Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 9;64(Pt 11):o2080. doi: 10.1107/S1600536808031541

3-Benzyl­idene-6-methoxy­chroman-4-one

T Augustine a,*, Scholastica Mary Vithiya b, V Ramkumar c, Charles C Kanakam d
PMCID: PMC2959532  PMID: 21580945

Abstract

In the title compound, C17H14O3, the dihedral angle between the phenyl ring and the benzene ring of the chromanone moiety is 67.78 (3)°. The six-membered heterocyclic ring of the chromanone moiety adopts a half-chair conformation. The structure is stabilized by weak inter­molecular C—H⋯O inter­actions that link the mol­ecules into inversion dimers.

Related literature

For background literature, see: Finch & Tamm (1970); Geen et al.(1996); Tietze & Gerlitzer (1997); Cremer & Pople (1975). For a related structure, see: Suresh et al. (2007).graphic file with name e-64-o2080-scheme1.jpg

Experimental

Crystal data

  • C17H14O3

  • M r = 266.28

  • Triclinic, Inline graphic

  • a = 7.2678 (2) Å

  • b = 8.3151 (2) Å

  • c = 11.7999 (4) Å

  • α = 95.964 (1)°

  • β = 103.828 (1)°

  • γ = 104.042 (1)°

  • V = 661.74 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.45 × 0.42 × 0.38 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.960, T max = 0.966

  • 8868 measured reflections

  • 3041 independent reflections

  • 2404 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.116

  • S = 1.04

  • 3041 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808031541/fl2222sup1.cif

e-64-o2080-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031541/fl2222Isup2.hkl

e-64-o2080-Isup2.hkl (149.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.93 2.53 3.4293 (18) 163

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

The chroman-4-one (2,3-dihydro-4-oxo-4H-1-benzopyran) ring system occupies an important position among oxygen heterocyclics and features in a wide variety of compounds of biological and medicinal interest (Finch & Tamm, 1970). Many biologically active natural products containing a chroman ring system have been synthesized via 2-substituted chroman-4-one intermediates including alpha-tocopherol (vitamin E) (Geen et al., 1996). 3-arylidene-4-chromanones have also been isolated as natural products belonging to the class of compounds called homoisoflavonoids(Tietze & Gerlitzer, 1997).

The geometric parameters in the title compound agree with values reported for a similar structure (Suresh et al., 2007). The dihedral angle between the benzene ring of the chromanone moiety and the phenyl ring is 67.78 (3)°. The Chromanone moiety is fused with a six membered heterocyclic ring and the study of torsion angles, asymmetry parameters and least-square plane calculations shows that the chromanone adopts a half chair conformation with a deviation of C14 from the C8/C9/C15/C16/O2 plane by 0.616 (4) Å, Q2= 0.4053 (14) Å, Q3= -0.2052 (13)Å, and QT=0.4543 (14)Å (Cremer &Pople, (1975). The structure is stabilized by weak intermolecular C—H···O interaction that link the molecules into pairs around a center (Table 1). No other short intermolecular interactions were found.

Experimental

Methyl-(2Z)-2-bromo methyl-3-aryl prop-2-enoate (0.006 mole, 1.53 g) was treated with 4-methoxy phenol (0.006 mole, 0.9 ml) in the presence of potassium carbonate in acetone at reflux temperature for 3 hrs. The pure ester, 3-aryl-2-(4-methoxy)-phenoxymethylprop-2-enoate was obtained after purifying it using silica gel and column chromatography (3% ethyl acetate - hexane). Hydrolysis of this ester was carried out with KOH in aqueous 1,4–dioxane at room temperature. The reaction mixture was acidified and the precipitated acid was purified by recrystalization. Finally the acid was treated with triflouroacetic anhydride and the reaction mixture was refluxed in dichloro- methane for 1 hr. It was further purified by column chromatography (silica gel-3% ethyl acetate - hexane) and the crystals used for data collection were obtained by slow evaporation from methanol.

Refinement

H atoms were positioned geometrically and refined using riding model,with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96 Å and Uiso(H) = 1.5Uiso(C) for CH3.

Figures

Fig. 1.

Fig. 1.

ORTEP of the molecule with atoms represented as 30% probability ellipsoids.

Crystal data

C17H14O3 Z = 2
Mr = 266.28 F(000) = 280
Triclinic, P1 Dx = 1.336 Mg m3
Hall symbol: -p 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.2678 (2) Å Cell parameters from 4851 reflections
b = 8.3151 (2) Å θ = 2.6–28.3°
c = 11.7999 (4) Å µ = 0.09 mm1
α = 95.964 (1)° T = 298 K
β = 103.828 (1)° Block, colourless
γ = 104.042 (1)° 0.45 × 0.42 × 0.38 mm
V = 661.74 (3) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 3041 independent reflections
Radiation source: fine-focus sealed tube 2404 reflections with I > 2σ(I)
graphite Rint = 0.018
φ and ω scans θmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −8→9
Tmin = 0.960, Tmax = 0.966 k = −10→11
8868 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.1403P] where P = (Fo2 + 2Fc2)/3
3041 reflections (Δ/σ)max < 0.001
186 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.38800 (18) 0.42099 (15) 0.12980 (11) 0.0357 (3)
C2 −0.49675 (19) 0.45875 (16) 0.20631 (12) 0.0413 (3)
H2 −0.4480 0.5584 0.2610 0.050*
C3 −0.6764 (2) 0.34969 (18) 0.20189 (13) 0.0469 (3)
H3 −0.7484 0.3771 0.2527 0.056*
C4 −0.7491 (2) 0.20056 (18) 0.12250 (14) 0.0499 (3)
H4 −0.8689 0.1265 0.1205 0.060*
C5 −0.6433 (2) 0.16181 (18) 0.04615 (13) 0.0526 (4)
H5 −0.6916 0.0606 −0.0069 0.063*
C6 −0.4668 (2) 0.27146 (17) 0.04756 (12) 0.0448 (3)
H6 −0.3995 0.2458 −0.0066 0.054*
C7 −0.19833 (18) 0.53387 (16) 0.12988 (12) 0.0384 (3)
C8 −0.04981 (18) 0.62292 (15) 0.22311 (11) 0.0366 (3)
C9 0.12813 (18) 0.73207 (16) 0.20106 (11) 0.0375 (3)
C10 0.47891 (18) 0.89529 (15) 0.29540 (11) 0.0370 (3)
H10 0.4781 0.9476 0.2294 0.044*
C11 0.64996 (18) 0.92856 (15) 0.38626 (11) 0.0390 (3)
C12 0.65136 (19) 0.84577 (17) 0.48305 (12) 0.0439 (3)
H12 0.7679 0.8659 0.5429 0.053*
C13 0.4833 (2) 0.73495 (18) 0.49135 (12) 0.0439 (3)
H13 0.4862 0.6800 0.5562 0.053*
C14 −0.03927 (19) 0.62083 (18) 0.35174 (11) 0.0427 (3)
H14A −0.0509 0.7271 0.3874 0.051*
H14B −0.1486 0.5319 0.3584 0.051*
C15 0.30664 (17) 0.78222 (14) 0.30322 (10) 0.0336 (3)
C16 0.30814 (18) 0.70497 (15) 0.40210 (11) 0.0362 (3)
C17 0.8268 (3) 1.1358 (3) 0.29888 (18) 0.0764 (6)
H17A 0.8124 1.0644 0.2261 0.115*
H17B 0.9493 1.2225 0.3186 0.115*
H17C 0.7195 1.1861 0.2896 0.115*
O1 0.13097 (14) 0.77364 (14) 0.10531 (9) 0.0566 (3)
O2 0.14409 (13) 0.59397 (12) 0.41471 (8) 0.0454 (2)
O3 0.82540 (14) 1.03993 (13) 0.38987 (9) 0.0540 (3)
H7 −0.175 (2) 0.5435 (19) 0.0546 (15) 0.051 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0311 (6) 0.0373 (6) 0.0357 (6) 0.0073 (5) 0.0046 (5) 0.0092 (5)
C2 0.0344 (6) 0.0382 (6) 0.0475 (7) 0.0079 (5) 0.0088 (5) 0.0016 (5)
C3 0.0365 (7) 0.0516 (8) 0.0538 (8) 0.0108 (6) 0.0158 (6) 0.0100 (6)
C4 0.0349 (7) 0.0470 (7) 0.0587 (9) −0.0018 (6) 0.0082 (6) 0.0122 (6)
C5 0.0497 (8) 0.0431 (7) 0.0504 (8) −0.0009 (6) 0.0048 (6) −0.0030 (6)
C6 0.0426 (7) 0.0480 (7) 0.0384 (7) 0.0072 (6) 0.0091 (5) 0.0016 (5)
C7 0.0339 (6) 0.0423 (6) 0.0378 (6) 0.0081 (5) 0.0092 (5) 0.0087 (5)
C8 0.0310 (6) 0.0403 (6) 0.0380 (6) 0.0084 (5) 0.0097 (5) 0.0074 (5)
C9 0.0321 (6) 0.0423 (6) 0.0353 (6) 0.0069 (5) 0.0071 (5) 0.0079 (5)
C10 0.0331 (6) 0.0381 (6) 0.0375 (6) 0.0086 (5) 0.0064 (5) 0.0066 (5)
C11 0.0297 (6) 0.0386 (6) 0.0444 (7) 0.0081 (5) 0.0059 (5) 0.0025 (5)
C12 0.0347 (7) 0.0539 (8) 0.0385 (7) 0.0150 (6) 0.0006 (5) 0.0039 (6)
C13 0.0413 (7) 0.0551 (8) 0.0352 (6) 0.0154 (6) 0.0067 (5) 0.0111 (5)
C14 0.0321 (6) 0.0548 (8) 0.0392 (7) 0.0076 (6) 0.0114 (5) 0.0059 (6)
C15 0.0298 (6) 0.0357 (6) 0.0334 (6) 0.0087 (5) 0.0067 (5) 0.0032 (4)
C16 0.0334 (6) 0.0401 (6) 0.0349 (6) 0.0101 (5) 0.0100 (5) 0.0047 (5)
C17 0.0437 (9) 0.0871 (13) 0.0821 (13) −0.0091 (9) 0.0049 (8) 0.0372 (10)
O1 0.0392 (5) 0.0764 (7) 0.0416 (5) −0.0049 (5) 0.0035 (4) 0.0223 (5)
O2 0.0369 (5) 0.0580 (6) 0.0403 (5) 0.0077 (4) 0.0104 (4) 0.0173 (4)
O3 0.0305 (5) 0.0574 (6) 0.0614 (6) −0.0006 (4) −0.0003 (4) 0.0152 (5)

Geometric parameters (Å, °)

C1—C2 1.3932 (18) C10—C11 1.3805 (17)
C1—C6 1.3978 (17) C10—C15 1.4007 (17)
C1—C7 1.4671 (17) C10—H10 0.9300
C2—C3 1.3830 (19) C11—O3 1.3704 (15)
C2—H2 0.9300 C11—C12 1.3927 (19)
C3—C4 1.378 (2) C12—C13 1.371 (2)
C3—H3 0.9300 C12—H12 0.9300
C4—C5 1.377 (2) C13—C16 1.3938 (17)
C4—H4 0.9300 C13—H13 0.9300
C5—C6 1.377 (2) C14—O2 1.4434 (16)
C5—H5 0.9300 C14—H14A 0.9700
C6—H6 0.9300 C14—H14B 0.9700
C7—C8 1.3412 (17) C15—C16 1.3883 (17)
C7—H7 0.950 (16) C16—O2 1.3693 (15)
C8—C9 1.4846 (18) C17—O3 1.403 (2)
C8—C14 1.5036 (18) C17—H17A 0.9600
C9—O1 1.2187 (15) C17—H17B 0.9600
C9—C15 1.4818 (16) C17—H17C 0.9600
C2—C1—C6 118.20 (12) O3—C11—C10 124.75 (12)
C2—C1—C7 122.70 (11) O3—C11—C12 115.45 (11)
C6—C1—C7 119.07 (12) C10—C11—C12 119.80 (12)
C3—C2—C1 120.72 (12) C13—C12—C11 120.93 (12)
C3—C2—H2 119.6 C13—C12—H12 119.5
C1—C2—H2 119.6 C11—C12—H12 119.5
C4—C3—C2 120.26 (13) C12—C13—C16 119.70 (12)
C4—C3—H3 119.9 C12—C13—H13 120.1
C2—C3—H3 119.9 C16—C13—H13 120.1
C5—C4—C3 119.63 (13) O2—C14—C8 111.15 (10)
C5—C4—H4 120.2 O2—C14—H14A 109.4
C3—C4—H4 120.2 C8—C14—H14A 109.4
C6—C5—C4 120.64 (13) O2—C14—H14B 109.4
C6—C5—H5 119.7 C8—C14—H14B 109.4
C4—C5—H5 119.7 H14A—C14—H14B 108.0
C5—C6—C1 120.49 (13) C16—C15—C10 120.07 (11)
C5—C6—H6 119.8 C16—C15—C9 119.69 (11)
C1—C6—H6 119.8 C10—C15—C9 119.96 (11)
C8—C7—C1 128.33 (12) O2—C16—C15 122.60 (11)
C8—C7—H7 115.3 (9) O2—C16—C13 117.53 (11)
C1—C7—H7 116.4 (9) C15—C16—C13 119.83 (12)
C7—C8—C9 118.66 (11) O3—C17—H17A 109.5
C7—C8—C14 126.65 (12) O3—C17—H17B 109.5
C9—C8—C14 114.65 (10) H17A—C17—H17B 109.5
O1—C9—C15 121.81 (11) O3—C17—H17C 109.5
O1—C9—C8 123.09 (11) H17A—C17—H17C 109.5
C15—C9—C8 115.06 (11) H17B—C17—H17C 109.5
C11—C10—C15 119.58 (12) C16—O2—C14 113.85 (10)
C11—C10—H10 120.2 C11—O3—C17 117.35 (11)
C15—C10—H10 120.2
C6—C1—C2—C3 0.93 (19) C11—C12—C13—C16 −0.3 (2)
C7—C1—C2—C3 179.01 (12) C7—C8—C14—O2 129.37 (13)
C1—C2—C3—C4 0.9 (2) C9—C8—C14—O2 −48.50 (15)
C2—C3—C4—C5 −1.0 (2) C11—C10—C15—C16 0.33 (18)
C3—C4—C5—C6 −0.7 (2) C11—C10—C15—C9 −173.63 (11)
C4—C5—C6—C1 2.6 (2) O1—C9—C15—C16 −166.84 (12)
C2—C1—C6—C5 −2.7 (2) C8—C9—C15—C16 10.83 (17)
C7—C1—C6—C5 179.18 (12) O1—C9—C15—C10 7.14 (19)
C2—C1—C7—C8 41.2 (2) C8—C9—C15—C10 −175.19 (10)
C6—C1—C7—C8 −140.74 (14) C10—C15—C16—O2 179.75 (11)
C1—C7—C8—C9 −178.86 (12) C9—C15—C16—O2 −6.28 (18)
C1—C7—C8—C14 3.3 (2) C10—C15—C16—C13 −2.59 (18)
C7—C8—C9—O1 16.3 (2) C9—C15—C16—C13 171.39 (11)
C14—C8—C9—O1 −165.66 (13) C12—C13—C16—O2 −179.65 (11)
C7—C8—C9—C15 −161.35 (11) C12—C13—C16—C15 2.57 (19)
C14—C8—C9—C15 16.71 (16) C15—C16—O2—C14 −27.22 (16)
C15—C10—C11—O3 −178.13 (11) C13—C16—O2—C14 155.06 (11)
C15—C10—C11—C12 1.94 (18) C8—C14—O2—C16 53.73 (14)
O3—C11—C12—C13 178.09 (12) C10—C11—O3—C17 5.0 (2)
C10—C11—C12—C13 −2.0 (2) C12—C11—O3—C17 −175.11 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6···O1i 0.93 2.53 3.4293 (18) 163

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2222).

References

  1. Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2004). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Finch, R. E. & Tamm, C. (1970). Experientia, 26, 472–477. [DOI] [PubMed]
  6. Geen, G., Evans, J. M. & Vong, A. K. (1996). Comprehensive Heterocyclic Chemistry II, edited by A. Mckillop, Vol. 5, pp. 469–472. Oxford: Pergamon.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  9. Suresh, R., Kanagam, C. C., Umarani, P. R., Manivannan, V. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4387.
  10. Tietze, L. F. & Gerlitzer, J. (1997). Synthesis, pp.877–883.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808031541/fl2222sup1.cif

e-64-o2080-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031541/fl2222Isup2.hkl

e-64-o2080-Isup2.hkl (149.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES