Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 11;64(Pt 11):m1387. doi: 10.1107/S1600536808032285

Poly[tris­[μ2-2-(pyrazol-1-yl)pyrazine]hexa-μ1,3-thio­cyanato-tricadmium(II)]

Lin Yan Yang a, Jing Min Shi a,*
PMCID: PMC2959520  PMID: 21580840

Abstract

The asymmetric unit of the title crystal structure, [Cd3(NCS)6(C7H6N4)2]n, contains two independent CdII ions, one of which is located on a crystallographic inversion center. Each independent CdII ion is in a slightly distorted octa­hedral coordination environment, but the disortion from ideally octa­hedral is greater in the environment of the CdII ion on a general position. Both thio­cyanate ligands act as bridges connecting independent CdII ions, and the 2-(pyrazol-1-yl)pyrazine ligands chelate one CdII ion in a bidentate mode while the remaining N atom of the pyrazine ring coordinates to a symmetry-related CdII ion, forming a two-dimensional structure parallel to (211).

Related literature

For background information, see: Shi, Sun, Liu et al. (2006); Shi, Sun, Zhang et al. (2006). graphic file with name e-64-m1387-scheme1.jpg

Experimental

Crystal data

  • [Cd3(NCS)6(C7H6N4)2]

  • M r = 978.00

  • Triclinic, Inline graphic

  • a = 7.0309 (9) Å

  • b = 8.6178 (12) Å

  • c = 13.7373 (18) Å

  • α = 87.889 (2)°

  • β = 85.173 (2)°

  • γ = 68.060 (2)°

  • V = 769.32 (18) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.50 mm−1

  • T = 298 (2) K

  • 0.38 × 0.16 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.450, T max = 0.788

  • 4043 measured reflections

  • 2805 independent reflections

  • 2625 reflections with I > 2σ(I)

  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.056

  • S = 1.06

  • 2805 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808032285/lh2704sup1.cif

e-64-m1387-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032285/lh2704Isup2.hkl

e-64-m1387-Isup2.hkl (137.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cd1—N2 2.286 (3)
Cd1—N7i 2.426 (2)
Cd1—S2 2.6832 (8)
Cd2—N1ii 2.244 (2)
Cd2—N3 2.303 (3)
Cd2—N5 2.385 (2)
Cd2—N4 2.436 (2)
Cd2—S1 2.6603 (9)
Cd2—S3 2.7427 (8)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

For a considerable time, interest has focused on polymeric coordination compounds because such new coordination polymers may afford new materials with useful properties, such as catalytic activity, micro-porosity, electrical conductivity, non-linear optical activity and magnetic coupling behavior. The thiocyanide anion is a very common bridging ligand and many muti-nuclear complexes containing this ligand have been reported. Some of these complexes exhibit interesting magnetic coupling properties (Shi, Sun, Liu et al., 2006; Shi, Sun, Zhang et al., 2006)). The 2-(pyrazole-1-yl)-pyrazine molecule can act as a bridge ligand due to its structural character and up till now no crystal structures of complexes with this ligand have been reported. Under the motivation of preparing new coordination polymers containing mixed bridging ligands, we have synthesized the title coordination polymer and herein we report its crystal structure (I).

Fig. 1 shows the coordination around each independent CdII ion. Atom Cd1 is located on a crystallographic inversion center. In the crystal structure thiocyanade anions act as bridging ligands and connect symmetry related CdII ions [with Cd···Cd = 5.8122 (6)Å for Cd1···Cd2 and 5.7411 (7) Å for Cd2···Cd2ii; symmetry code: (ii) -x+1, -y+1, -z+1] forming an eight-membered ring which acts as a repeat unit of the structure in one-dimension [Fig. 2]. The 2-(pyrazole-1-yl)-pyrazine ligand functions as a tridentate bridging ligand and coordinates to symmetry related CdII ions [with a Cd···Cd separation of 7.6144 (7)Å] connecting the structure further into two-dimensions. Figure 2 also shows that in the two-dimensional structure there are two different types of rings formed by the 2-(pyrazole-1-yl)-pyrazine bridging ligand. An 18-membered ring consists of four CdII ions, two thiocyanato ligands and two 2-(pyrazole-1-yl)-pyrazine bridging ligands while a 26-membered ring consists of two 2-(pyrazole-1-yl)-pyrazine bridging ligands, four thiocyanade ligands and six CdII ions. The 18-membered rings and the 26-membered rings are arranged alternately in the two-dimensional structure.

Experimental

7 ml 3-(pyrazole-2-yloxy)-pyridine (0.0365 g, 0.250 mmol) methanol solution, 7 ml C d(ClO4)26H2O (0.1048 g, 0.250 mmol) H2O solution and 4 ml NaSCN (0.0405 g, 0.500 mmol) H2O solution were mixed together and stirred for a few minutes. Colorless single crystals were obtained after allowing the filtrate to stand at room temperature for four months.

Refinement

All H atoms were placed in calculated positions and refined as riding with (C—H = 0.93 Å) and Uiso = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Coordination around the two independent CdII ions in (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry codes: (i) x-1, y+1, z (ii) -x+1, -y+1, -z+1 (iii) -x+1, -y, -z (iv) x+1, y-1, z (v) -x, -y+1, -z].

Fig. 2.

Fig. 2.

Part of the two-dimensional sheet structure of (I).

Crystal data

[Cd3(NCS)6(C7H6N4)2] Z = 1
Mr = 978.00 F(000) = 470
Triclinic, P1 Dx = 2.111 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.0309 (9) Å Cell parameters from 3404 reflections
b = 8.6178 (12) Å θ = 2.6–28.2°
c = 13.7373 (18) Å µ = 2.50 mm1
α = 87.889 (2)° T = 298 K
β = 85.173 (2)° Bar, colorless
γ = 68.060 (2)° 0.38 × 0.16 × 0.10 mm
V = 769.32 (18) Å3

Data collection

Bruker SMART APEX CCD diffractometer 2805 independent reflections
Radiation source: fine-focus sealed tube 2625 reflections with I > 2σ(I)
graphite Rint = 0.013
φ and ω scans θmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −4→8
Tmin = 0.450, Tmax = 0.788 k = −10→10
4043 measured reflections l = −15→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0271P)2 + 0.3586P] where P = (Fo2 + 2Fc2)/3
2805 reflections (Δ/σ)max = 0.001
196 parameters Δρmax = 0.61 e Å3
0 restraints Δρmin = −0.51 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0009 (4) 0.7101 (4) 0.49099 (19) 0.0358 (6)
H1 0.0564 0.6478 0.5456 0.043*
C2 −0.1423 (5) 0.8730 (4) 0.4948 (2) 0.0402 (7)
H2 −0.1990 0.9378 0.5502 0.048*
C3 −0.1821 (5) 0.9178 (4) 0.4006 (2) 0.0383 (7)
H3 −0.2725 1.0200 0.3788 0.046*
C4 −0.0578 (4) 0.7640 (3) 0.24350 (18) 0.0260 (5)
C5 0.1109 (5) 0.6225 (4) 0.1068 (2) 0.0381 (7)
H5 0.2239 0.5397 0.0758 0.046*
C6 −0.0462 (5) 0.7197 (4) 0.0532 (2) 0.0388 (7)
H6 −0.0368 0.7019 −0.0137 0.047*
C7 0.5004 (4) 0.6931 (3) 0.4694 (2) 0.0312 (6)
C8 0.2476 (4) 0.1598 (3) 0.21816 (19) 0.0309 (6)
C9 0.6045 (4) 0.3004 (4) 0.1046 (2) 0.0369 (7)
C13 −0.2187 (4) 0.8625 (3) 0.18960 (19) 0.0311 (6)
H13 −0.3319 0.9454 0.2206 0.037*
Cd1 0.5000 0.0000 0.0000 0.02922 (9)
Cd2 0.35673 (3) 0.47371 (2) 0.314014 (13) 0.02935 (8)
N1 0.5156 (4) 0.6693 (3) 0.55123 (18) 0.0419 (6)
N2 0.5526 (4) 0.2304 (3) 0.04926 (19) 0.0445 (6)
N3 0.2614 (4) 0.2620 (3) 0.26533 (18) 0.0438 (6)
N4 0.1055 (3) 0.6441 (3) 0.20341 (16) 0.0298 (5)
N5 0.0489 (3) 0.6539 (3) 0.40006 (16) 0.0311 (5)
N6 −0.0646 (3) 0.7848 (3) 0.34443 (15) 0.0292 (5)
N7 −0.2124 (3) 0.8392 (3) 0.09389 (16) 0.0325 (5)
S1 0.67535 (14) 0.40534 (14) 0.18169 (7) 0.0617 (3)
S2 0.22912 (12) 0.01127 (9) 0.15191 (5) 0.03591 (17)
S3 0.47355 (13) 0.73397 (10) 0.35252 (5) 0.04143 (19)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0406 (16) 0.0454 (16) 0.0255 (14) −0.0200 (14) −0.0055 (12) 0.0002 (12)
C2 0.0428 (17) 0.0477 (17) 0.0322 (15) −0.0193 (14) 0.0024 (13) −0.0120 (13)
C3 0.0397 (16) 0.0325 (15) 0.0388 (16) −0.0084 (13) −0.0025 (13) −0.0082 (12)
C4 0.0233 (13) 0.0304 (13) 0.0244 (13) −0.0100 (11) −0.0017 (10) 0.0002 (10)
C5 0.0332 (15) 0.0398 (16) 0.0282 (14) 0.0017 (13) −0.0024 (12) −0.0046 (12)
C6 0.0380 (16) 0.0445 (16) 0.0243 (14) −0.0040 (13) −0.0039 (12) −0.0001 (12)
C7 0.0316 (14) 0.0281 (13) 0.0344 (16) −0.0105 (11) −0.0082 (12) −0.0009 (11)
C8 0.0312 (15) 0.0360 (15) 0.0247 (13) −0.0121 (12) −0.0023 (11) 0.0042 (12)
C9 0.0312 (15) 0.0371 (15) 0.0368 (16) −0.0075 (13) 0.0061 (12) −0.0059 (13)
C13 0.0250 (13) 0.0337 (14) 0.0285 (14) −0.0036 (11) −0.0035 (11) 0.0007 (11)
Cd1 0.02909 (16) 0.03095 (15) 0.02367 (15) −0.00539 (12) −0.00732 (11) −0.00178 (11)
Cd2 0.02855 (12) 0.03169 (12) 0.02402 (12) −0.00559 (9) −0.00708 (8) −0.00237 (8)
N1 0.0545 (16) 0.0386 (14) 0.0348 (14) −0.0171 (12) −0.0183 (12) 0.0057 (11)
N2 0.0539 (17) 0.0435 (15) 0.0377 (14) −0.0203 (13) 0.0023 (12) −0.0115 (12)
N3 0.0551 (17) 0.0472 (15) 0.0326 (13) −0.0228 (13) −0.0010 (12) −0.0081 (12)
N4 0.0251 (11) 0.0327 (12) 0.0280 (12) −0.0062 (10) −0.0057 (9) 0.0008 (9)
N5 0.0288 (12) 0.0353 (12) 0.0266 (11) −0.0088 (10) −0.0045 (9) 0.0028 (9)
N6 0.0260 (11) 0.0327 (12) 0.0263 (11) −0.0072 (9) −0.0057 (9) −0.0008 (9)
N7 0.0271 (12) 0.0367 (12) 0.0283 (12) −0.0053 (10) −0.0056 (10) 0.0032 (10)
S1 0.0419 (5) 0.0957 (7) 0.0566 (5) −0.0359 (5) 0.0139 (4) −0.0407 (5)
S2 0.0423 (4) 0.0402 (4) 0.0301 (4) −0.0209 (3) −0.0007 (3) −0.0051 (3)
S3 0.0571 (5) 0.0523 (5) 0.0274 (4) −0.0342 (4) −0.0067 (3) 0.0023 (3)

Geometric parameters (Å, °)

C1—N5 1.327 (3) C9—N2 1.148 (4)
C1—C2 1.388 (4) C9—S1 1.639 (3)
C1—H1 0.9300 C13—N7 1.332 (3)
C2—C3 1.359 (4) C13—H13 0.9300
C2—H2 0.9300 Cd1—N2 2.286 (3)
C3—N6 1.357 (3) Cd1—N2i 2.286 (3)
C3—H3 0.9300 Cd1—N7ii 2.426 (2)
C4—N4 1.319 (3) Cd1—N7iii 2.426 (2)
C4—C13 1.388 (4) Cd1—S2i 2.6832 (8)
C4—N6 1.399 (3) Cd1—S2 2.6832 (8)
C5—N4 1.342 (3) Cd2—N1iv 2.244 (2)
C5—C6 1.365 (4) Cd2—N3 2.303 (3)
C5—H5 0.9300 Cd2—N5 2.385 (2)
C6—N7 1.331 (4) Cd2—N4 2.436 (2)
C6—H6 0.9300 Cd2—S1 2.6603 (9)
C7—N1 1.142 (3) Cd2—S3 2.7427 (8)
C7—S3 1.643 (3) N1—Cd2iv 2.244 (2)
C8—N3 1.150 (4) N5—N6 1.364 (3)
C8—S2 1.647 (3) N7—Cd1v 2.426 (2)
N5—C1—C2 111.8 (3) N7ii—Cd1—S2 91.66 (6)
N5—C1—H1 124.1 N7iii—Cd1—S2 88.34 (6)
C2—C1—H1 124.1 S2i—Cd1—S2 180
C3—C2—C1 105.6 (3) N1iv—Cd2—N3 91.59 (9)
C3—C2—H2 127.2 N1iv—Cd2—N5 93.71 (9)
C1—C2—H2 127.2 N3—Cd2—N5 102.07 (9)
N6—C3—C2 106.9 (3) N1iv—Cd2—N4 159.57 (9)
N6—C3—H3 126.6 N3—Cd2—N4 83.77 (9)
C2—C3—H3 126.6 N5—Cd2—N4 68.04 (7)
N4—C4—C13 122.2 (2) N1iv—Cd2—S1 105.57 (8)
N4—C4—N6 116.7 (2) N3—Cd2—S1 94.46 (7)
C13—C4—N6 121.1 (2) N5—Cd2—S1 154.21 (6)
N4—C5—C6 121.4 (3) N4—Cd2—S1 94.63 (6)
N4—C5—H5 119.3 N1iv—Cd2—S3 93.51 (7)
C6—C5—H5 119.3 N3—Cd2—S3 174.25 (7)
N7—C6—C5 121.9 (3) N5—Cd2—S3 80.27 (6)
N7—C6—H6 119.0 N4—Cd2—S3 92.33 (6)
C5—C6—H6 119.0 S1—Cd2—S3 81.60 (3)
N1—C7—S3 178.1 (3) C7—N1—Cd2iv 156.4 (2)
N3—C8—S2 179.1 (3) C9—N2—Cd1 151.9 (3)
N2—C9—S1 178.3 (3) C8—N3—Cd2 160.7 (2)
N7—C13—C4 120.5 (2) C4—N4—C5 116.7 (2)
N7—C13—H13 119.7 C4—N4—Cd2 116.51 (17)
C4—C13—H13 119.7 C5—N4—Cd2 126.65 (18)
N2—Cd1—N2i 180 C1—N5—N6 104.4 (2)
N2—Cd1—N7ii 85.94 (9) C1—N5—Cd2 134.13 (19)
N2i—Cd1—N7ii 94.06 (9) N6—N5—Cd2 112.89 (15)
N2—Cd1—N7iii 94.06 (9) C3—N6—N5 111.4 (2)
N2i—Cd1—N7iii 85.94 (9) C3—N6—C4 129.3 (2)
N7ii—Cd1—N7iii 180 N5—N6—C4 119.2 (2)
N2—Cd1—S2i 86.38 (7) C6—N7—C13 117.2 (2)
N2i—Cd1—S2i 93.62 (7) C6—N7—Cd1v 121.71 (18)
N7ii—Cd1—S2i 88.34 (6) C13—N7—Cd1v 120.98 (18)
N7iii—Cd1—S2i 91.66 (6) C9—S1—Cd2 98.65 (11)
N2—Cd1—S2 93.62 (7) C8—S2—Cd1 101.07 (10)
N2i—Cd1—S2 86.38 (7) C7—S3—Cd2 96.52 (10)
N5—C1—C2—C3 −0.3 (4) S1—Cd2—N5—C1 −110.8 (3)
C1—C2—C3—N6 −0.3 (3) S3—Cd2—N5—C1 −64.9 (3)
N4—C5—C6—N7 −0.5 (5) N1iv—Cd2—N5—N6 169.76 (17)
N4—C4—C13—N7 −0.5 (4) N3—Cd2—N5—N6 −97.82 (18)
N6—C4—C13—N7 −178.6 (2) N4—Cd2—N5—N6 −19.70 (16)
N7ii—Cd1—N2—C9 −30.1 (5) S1—Cd2—N5—N6 30.9 (3)
N7iii—Cd1—N2—C9 149.9 (5) S3—Cd2—N5—N6 76.83 (17)
S2i—Cd1—N2—C9 −118.7 (5) C2—C3—N6—N5 0.7 (3)
S2—Cd1—N2—C9 61.3 (5) C2—C3—N6—C4 176.0 (3)
N1iv—Cd2—N3—C8 −124.3 (8) C1—N5—N6—C3 −0.9 (3)
N5—Cd2—N3—C8 141.6 (8) Cd2—N5—N6—C3 −153.58 (19)
N4—Cd2—N3—C8 75.7 (8) C1—N5—N6—C4 −176.7 (2)
S1—Cd2—N3—C8 −18.5 (8) Cd2—N5—N6—C4 30.6 (3)
C13—C4—N4—C5 0.9 (4) N4—C4—N6—C3 162.2 (3)
N6—C4—N4—C5 179.1 (3) C13—C4—N6—C3 −19.5 (4)
C13—C4—N4—Cd2 −175.6 (2) N4—C4—N6—N5 −22.8 (3)
N6—C4—N4—Cd2 2.7 (3) C13—C4—N6—N5 155.5 (2)
C6—C5—N4—C4 −0.4 (4) C5—C6—N7—C13 1.0 (5)
C6—C5—N4—Cd2 175.7 (2) C5—C6—N7—Cd1v −176.2 (2)
N1iv—Cd2—N4—C4 37.2 (3) C4—C13—N7—C6 −0.5 (4)
N3—Cd2—N4—C4 114.9 (2) C4—C13—N7—Cd1v 176.70 (19)
N5—Cd2—N4—C4 9.15 (18) N1iv—Cd2—S1—C9 113.39 (13)
S1—Cd2—N4—C4 −151.14 (18) N3—Cd2—S1—C9 20.49 (14)
S3—Cd2—N4—C4 −69.38 (19) N5—Cd2—S1—C9 −109.59 (17)
N1iv—Cd2—N4—C5 −138.9 (3) N4—Cd2—S1—C9 −63.61 (13)
N3—Cd2—N4—C5 −61.2 (3) S3—Cd2—S1—C9 −155.29 (12)
N5—Cd2—N4—C5 −166.9 (3) N2—Cd1—S2—C8 −7.34 (12)
S1—Cd2—N4—C5 32.8 (2) N2i—Cd1—S2—C8 172.66 (12)
S3—Cd2—N4—C5 114.6 (2) N7ii—Cd1—S2—C8 78.70 (11)
C2—C1—N5—N6 0.7 (3) N7iii—Cd1—S2—C8 −101.30 (11)
C2—C1—N5—Cd2 144.6 (2) N1iv—Cd2—S3—C7 −19.29 (12)
N1iv—Cd2—N5—C1 28.0 (3) N5—Cd2—S3—C7 73.89 (11)
N3—Cd2—N5—C1 120.4 (3) N4—Cd2—S3—C7 141.13 (11)
N4—Cd2—N5—C1 −161.5 (3) S1—Cd2—S3—C7 −124.53 (11)

Symmetry codes: (i) −x+1, −y, −z; (ii) x+1, y−1, z; (iii) −x, −y+1, −z; (iv) −x+1, −y+1, −z+1; (v) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2704).

References

  1. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Shi, J.-M., Sun, Y.-M., Liu, Z., Liu, L.-D., Shi, W. & Cheng, P. (2006). Dalton Trans. pp. 376–380. [DOI] [PubMed]
  5. Shi, J.-M., Sun, Y.-M., Zhang, X., Yi, L., Cheng, P. & Liu, L.-D. (2006). J. Phys. Chem. A, 110, 7677–7681. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808032285/lh2704sup1.cif

e-64-m1387-sup1.cif (19KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032285/lh2704Isup2.hkl

e-64-m1387-Isup2.hkl (137.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES