Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Jun;95(6):2711–2719. doi: 10.1172/JCI117973

Inhibition of T cell responses by activated human CD8+ T cells is mediated by interferon-gamma and is defective in chronic progressive multiple sclerosis.

K E Balashov 1, S J Khoury 1, D A Hafler 1, H L Weiner 1
PMCID: PMC295954  PMID: 7769110

Abstract

The autologous mixed lymphocyte reaction (AMLR) involves the activation of T cells by autologous antigen presenting cells. Cells are generated during the course of the AMLR that have suppressive properties in vitro. In the present study we investigated the induction of CD8+ T cells in the AMLR with suppressive properties and the mechanism by which these cells downregulate in vitro proliferative responses. Purified CD8+ but not CD4+ T cells activated in the AMLR in conditioned medium inhibited proliferation of autologous T cells by anti-CD3 or PPD. Nonactivated CD8+ T cells did not suppress. The CD8+ T cells activated in the AMLR in the presence of conditioned medium (CD8+ Tact) were CD11b negative and were noncytotoxic. The inhibitory effect of CD8+ Tact cells was completely abrogated by anti-IFN-gamma antibody, but not by anti-IL-4, anti-IL-10, or anti-TGF-beta antibody. The induction of CD8+ Tact cells in the AMLR was blocked by anti-IL-2 or by anti-GM-CSF antibody and the combination of these two recombinant cytokines could support the induction of suppressive CD8+ Tact cells. CD8+ Tact cells were defective in patients with chronic progressive multiple sclerosis (MS) as compared to patients with relapsing-remitting MS or normal controls. Our studies provide a basis for understanding the mechanism of suppression by human CD8+ T cells in terms of specific cytokines, and demonstrate the potential importance of these cells in a human autoimmune disease as their function is defective in patients with progressive MS.

Full text

PDF
2711

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albina J. E., Abate J. A., Henry W. L., Jr Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T cell proliferation. Role of IFN-gamma in the induction of the nitric oxide-synthesizing pathway. J Immunol. 1991 Jul 1;147(1):144–148. [PubMed] [Google Scholar]
  2. Antel J. P., Bania M. B., Reder A., Cashman N. Activated suppressor cell dysfunction in progressive multiple sclerosis. J Immunol. 1986 Jul 1;137(1):137–141. [PubMed] [Google Scholar]
  3. Antel J., Bania M., Noronha A., Neely S. Defective suppressor cell function mediated by T8+ cell lines from patients with progressive multiple sclerosis. J Immunol. 1986 Dec 1;137(11):3436–3439. [PubMed] [Google Scholar]
  4. Arnason B. G., Antel J. Suppressor cell function in multiple sclerosis. Ann Immunol (Paris) 1978 Feb-Mar;129(2-3):159–170. [PubMed] [Google Scholar]
  5. Balashov K. E., Brondz B. D. Different conditions for generation of non-cytotoxic autorestricted CD4-CD8+ human suppressor T cells and allospecific cytotoxic T lymphocytes in one-way mixed lymphocyte cultures: the role of adherent mononuclear cells. Scand J Immunol. 1991 Nov;34(5):667–671. doi: 10.1111/j.1365-3083.1991.tb01590.x. [DOI] [PubMed] [Google Scholar]
  6. Baxevanis C. N., Reclos G. J., Papamichail M. Decreased HLA-DR antigen expression on monocytes causes impaired suppressor cell activity in multiple sclerosis. J Immunol. 1990 Jun 1;144(11):4166–4171. [PubMed] [Google Scholar]
  7. Billiau A., Dijkmans R. Interferon-gamma: mechanism of action and therapeutic potential. Biochem Pharmacol. 1990 Oct 1;40(7):1433–1439. doi: 10.1016/0006-2952(90)90437-p. [DOI] [PubMed] [Google Scholar]
  8. Bloom B. R., Salgame P., Diamond B. Revisiting and revising suppressor T cells. Immunol Today. 1992 Apr;13(4):131–136. doi: 10.1016/0167-5699(92)90110-S. [DOI] [PubMed] [Google Scholar]
  9. Braakman E., van Tunen A., Meager A., Lucas C. J. Natural cytotoxic activity in multiple sclerosis patients: defects in IL-2/interferon gamma-regulatory circuit. Clin Exp Immunol. 1986 Nov;66(2):285–294. [PMC free article] [PubMed] [Google Scholar]
  10. Caspi R. R., Chan C. C., Grubbs B. G., Silver P. B., Wiggert B., Parsa C. F., Bahmanyar S., Billiau A., Heremans H. Endogenous systemic IFN-gamma has a protective role against ocular autoimmunity in mice. J Immunol. 1994 Jan 15;152(2):890–899. [PubMed] [Google Scholar]
  11. Chan S. H., Perussia B., Gupta J. W., Kobayashi M., Pospísil M., Young H. A., Wolf S. F., Young D., Clark S. C., Trinchieri G. Induction of interferon gamma production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers. J Exp Med. 1991 Apr 1;173(4):869–879. doi: 10.1084/jem.173.4.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chen Y., Kuchroo V. K., Inobe J., Hafler D. A., Weiner H. L. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science. 1994 Aug 26;265(5176):1237–1240. doi: 10.1126/science.7520605. [DOI] [PubMed] [Google Scholar]
  13. Chofflon M., Weiner H. L., Morimoto C., Hafler D. A. Loss of functional suppression is linked to decreases in circulating suppressor inducer (CD4+ 2H4+) T cells in multiple sclerosis. Ann Neurol. 1988 Aug;24(2):185–191. doi: 10.1002/ana.410240203. [DOI] [PubMed] [Google Scholar]
  14. Dalton D. K., Pitts-Meek S., Keshav S., Figari I. S., Bradley A., Stewart T. A. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science. 1993 Mar 19;259(5102):1739–1742. doi: 10.1126/science.8456300. [DOI] [PubMed] [Google Scholar]
  15. Damle N. K., Engleman E. G. Antigen-specific suppressor T lymphocytes in man. Clin Immunol Immunopathol. 1989 Nov;53(2 Pt 2):S17–S24. doi: 10.1016/0090-1229(89)90066-4. [DOI] [PubMed] [Google Scholar]
  16. Duong T. T., Finkelman F. D., Strejan G. H. Effect of interferon-gamma on myelin basic protein-specific T cell line proliferation in response to antigen-pulsed accessory cells. Cell Immunol. 1992 Dec;145(2):311–323. doi: 10.1016/0008-8749(92)90334-l. [DOI] [PubMed] [Google Scholar]
  17. Duong T. T., St Louis J., Gilbert J. J., Finkelman F. D., Strejan G. H. Effect of anti-interferon-gamma and anti-interleukin-2 monoclonal antibody treatment on the development of actively and passively induced experimental allergic encephalomyelitis in the SJL/J mouse. J Neuroimmunol. 1992 Feb;36(2-3):105–115. doi: 10.1016/0165-5728(92)90042-j. [DOI] [PubMed] [Google Scholar]
  18. ElMasry M. N., Fox E. J., Rich R. R. Sequential effects of prostaglandins and interferon-gamma on differentiation of CD8+ suppressor cells. J Immunol. 1987 Aug 1;139(3):688–694. [PubMed] [Google Scholar]
  19. Freedman M. S., Ruijs T. C., Blain M., Antel J. P. Phenotypic and functional characteristics of activated CD8+ cells: a CD11b-CD28- subset mediates noncytolytic functional suppression. Clin Immunol Immunopathol. 1991 Aug;60(2):254–267. doi: 10.1016/0090-1229(91)90068-l. [DOI] [PubMed] [Google Scholar]
  20. Hafler D. A., Buchsbaum M., Weiner H. L. Decreased autologous mixed lymphocyte reaction in multiple sclerosis. J Neuroimmunol. 1985 Oct;9(6):339–347. doi: 10.1016/s0165-5728(85)80034-5. [DOI] [PubMed] [Google Scholar]
  21. Hafler D. A., Chofflon M., Kurt-Jones E., Weiner H. L. Interleukin-1 corrects the defective autologous mixed lymphocyte response in multiple sclerosis. Clin Immunol Immunopathol. 1991 Jan;58(1):115–125. doi: 10.1016/0090-1229(91)90153-2. [DOI] [PubMed] [Google Scholar]
  22. Hafler D. A., Weiner H. L. MS: a CNS and systemic autoimmune disease. Immunol Today. 1989 Mar;10(3):104–107. doi: 10.1016/0167-5699(89)90236-3. [DOI] [PubMed] [Google Scholar]
  23. Hirsch R. L., Panitch H. S., Johnson K. P. Lymphocytes from multiple sclerosis patients produce elevated levels of gamma interferon in vitro. J Clin Immunol. 1985 Nov;5(6):386–389. doi: 10.1007/BF00915335. [DOI] [PubMed] [Google Scholar]
  24. Hisatsune T., Minai Y., Nishisima K., Enomoto A., Moore K. W., Yokota T., Arai K., Kaminogawa S. A suppressive lymphokine derived from Ts clone 13G2 is IL-10. Lymphokine Cytokine Res. 1992 Apr;11(2):87–93. [PubMed] [Google Scholar]
  25. Huchet R., Bruley-Rosset M., Mathiot C., Grandjon D., Halle-Pannenko O. Involvement of IFN-gamma and transforming growth factor-beta in graft-vs-host reaction-associated immunosuppression. J Immunol. 1993 Mar 15;150(6):2517–2524. [PubMed] [Google Scholar]
  26. Inoue T., Asano Y., Matsuoka S., Furutani-Seiki M., Aizawa S., Nishimura H., Shirai T., Tada T. Distinction of mouse CD8+ suppressor effector T cell clones from cytotoxic T cell clones by cytokine production and CD45 isoforms. J Immunol. 1993 Mar 15;150(6):2121–2128. [PubMed] [Google Scholar]
  27. Jiang H., Zhang S. I., Pernis B. Role of CD8+ T cells in murine experimental allergic encephalomyelitis. Science. 1992 May 22;256(5060):1213–1215. doi: 10.1126/science.256.5060.1213. [DOI] [PubMed] [Google Scholar]
  28. Kelso A., Metcalf D. T lymphocyte-derived colony-stimulating factors. Adv Immunol. 1990;48:69–105. doi: 10.1016/s0065-2776(08)60752-x. [DOI] [PubMed] [Google Scholar]
  29. Koh D. R., Fung-Leung W. P., Ho A., Gray D., Acha-Orbea H., Mak T. W. Less mortality but more relapses in experimental allergic encephalomyelitis in CD8-/- mice. Science. 1992 May 22;256(5060):1210–1213. doi: 10.1126/science.256.5060.1210. [DOI] [PubMed] [Google Scholar]
  30. Koide J., Engleman E. G. Differences in surface phenotype and mechanism of action between alloantigen-specific CD8+ cytotoxic and suppressor T cell clones. J Immunol. 1990 Jan 1;144(1):32–40. [PubMed] [Google Scholar]
  31. Lublin F. D., Knobler R. L., Kalman B., Goldhaber M., Marini J., Perrault M., D'Imperio C., Joseph J., Alkan S. S., Korngold R. Monoclonal anti-gamma interferon antibodies enhance experimental allergic encephalomyelitis. Autoimmunity. 1993;16(4):267–274. doi: 10.3109/08916939309014645. [DOI] [PubMed] [Google Scholar]
  32. Markowicz S., Engleman E. G. Granulocyte-macrophage colony-stimulating factor promotes differentiation and survival of human peripheral blood dendritic cells in vitro. J Clin Invest. 1990 Mar;85(3):955–961. doi: 10.1172/JCI114525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Martin R., McFarland H. F., McFarlin D. E. Immunological aspects of demyelinating diseases. Annu Rev Immunol. 1992;10:153–187. doi: 10.1146/annurev.iy.10.040192.001101. [DOI] [PubMed] [Google Scholar]
  34. Miller A., Lider O., Roberts A. B., Sporn M. B., Weiner H. L. Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor beta after antigen-specific triggering. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):421–425. doi: 10.1073/pnas.89.1.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Miller A., Lider O., Weiner H. L. Antigen-driven bystander suppression after oral administration of antigens. J Exp Med. 1991 Oct 1;174(4):791–798. doi: 10.1084/jem.174.4.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Morimoto C., Letvin N. L., Distaso J. A., Aldrich W. R., Schlossman S. F. The isolation and characterization of the human suppressor inducer T cell subset. J Immunol. 1985 Mar;134(3):1508–1515. [PubMed] [Google Scholar]
  37. Noronha A., Toscas A., Jensen M. A. Interferon beta decreases T cell activation and interferon gamma production in multiple sclerosis. J Neuroimmunol. 1993 Jul;46(1-2):145–153. doi: 10.1016/0165-5728(93)90244-s. [DOI] [PubMed] [Google Scholar]
  38. Panitch H. S., Hirsch R. L., Haley A. S., Johnson K. P. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet. 1987 Apr 18;1(8538):893–895. doi: 10.1016/s0140-6736(87)92863-7. [DOI] [PubMed] [Google Scholar]
  39. Pauels H. G., Austrup F., Becker C., Schmitt E., Rüde E., Kölsch E. Lymphokine profile and activation pattern of two unrelated antigen- or idiotype-specific T suppressor cell clones. Eur J Immunol. 1992 Aug;22(8):1961–1966. doi: 10.1002/eji.1830220802. [DOI] [PubMed] [Google Scholar]
  40. Salgame P., Abrams J. S., Clayberger C., Goldstein H., Convit J., Modlin R. L., Bloom B. R. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science. 1991 Oct 11;254(5029):279–282. doi: 10.1126/science.254.5029.279. [DOI] [PubMed] [Google Scholar]
  41. Takeuchi T., DiMaggio M., Levine H., Schlossman S. F., Morimoto C. CD11 molecule defines two types of suppressor cells within the T8+ population. Cell Immunol. 1988 Feb;111(2):398–409. doi: 10.1016/0008-8749(88)90103-7. [DOI] [PubMed] [Google Scholar]
  42. Takeuchi T., Rudd C. E., Tanaka S., Rothstein D. M., Schlossman S. F., Morimoto C. Functional characterization of the CD45R (2H4) molecule on CD8 (T8) cells in the autologous mixed lymphocyte reaction system. Eur J Immunol. 1989 Apr;19(4):747–755. doi: 10.1002/eji.1830190427. [DOI] [PubMed] [Google Scholar]
  43. Trinchieri G. Interleukin-12 and its role in the generation of TH1 cells. Immunol Today. 1993 Jul;14(7):335–338. doi: 10.1016/0167-5699(93)90230-I. [DOI] [PubMed] [Google Scholar]
  44. Voorthuis J. A., Uitdehaag B. M., De Groot C. J., Goede P. H., van der Meide P. H., Dijkstra C. D. Suppression of experimental allergic encephalomyelitis by intraventricular administration of interferon-gamma in Lewis rats. Clin Exp Immunol. 1990 Aug;81(2):183–188. doi: 10.1111/j.1365-2249.1990.tb03315.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wall D. A., Hamberg S. D., Reynolds D. S., Burakoff S. J., Abbas A. K., Ferrara J. L. Immunodeficiency in graft-versus-host disease. I. Mechanism of immune suppression. J Immunol. 1988 May 1;140(9):2970–2976. [PubMed] [Google Scholar]
  46. Wilson A. B., Harris J. M., Coombs R. R. Interleukin-2-induced production of interferon-gamma by resting human T cells and large granular lymphocytes: requirement for accessory cell factors, including interleukin-1. Cell Immunol. 1988 Apr 15;113(1):130–142. doi: 10.1016/0008-8749(88)90012-3. [DOI] [PubMed] [Google Scholar]
  47. Yamada H., Martin P. J., Bean M. A., Braun M. P., Beatty P. G., Sadamoto K., Hansen J. A. Monoclonal antibody 9.3 and anti-CD11 antibodies define reciprocal subsets of lymphocytes. Eur J Immunol. 1985 Dec;15(12):1164–1168. doi: 10.1002/eji.1830151204. [DOI] [PubMed] [Google Scholar]
  48. Yamamoto H., Hirayama M., Genyea C., Kaplan J. TGF-beta mediates natural suppressor activity of IL-2-activated lymphocytes. J Immunol. 1994 Apr 15;152(8):3842–3847. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES