Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 25;64(Pt 11):o2209. doi: 10.1107/S1600536808034478

N-Cyclo­hexyl-3-fluoro­benzamide

Aamer Saeed a,*, Rasheed Ahmad Khera a, Naeem Abbas a, Ulrich Flörke b
PMCID: PMC2959534  PMID: 21581067

Abstract

In the title mol­ecule, C13H16FNO, the amide (N—C=O) plane is oriented at an angle of 29.9 (2)° with respect to the aromatic ring. The cyclo­hexane ring adopts the usual chair conformation. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains along [100]. A weak C—H⋯F inter­action is also observed. The F atom is disordered over two positions with occupancy factors of 0.873 (3) and 0.127 (3).

Related literature

For related structures, see: Chopra & Guru Row (2005); Saeed et al. (2008a ,b ).graphic file with name e-64-o2209-scheme1.jpg

Experimental

Crystal data

  • C13H16FNO

  • M r = 221.27

  • Monoclinic, Inline graphic

  • a = 5.267 (3) Å

  • b = 6.599 (4) Å

  • c = 16.755 (9) Å

  • β = 90.090 (17)°

  • V = 582.4 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • 0.45 × 0.40 × 0.21 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.962, T max = 0.978

  • 5071 measured reflections

  • 1492 independent reflections

  • 1420 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.098

  • S = 1.05

  • 1492 reflections

  • 150 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808034478/ci2689sup1.cif

e-64-o2209-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034478/ci2689Isup2.hkl

e-64-o2209-Isup2.hkl (73.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.88 2.25 3.050 (2) 152
C5—H5A⋯F1ii 0.95 2.58 3.310 (3) 134

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

NA is grateful to the Higher Education Commission of Pakistan for financial support for a PhD programme.

supplementary crystallographic information

Comment

The background to this study has been described in an earlier paper (Saeed et al., 2008b).

The molecular structure of the title compound is related to that of the 2,4-dichloro compound (Saeed et al., 2008a). The cyclohexane ring is in the most stable chair conformation. In general, bond lengths and angles are within normal ranges. The aromatic ring C2–C7 is oriented with respect to the N1/O1/C1 plane at a dihedral angle of 29.9 (2)°. The N1–C1–C2–C7 torsion angle is 150.37 (15)°, for the reported dichloro compound the corresponding angle is 130.16 (18)°.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into infinite chains along the [100] direction (Fig. 2), in which they may be effective in the stabilization of the structure. Another intermolecular interaction is C—H···F (Table 1), as found in 4-fluoro-N-(2-fluorophenyl)benzamide (Chopra & Row, 2005).

Experimental

3,5-Difluorobenzoyl chloride (5.4 mmol) in CHCl3 was treated with cyclohexylamine (21.6 mmol) under a nitrogen atmosphere at reflux for 4 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with aq 1 M HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in CHCl3 afforded the title compound (84%). Analysis calculated for C13H15F2NO: C 65.26, H 6.32, N 5.85%; found: C 65.31, H 6.39, N 5.77%.

Refinement

The F atom is disordered over two positions (F1 and F2) with site occupation factors of 0.873 (3) for F1 and 0.127 (3) for F2. H atoms were initially located in difference syntheses, but were then included in the refinement, at calculated positions, in the riding-model approximation, with N—H = 0.88 Å and C—H = 0.95–1.00 Å. The isotropic displacement parameters were set equal to 1.2Ueq of the carrier atom. In the absence of significant anomalous scattering effects, the Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

Molecular structure of title compound, showing the rotational disorder of the fluorophenyl ring. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing viewed along [100] with intermolecular N–H···O hydrogen bonding pattern indicated as dashed lines. H-atoms not involved in hydrogen bonding are omitted.

Crystal data

C13H16FNO F(000) = 236
Mr = 221.27 Dx = 1.262 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 796 reflections
a = 5.267 (3) Å θ = 2.4–28.3°
b = 6.599 (4) Å µ = 0.09 mm1
c = 16.755 (9) Å T = 120 K
β = 90.090 (17)° Prism, colourless
V = 582.4 (6) Å3 0.45 × 0.40 × 0.21 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer 1492 independent reflections
Radiation source: sealed tube 1420 reflections with I > 2σ(I)
graphite Rint = 0.034
φ and ω scans θmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −6→6
Tmin = 0.962, Tmax = 0.978 k = −8→8
5071 measured reflections l = −22→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: difference Fourier map
wR(F2) = 0.098 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0686P)2 + 0.0394P] where P = (Fo2 + 2Fc2)/3
1492 reflections (Δ/σ)max = 0.001
150 parameters Δρmax = 0.25 e Å3
1 restraint Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
F1 0.9633 (3) 0.6562 (2) 0.49344 (8) 0.0376 (4) 0.873 (3)
F2 0.249 (2) 0.9837 (17) 0.3846 (6) 0.043 (3)* 0.127 (3)
O1 0.2561 (2) 0.2922 (2) 0.25636 (8) 0.0316 (3)
N1 0.6841 (3) 0.2208 (2) 0.25218 (8) 0.0206 (3)
H1A 0.8356 0.2505 0.2710 0.025*
C1 0.4794 (3) 0.3278 (2) 0.27778 (10) 0.0208 (3)
C2 0.5341 (3) 0.5002 (2) 0.33504 (9) 0.0198 (3)
C3 0.7409 (3) 0.4971 (3) 0.38818 (10) 0.0229 (3)
H3A 0.8556 0.3860 0.3894 0.027*
C4 0.7720 (3) 0.6615 (3) 0.43877 (10) 0.0269 (4)
H4A 0.9080 0.6591 0.4760 0.032* 0.127 (3)
C5 0.6128 (4) 0.8300 (3) 0.43745 (10) 0.0288 (4)
H5A 0.6419 0.9416 0.4721 0.035*
C6 0.4084 (4) 0.8306 (3) 0.38366 (11) 0.0295 (4)
H6A 0.2973 0.9439 0.3817 0.035* 0.873 (3)
C7 0.3671 (3) 0.6659 (3) 0.33314 (10) 0.0253 (4)
H7A 0.2265 0.6658 0.2976 0.030*
C8 0.6571 (3) 0.0567 (2) 0.19365 (9) 0.0195 (3)
H8A 0.4853 −0.0054 0.2003 0.023*
C9 0.6786 (4) 0.1391 (3) 0.10784 (10) 0.0275 (4)
H9A 0.5431 0.2403 0.0984 0.033*
H9B 0.8445 0.2074 0.1011 0.033*
C10 0.6542 (4) −0.0336 (3) 0.04667 (10) 0.0299 (4)
H10A 0.4813 −0.0920 0.0497 0.036*
H10B 0.6781 0.0216 −0.0078 0.036*
C11 0.8501 (4) −0.2007 (3) 0.06182 (11) 0.0291 (4)
H11A 1.0228 −0.1466 0.0524 0.035*
H11B 0.8212 −0.3136 0.0240 0.035*
C12 0.8313 (4) −0.2802 (3) 0.14799 (11) 0.0272 (4)
H12A 0.6653 −0.3480 0.1555 0.033*
H12B 0.9664 −0.3818 0.1573 0.033*
C13 0.8582 (3) −0.1078 (3) 0.20882 (11) 0.0232 (3)
H13A 1.0299 −0.0476 0.2047 0.028*
H13B 0.8379 −0.1624 0.2635 0.028*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0405 (8) 0.0402 (7) 0.0322 (7) −0.0017 (6) −0.0107 (5) −0.0067 (6)
O1 0.0177 (6) 0.0310 (7) 0.0460 (8) 0.0009 (5) −0.0028 (5) −0.0113 (6)
N1 0.0172 (6) 0.0198 (6) 0.0247 (7) 0.0003 (5) −0.0015 (5) −0.0024 (5)
C1 0.0197 (8) 0.0181 (7) 0.0246 (7) 0.0002 (6) 0.0004 (6) −0.0004 (6)
C2 0.0197 (8) 0.0180 (7) 0.0217 (7) −0.0015 (6) 0.0045 (6) 0.0002 (6)
C3 0.0231 (8) 0.0221 (7) 0.0235 (7) 0.0014 (6) 0.0018 (6) 0.0010 (6)
C4 0.0270 (9) 0.0306 (9) 0.0229 (8) −0.0040 (7) 0.0018 (6) −0.0012 (7)
C5 0.0314 (9) 0.0259 (9) 0.0292 (8) −0.0041 (7) 0.0075 (7) −0.0081 (8)
C6 0.0268 (9) 0.0233 (8) 0.0385 (9) 0.0044 (7) 0.0076 (7) −0.0052 (8)
C7 0.0214 (8) 0.0253 (8) 0.0293 (8) 0.0023 (7) 0.0013 (6) −0.0015 (7)
C8 0.0169 (7) 0.0173 (7) 0.0243 (8) −0.0005 (6) −0.0003 (6) −0.0017 (6)
C9 0.0376 (10) 0.0205 (8) 0.0242 (8) 0.0018 (7) −0.0026 (7) 0.0000 (6)
C10 0.0367 (10) 0.0281 (9) 0.0250 (8) −0.0007 (8) −0.0034 (7) −0.0043 (7)
C11 0.0290 (9) 0.0249 (8) 0.0334 (9) −0.0032 (8) 0.0051 (7) −0.0085 (8)
C12 0.0284 (9) 0.0177 (8) 0.0356 (9) 0.0023 (7) −0.0016 (7) −0.0027 (7)
C13 0.0221 (8) 0.0192 (8) 0.0285 (8) 0.0014 (6) −0.0010 (6) −0.0003 (6)

Geometric parameters (Å, °)

F1—C4 1.361 (2) C8—C13 1.538 (2)
F2—C6 1.315 (11) C8—C9 1.541 (2)
O1—C1 1.252 (2) C8—H8A 1.00
N1—C1 1.359 (2) C9—C10 1.538 (2)
N1—C8 1.468 (2) C9—H9A 0.99
N1—H1A 0.88 C9—H9B 0.99
C1—C2 1.515 (2) C10—C11 1.531 (3)
C2—C7 1.404 (2) C10—H10A 0.99
C2—C3 1.406 (2) C10—H10B 0.99
C3—C4 1.386 (3) C11—C12 1.540 (3)
C3—H3A 0.95 C11—H11A 0.99
C4—C5 1.393 (3) C11—H11B 0.99
C4—H4A 0.95 C12—C13 1.534 (2)
C5—C6 1.403 (3) C12—H12A 0.99
C5—H5A 0.95 C12—H12B 0.99
C6—C7 1.394 (3) C13—H13A 0.99
C6—H6A 0.95 C13—H13B 0.99
C7—H7A 0.95
C1—N1—C8 121.23 (14) C13—C8—H8A 108.4
C1—N1—H1A 119.4 C9—C8—H8A 108.4
C8—N1—H1A 119.4 C10—C9—C8 110.76 (15)
O1—C1—N1 123.89 (15) C10—C9—H9A 109.5
O1—C1—C2 120.02 (14) C8—C9—H9A 109.5
N1—C1—C2 116.09 (14) C10—C9—H9B 109.5
C7—C2—C3 120.72 (15) C8—C9—H9B 109.5
C7—C2—C1 116.85 (14) H9A—C9—H9B 108.1
C3—C2—C1 122.42 (15) C11—C10—C9 111.55 (14)
C4—C3—C2 117.78 (16) C11—C10—H10A 109.3
C4—C3—H3A 121.1 C9—C10—H10A 109.3
C2—C3—H3A 121.1 C11—C10—H10B 109.3
F1—C4—C3 118.55 (17) C9—C10—H10B 109.3
F1—C4—C5 118.43 (16) H10A—C10—H10B 108.0
C3—C4—C5 123.00 (16) C10—C11—C12 110.90 (15)
C3—C4—H4A 118.5 C10—C11—H11A 109.5
C5—C4—H4A 118.5 C12—C11—H11A 109.5
C4—C5—C6 118.30 (16) C10—C11—H11B 109.5
C4—C5—H5A 120.9 C12—C11—H11B 109.5
C6—C5—H5A 120.9 H11A—C11—H11B 108.0
F2—C6—C7 120.5 (5) C13—C12—C11 111.33 (15)
F2—C6—C5 119.0 (5) C13—C12—H12A 109.4
C7—C6—C5 120.42 (16) C11—C12—H12A 109.4
C7—C6—H6A 119.8 C13—C12—H12B 109.4
C5—C6—H6A 119.8 C11—C12—H12B 109.4
C6—C7—C2 119.75 (15) H12A—C12—H12B 108.0
C6—C7—H7A 120.1 C12—C13—C8 110.55 (13)
C2—C7—H7A 120.1 C12—C13—H13A 109.5
N1—C8—C13 110.16 (13) C8—C13—H13A 109.5
N1—C8—C9 110.86 (13) C12—C13—H13B 109.5
C13—C8—C9 110.58 (13) C8—C13—H13B 109.5
N1—C8—H8A 108.4 H13A—C13—H13B 108.1
C8—N1—C1—O1 2.5 (2) F2—C6—C7—C2 −177.6 (5)
C8—N1—C1—C2 −177.01 (13) C5—C6—C7—C2 −1.2 (3)
O1—C1—C2—C7 −29.1 (2) C3—C2—C7—C6 0.9 (2)
N1—C1—C2—C7 150.37 (15) C1—C2—C7—C6 −179.27 (15)
O1—C1—C2—C3 150.71 (16) C1—N1—C8—C13 −148.28 (15)
N1—C1—C2—C3 −29.8 (2) C1—N1—C8—C9 89.00 (18)
C7—C2—C3—C4 0.6 (2) N1—C8—C9—C10 179.17 (14)
C1—C2—C3—C4 −179.20 (14) C13—C8—C9—C10 56.69 (18)
C2—C3—C4—F1 176.62 (15) C8—C9—C10—C11 −55.8 (2)
C2—C3—C4—C5 −1.9 (3) C9—C10—C11—C12 55.0 (2)
F1—C4—C5—C6 −176.95 (16) C10—C11—C12—C13 −55.56 (19)
C3—C4—C5—C6 1.6 (3) C11—C12—C13—C8 56.76 (19)
C4—C5—C6—F2 176.4 (6) N1—C8—C13—C12 179.90 (13)
C4—C5—C6—C7 0.1 (3) C9—C8—C13—C12 −57.21 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1i 0.88 2.25 3.050 (2) 152
C5—H5A···F1ii 0.95 2.58 3.310 (3) 134

Symmetry codes: (i) x+1, y, z; (ii) −x+2, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2689).

References

  1. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chopra, D. & Guru Row, T. N. (2005). Cryst. Growth Des.5, 1679–1681.
  3. Saeed, A., Abbas, N., Hussain, S. & Flörke, U. (2008a). Acta Cryst. E64, o773. [DOI] [PMC free article] [PubMed]
  4. Saeed, A., Khera, R. A., Batool, M., Shaheen, U. & Flörke, U. (2008b). Acta Cryst. E64, o1625. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808034478/ci2689sup1.cif

e-64-o2209-sup1.cif (17.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034478/ci2689Isup2.hkl

e-64-o2209-Isup2.hkl (73.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES