0.037 (2) 0.045 (3) 0.001 (3) 0.004 (3) 0.011 (2)
C6 0.079 (3) 0.0335 (17) 0.0298 (17) −0.002 (5) 0.001 (5) −0.0016 (14)

Geometric parameters (Å, °)

K1—O1 2.712 (5) O4—N4 1.247 (4)
K1—O1i 2.712 (5) O5—H10 0.856 (19)
K1—O2ii 2.736 (6) O5—H11 0.87 (2)
K1—O2iii 2.736 (6) N1—C6 1.318 (5)
K1—O5i 2.815 (7) N1—C2 1.502 (6)
K1—O5 2.815 (7) N1—H2 0.8600
K1—C1ii 3.524 (5) N2—C6 1.342 (5)
K1—C1iii 3.524 (5) N2—C5 1.494 (7)
K1—K2 3.6942 (8) N2—H9 0.8600
K1—K2iv 3.6942 (8) N3—N4 1.305 (4)
K1—H11 2.70 (11) N3—C6 1.377 (5)
K2—O1 2.642 (5) C1—C2 1.540 (6)
K2—O1v 2.642 (5) C1—K1viii 3.524 (5)
K2—O2vi 2.714 (6) C2—C3 1.423 (9)
K2—O2ii 2.714 (6) C2—H1 0.9800
K2—O5 2.783 (6) C3—C4 1.552 (9)
K2—O5v 2.783 (6) C3—H4 0.9700
K2—K1vii 3.6942 (8) C3—H3 0.9700
K2—H11 3.06 (6) C4—C5 1.326 (7)
O1—C1 1.255 (4) C4—H5 0.9700
O2—C1 1.239 (5) C4—H6 0.9700
O2—K2viii 2.714 (6) C5—H7 0.9700
O2—K1viii 2.736 (6) C5—H8 0.9700
O3—N4 1.241 (4)
O1—K1—O1i 155.74 (15) O2ii—K2—K1vii 132.78 (15)
O1—K1—O2ii 84.89 (16) O5—K2—K1vii 130.69 (16)
O1i—K1—O2ii 110.81 (14) O5v—K2—K1vii 49.08 (15)
O1—K1—O2iii 110.81 (14) O1—K2—K1 47.16 (12)
O1i—K1—O2iii 84.89 (16) O1v—K2—K1 132.72 (12)
O2ii—K1—O2iii 101.4 (2) O2vi—K2—K1 132.78 (15)
O1—K1—O5i 87.51 (15) O2ii—K2—K1 47.57 (13)
O1i—K1—O5i 82.52 (14) O5—K2—K1 49.08 (15)
O2ii—K1—O5i 160.81 (11) O5v—K2—K1 130.69 (16)
O2iii—K1—O5i 65.09 (14) K1vii—K2—K1 179.60 (13)
O1—K1—O5 82.52 (14) O1—K2—H11 89 (2)
O1i—K1—O5 87.51 (15) O1v—K2—H11 87 (2)
O2ii—K1—O5 65.09 (14) O2vi—K2—H11 146.2 (10)
O2iii—K1—O5 160.81 (11) O2ii—K2—H11 50.6 (8)
O5i—K1—O5 131.23 (19) O5—K2—H11 16.1 (6)
O1—K1—C1ii 101.25 (17) O5v—K2—H11 146.1 (6)
O1i—K1—C1ii 93.15 (14) K1vii—K2—H11 134 (2)
O2ii—K1—C1ii 17.69 (15) K1—K2—H11 46 (2)
O2iii—K1—C1ii 101.48 (14) C1—O1—K2 133.3 (6)
O5i—K1—C1ii 166.12 (17) C1—O1—K1 132.3 (5)
O5—K1—C1ii 61.33 (12) K2—O1—K1 87.26 (8)
O1—K1—C1iii 93.15 (14) C1—O2—K2viii 125.5 (5)
O1i—K1—C1iii 101.25 (17) C1—O2—K1viii 120.1 (6)
O2ii—K1—C1iii 101.48 (14) K2viii—O2—K1viii 85.34 (8)
O2iii—K1—C1iii 17.69 (15) K2—O5—K1 82.59 (8)
O5i—K1—C1iii 61.33 (12) K2—O5—H10 155 (4)
O5—K1—C1iii 166.12 (17) K1—O5—H10 114 (5)
C1ii—K1—C1iii 107.02 (17) K2—O5—H11 101 (5)
O1—K1—K2 45.59 (12) K1—O5—H11 74 (7)
O1i—K1—K2 134.53 (12) H10—O5—H11 102 (3)
O2ii—K1—K2 47.09 (13) C6—N1—C2 127.9 (6)
O2iii—K1—K2 132.56 (15) C6—N1—H2 116.0
O5i—K1—K2 131.90 (15) C2—N1—H2 116.0
O5—K1—K2 48.33 (15) C6—N2—C5 124.8 (5)
C1ii—K1—K2 59.38 (14) C6—N2—H9 117.6
C1iii—K1—K2 120.34 (15) C5—N2—H9 117.6
O1—K1—K2iv 134.53 (12) N4—N3—C6 119.7 (3)
O1i—K1—K2iv 45.59 (12) O3—N4—O4 118.6 (3)
O2ii—K1—K2iv 132.56 (15) O3—N4—N3 125.0 (3)
O2iii—K1—K2iv 47.09 (13) O4—N4—N3 116.4 (3)
O5i—K1—K2iv 48.33 (15) O2—C1—O1 125.4 (4)
O5—K1—K2iv 131.90 (15) O2—C1—C2 117.8 (3)
C1ii—K1—K2iv 120.34 (15) O1—C1—C2 116.6 (4)
C1iii—K1—K2iv 59.38 (14) O2—C1—K1viii 42.2 (4)
K2—K1—K2iv 179.60 (13) O1—C1—K1viii 97.8 (3)
O1—K1—H11 95.8 (12) C2—C1—K1viii 127.8 (4)
O1i—K1—H11 80.1 (15) C3—C2—N1 112.6 (5)
O2ii—K1—H11 54.4 (13) C3—C2—C1 115.8 (5)
O2iii—K1—H11 142.9 (4) N1—C2—C1 103.6 (4)
O5i—K1—H11 144.2 (12) C3—C2—H1 108.2
O5—K1—H11 17.9 (4) N1—C2—H1 108.2
C1ii—K1—H11 46.4 (10) C1—C2—H1 108.2
C1iii—K1—H11 153.2 (8) C2—C3—C4 112.6 (8)
K2—K1—H11 54.5 (15) C2—C3—H4 109.1
K2iv—K1—H11 125.5 (15) C4—C3—H4 109.1
O1—K2—O1v 154.51 (16) C2—C3—H3 109.1
O1—K2—O2vi 109.73 (14) C4—C3—H3 109.1
O1v—K2—O2vi 86.68 (16) H4—C3—H3 107.8
O1—K2—O2ii 86.68 (16) C5—C4—C3 124.8 (4)
O1v—K2—O2ii 109.73 (14) C5—C4—H5 106.1
O2vi—K2—O2ii 101.3 (2) C3—C4—H5 106.1
O1—K2—O5 84.41 (15) C5—C4—H6 106.1
O1v—K2—O5 84.89 (16) C3—C4—H6 106.1
O2vi—K2—O5 160.93 (12) H5—C4—H6 106.3
O2ii—K2—O5 65.81 (15) C4—C5—N2 124.3 (5)
O1—K2—O5v 84.89 (16) C4—C5—H7 106.3
O1v—K2—O5v 84.41 (15) N2—C5—H7 106.3
O2vi—K2—O5v 65.81 (15) C4—C5—H8 106.3
O2ii—K2—O5v 160.93 (12) N2—C5—H8 106.3
O5—K2—O5v 130.0 (2) H7—C5—H8 106.4
O1—K2—K1vii 132.72 (12) N1—C6—N2 120.6 (4)
O1v—K2—K1vii 47.16 (12) N1—C6—N3 125.2 (4)
O2vi—K2—K1vii 47.57 (13) N2—C6—N3 112.1 (3)
O1v—K2—O1—C1 −49.9 (4) O2ii—K1—O5—K2 −53.73 (14)
O2vi—K2—O1—C1 77.6 (4) O2iii—K1—O5—K2 −101.4 (5)
O2ii—K2—O1—C1 178.5 (4) O5i—K1—O5—K2 114.12 (11)
O5—K2—O1—C1 −115.5 (4) C1ii—K1—O5—K2 −73.12 (16)
O5v—K2—O1—C1 15.6 (4) C1iii—K1—O5—K2 −38.4 (6)
K1vii—K2—O1—C1 27.7 (5) K2iv—K1—O5—K2 −179.55 (14)
K1—K2—O1—C1 −151.7 (4) C6—N3—N4—O3 −2.1 (16)
O1v—K2—O1—K1 101.82 (8) C6—N3—N4—O4 175.9 (10)
O2vi—K2—O1—K1 −130.65 (16) K2viii—O2—C1—O1 −49.8 (12)
O2ii—K2—O1—K1 −29.78 (10) K1viii—O2—C1—O1 57.6 (12)
O5—K2—O1—K1 36.21 (12) K2viii—O2—C1—C2 135.8 (5)
O5v—K2—O1—K1 167.33 (12) K1viii—O2—C1—C2 −116.8 (5)
K1vii—K2—O1—K1 179.47 (16) K2viii—O2—C1—K1viii −107.4 (3)
O1i—K1—O1—C1 49.8 (4) K2—O1—C1—O2 −114.3 (9)
O2ii—K1—O1—C1 −178.2 (4) K1—O1—C1—O2 105.4 (9)
O2iii—K1—O1—C1 −77.9 (4) K2—O1—C1—C2 60.2 (8)
O5i—K1—O1—C1 −15.8 (4) K1—O1—C1—C2 −80.1 (8)
O5—K1—O1—C1 116.3 (4) K2—O1—C1—K1viii −79.4 (3)
C1ii—K1—O1—C1 175.0 (4) K1—O1—C1—K1viii 140.3 (2)
C1iii—K1—O1—C1 −76.9 (5) C6—N1—C2—C3 −67.0 (11)
K2—K1—O1—C1 152.2 (4) C6—N1—C2—C1 167.2 (9)
K2iv—K1—O1—C1 −28.3 (5) O2—C1—C2—C3 −146.7 (9)
O1i—K1—O1—K2 −102.45 (8) O1—C1—C2—C3 38.4 (11)
O2ii—K1—O1—K2 29.60 (10) K1viii—C1—C2—C3 164.0 (6)
O2iii—K1—O1—K2 129.84 (15) O2—C1—C2—N1 −22.9 (10)
O5i—K1—O1—K2 −168.04 (12) O1—C1—C2—N1 162.2 (8)
O5—K1—O1—K2 −35.89 (12) K1viii—C1—C2—N1 −72.2 (6)
C1ii—K1—O1—K2 22.82 (11) N1—C2—C3—C4 72.2 (10)
C1iii—K1—O1—K2 130.87 (14) C1—C2—C3—C4 −168.9 (7)
K2iv—K1—O1—K2 179.46 (17) C2—C3—C4—C5 −39.8 (16)
O1—K2—O5—K1 −34.97 (11) C3—C4—C5—N2 −19.3 (15)
O1v—K2—O5—K1 168.20 (12) C6—N2—C5—C4 52.9 (12)
O2vi—K2—O5—K1 104.1 (5) C2—N1—C6—N2 42.7 (16)
O2ii—K2—O5—K1 53.89 (13) C2—N1—C6—N3 −154.9 (9)
O5v—K2—O5—K1 −113.49 (10) C5—N2—C6—N1 −43.0 (15)
K1vii—K2—O5—K1 −179.56 (14) C5—N2—C6—N3 152.5 (8)
O1—K1—O5—K2 34.09 (11) N4—N3—C6—N1 12.3 (17)
O1i—K1—O5—K2 −168.08 (12) N4—N3—C6—N2 176.0 (9)

Symmetry codes: (i) −x+1, −y+1, z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x+1/2, −y+3/2, −z+1/2; (iv) x+1, y, z; (v) −x, −y+1, z; (vi) x−1/2, −y+3/2, −z+1/2; (vii) x−1, y, z; (viii) −x+1/2, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H11···O1ii 0.87 (2) 2.09 (5) 2.885 (5) 153 (10)
O5—H10···O3ix 0.86 (2) 2.03 (4) 2.793 (4) 148 (6)
N2—H9···N3x 0.86 2.39 3.080 (4) 138
N1—H2···O3 0.86 2.09 2.561 (5) 114

Symmetry codes: (ii) −x+1/2, y−1/2, −z+1/2; (ix) x, y−1, z; (x) x, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2410).

References

  1. Apreyan, R. A., Karapetyan, H. A. & Petrosyan, A. M. (2008a). J. Mol. Struct.874, 187–193.
  2. Apreyan, R. A., Karapetyan, H. A. & Petrosyan, A. M. (2008b). J. Mol. Struct.875, 272–281.
  3. Apreyan, R. A. & Petrosyan, A. M. (2008). In preparation.
  4. Enraf–Nonius (1988). CAD-4 Manual. Enraf–Nonius, Delft, The Netherlands.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Karapetyan, H. A. (2008a). Acta Cryst. E64, o943. [DOI] [PMC free article] [PubMed]
  7. Karapetyan, H. A. (2008b). Acta Cryst. E64, o1222. [DOI] [PMC free article] [PubMed]
  8. Karapetyan, H. A., Antipin, M. Yu., Sukiasyan, R. P. & Petrosyan, A. M. (2007). J. Mol. Struct.831, 90–96.
  9. Kurtz, S. K. & Perry, T. T. (1968). J. Appl. Phys.39, 3798–3812.
  10. Paul, R., Anderson, G. W. & Callahan, F. M. (1961). J. Org. Chem.26, 3347–3350.
  11. Petrosyan, A. M., Sukiasyan, R. P., Karapetyan, H. A., Antipin, M. Yu. & Apreyan, R. A. (2005). J. Cryst. Growth, 275, e1927–e1933.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (1997). HELENA University of Utrecht, The Netherlands.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808023817/hg2410sup1.cif

e-64-m1369-sup1.cif (22KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808023817/hg2410Isup2.hkl

e-64-m1369-Isup2.hkl (154.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES