Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 31;64(Pt 11):m1475. doi: 10.1107/S1600536808032480

Bis(1,10-phenanthroline-κ2 N,N′)(phenyl­acetato-κO)copper(II) phenyl­acetate hexa­hydrate

Bing-Tian Tu a, Hong-Zhen Xie b,*, Ying-Tao Ren a,b, Jing-Zhong Chen a
PMCID: PMC2959544  PMID: 21580909

Abstract

In the title compound, [Cu(C8H7O2)(C12H8N2)2](C8H7O2)·6H2O, the Cu atom is in a distorted square-pyramidal coordination environment. The six crystallographically independent uncoordinated water mol­ecules are inter­connected by hydrogen bonds, completing dodeca­water (H2O)12 clusters which are hydrogen bonded to the carboxyl­ate groups of phenyl­acetate anions, building up one-dimensional anionic chains propagating along [100]. Between the cationic and anionic chains are hydrogen bonds from water mol­ecules to the carboxyl­ate O atoms belonging to the phenyl­acetato ligands.

Related literature

For general background, see: Kuroda-Sowa et al. (1997); Lehn (2007); Li et al. (2008). For related structures, see: Addison & Rao (1984); Baruah et al. (2007); Liu & Xu (2005); Ma et al. (2005); Sugimori et al. (1997); Zheng et al. (2001). graphic file with name e-64-m1475-scheme1.jpg

Experimental

Crystal data

  • [Cu(C8H7O2)(C12H8N2)2](C8H7O2)·6H2O

  • M r = 802.33

  • Triclinic, Inline graphic

  • a = 11.499 (2) Å

  • b = 11.903 (2) Å

  • c = 16.066 (3) Å

  • α = 71.00 (3)°

  • β = 72.97 (3)°

  • γ = 68.93 (3)°

  • V = 1901.3 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 293 (2) K

  • 0.37 × 0.35 × 0.17 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.793, T max = 0.902

  • 18689 measured reflections

  • 8680 independent reflections

  • 7070 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.095

  • S = 1.08

  • 8680 reflections

  • 496 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808032480/pk2118sup1.cif

e-64-m1475-sup1.cif (28.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032480/pk2118Isup2.hkl

e-64-m1475-Isup2.hkl (419.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was sponsored by the K. C. Wong Magna Fund of Ningbo University and supported by the Expert Project of Key Basic Research of the Ministry of Science and Technology of China (grant No. 2003CCA00800), the Zhejiang Provincial Natural Science Foundation (grant No. Z203067) and the Ningbo Municipal Natural Science Foundation (grant No. 2006 A610061).

supplementary crystallographic information

Comment

Construction of supramolecular architectures with interesting physical properties has grown rapidly owing to their potential use as new functional materials (Lehn, 2007). The most efficient and widely used approach for designing such materials is the self-assembly of organic ligands and metal ions (Kuroda-Sowa et al., 1997; Li et al., 2008). Here, we report a Cu(II) complex [Cu(C12H8N2)2(C8H7O2)](C8H7O2).6H2O from the self-assembly of Cu(OH)2, phenylacetatic acid and phenanthroline.

The title compound consists of [Cu(C12H8N2)2(C8H7O2)]2+ complex cations, phenylacetate anions, and water molecules of crystallization (Fig.1). The Cu atoms are each coordinated by two phenanthroline ligands and one phenylacetato ligand to complete a square-pyramidal CuN4O chromophore with the phenylacetic oxygen atom at the equatorial site. The equatorial Cu–N bond lengths fall in the range 2.002–2.060 Å and the Cu–O bond distance is equal to 2.001 (1) Å, while the axial Cu–N bond distance is 2.187 (2) Å. According to Addison's definition (Addison & Rao, 1984), the τ index about the central Cu atom is 0.233 Å, suggesting that the square pyramidal coordination geometry is slightly distorted with the Cu atom deviated from the basal plane by 0.1779 (8) Å towards the apical N1 atom. Within each complex cation, both phenanthroline ligands exhibit nearly perfect coplanarity and constitute an orthogonal system with the coordinating carboxylate group of the phenylacetate anion. The complex cation displays a similar configuration to those observed in a succinato complex [Cu(phen)2(C4H4O4)] previously reported by us (Zheng et al., 2001) and all the bonding parameters are normal (Baruah et al., 2007). As far as the phenylacetato ligand is concerned, the phenyl plane is found to be nearly perpendicular to the single bonded carbon backbone (dihedral angle: 89.5 (1)°), which is significantly larger than the corresponding one of 68.6 (2)° in the non-coordinating phenylacetate anion, and the carboxylate group is twisted from the single bonded carbon backbone by 70.4 (2)° in the former coordinating one, and is considerably larger the 60.7 (2)° in the non-coordinating anion. As expected, the C–O bond distance for the coordinating oxygen atom is 1.281 (2) Å, which is longer than those for non-coordinating ones (1.247–1.254 Å). The complex cations are distributed in such a way that the symmetry-related phenanthroline ligands are oriented antiparallel with a mean interplanar distance of 3.39 (2) Å, indicating a significant face-to-face π-π stacking interaction (Sugimori et al., 1997). Owing to such intercationic π-π stacking interactions and weak intercationic C–H···O interactions with the uncoordinating carboxylate oxygen atom, two centrosymmetrically related complex cations form dimers, which are further assembled via interdimeric π-π stacking interactions into 1D chains extending along the [101] direction. Furthermore, the resulting chains are arranged in planes parallel to (010), between which the lattice water molecules and the phenylacetate anions are sandwiched.

Out of the six crystallographically distinct lattice water molecules, three water molecules together with their centrosymmetry-related partners are hydrogen bonded to one another to generate chair-like hexawater clusters (Fig.2), to which the remaining lattice water molecules are associated by hydrogen bonds to complete dodecawater (H2O)12 clusters similar to those reported in the literature (Liu & Xu, 2005; Ma et al., 2005). The resulting dodecawater (H2O)12 clusters are hydrogen bonded to the carboxylate groups of phenylacetate anions to build up 1D anionic chains propagating along [100]. Between the cationic and anionic chains exist hydrogen bonds from water molecules to the carboxylate oxygen atoms belonging to the phenylacetato ligands.

Experimental

Dropwise addition of 2.0 mL(1.0 M) of NaOH to a aqueous solution of CuCl2.2H2O (0.170 g, 1.00 mmol) in 5.0 mL of H2O gave a blue precipitate, which was separated by centrifugation and washed with water until no Cl anions were detectable in the supernatant. The collected blue precipitate was transferred to a mixture of ethanol and water (1:1 V/V, 10 mL), to which phenanthroline (0.198 g, 1.00 mmol) and phenylacetic acid (0.136 g, 1.00 mmol) were added successively. The resulting blue solution (pH = 7.52) was allowed to stand at room temperature. Blue blocklike crystals were grown by slow evaporation for over 7 days.

Refinement

All H atoms bound to C were positioned geometrically and refined as riding, with C–H = 0.93 Å and Uiso(H) = 1.2Ueq(C). Hydrogen atoms attached to O were located in a difference Fourier map and refined isotropically, with the O–H distances restrained to 0.85 (1) Å and with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure and atom labeling scheme of [Cu(C12H8N2)2(C8H7O2)](C8H7O2).6H2O. H atoms and water molecules are not given. Displacement ellipsoids are drawn at 45%.

Fig. 2.

Fig. 2.

A chair-like hexawater clusters composed of three water molecules and their centrosymmetry-related parterners is hydrongen bonded.

Crystal data

[Cu(C8H7O2)(C12H8N2)2](C8H7O2)·6H2O Z = 2
Mr = 802.33 F(000) = 838
Triclinic, P1 Dx = 1.401 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 11.499 (2) Å Cell parameters from 14647 reflections
b = 11.903 (2) Å θ = 3.0–27.5°
c = 16.066 (3) Å µ = 0.64 mm1
α = 71.00 (3)° T = 293 K
β = 72.97 (3)° Prism, blue
γ = 68.93 (3)° 0.37 × 0.35 × 0.17 mm
V = 1901.3 (8) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer 8680 independent reflections
Radiation source: fine-focus sealed tube 7070 reflections with I > 2σ(I)
graphite Rint = 0.030
ω scans θmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −14→14
Tmin = 0.793, Tmax = 0.902 k = −15→15
18689 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0351P)2 + 1.3044P] where P = (Fo2 + 2Fc2)/3
8680 reflections (Δ/σ)max = 0.002
496 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu 0.68956 (2) 0.48613 (2) 0.746890 (15) 0.01698 (7)
N1 0.88512 (16) 0.37869 (15) 0.70294 (11) 0.0202 (3)
N2 0.75896 (16) 0.62363 (15) 0.66308 (10) 0.0187 (3)
C1 0.9447 (2) 0.25741 (19) 0.72006 (14) 0.0246 (4)
H1A 0.8995 0.2027 0.7579 0.030*
C2 1.0735 (2) 0.2091 (2) 0.68296 (15) 0.0299 (5)
H2A 1.1123 0.1238 0.6966 0.036*
C3 1.1417 (2) 0.2876 (2) 0.62679 (14) 0.0282 (5)
H3A 1.2272 0.2565 0.6024 0.034*
C4 1.08088 (19) 0.4164 (2) 0.60633 (13) 0.0234 (4)
C5 1.1439 (2) 0.5061 (2) 0.54605 (13) 0.0263 (5)
H5A 1.2291 0.4792 0.5192 0.032*
C6 1.0814 (2) 0.6284 (2) 0.52797 (13) 0.0274 (5)
H6A 1.1245 0.6846 0.4893 0.033*
C7 0.9498 (2) 0.6735 (2) 0.56728 (12) 0.0223 (4)
C8 0.8792 (2) 0.7998 (2) 0.54857 (13) 0.0265 (5)
H8A 0.9184 0.8592 0.5104 0.032*
C9 0.7529 (2) 0.8349 (2) 0.58661 (14) 0.0265 (5)
H9A 0.7059 0.9183 0.5749 0.032*
C10 0.6947 (2) 0.74424 (19) 0.64352 (13) 0.0228 (4)
H10A 0.6084 0.7689 0.6685 0.027*
C11 0.88530 (19) 0.58773 (19) 0.62585 (12) 0.0190 (4)
C12 0.95214 (19) 0.45701 (19) 0.64659 (12) 0.0192 (4)
N3 0.71006 (15) 0.52113 (15) 0.85842 (10) 0.0184 (3)
N4 0.61981 (15) 0.35480 (15) 0.84204 (10) 0.0179 (3)
C13 0.75535 (19) 0.60510 (19) 0.86524 (14) 0.0234 (4)
H13A 0.7805 0.6612 0.8131 0.028*
C14 0.7671 (2) 0.6132 (2) 0.94739 (15) 0.0276 (5)
H14A 0.8004 0.6728 0.9491 0.033*
C15 0.7289 (2) 0.5323 (2) 1.02531 (14) 0.0267 (5)
H15A 0.7355 0.5369 1.0804 0.032*
C16 0.67958 (19) 0.44215 (19) 1.02106 (13) 0.0215 (4)
C17 0.6358 (2) 0.3548 (2) 1.09815 (13) 0.0255 (4)
H17A 0.6405 0.3554 1.1548 0.031*
C18 0.5875 (2) 0.2709 (2) 1.09022 (13) 0.0253 (4)
H18A 0.5588 0.2156 1.1415 0.030*
C19 0.57996 (18) 0.26646 (18) 1.00364 (13) 0.0204 (4)
C20 0.53024 (19) 0.18274 (18) 0.99020 (13) 0.0236 (4)
H20A 0.4996 0.1256 1.0390 0.028*
C21 0.5275 (2) 0.18630 (19) 0.90460 (14) 0.0241 (4)
H21A 0.4949 0.1316 0.8949 0.029*
C22 0.57429 (19) 0.27314 (18) 0.83178 (13) 0.0219 (4)
H22A 0.5734 0.2736 0.7740 0.026*
C23 0.62315 (17) 0.35128 (17) 0.92720 (12) 0.0169 (4)
C24 0.67262 (18) 0.44035 (18) 0.93590 (12) 0.0180 (4)
O1 0.60569 (13) 0.47269 (12) 0.65901 (9) 0.0194 (3)
O2 0.46263 (13) 0.63541 (13) 0.70364 (9) 0.0227 (3)
C25 0.49547 (18) 0.55256 (18) 0.66273 (12) 0.0178 (4)
C26 0.40023 (19) 0.53846 (19) 0.62087 (12) 0.0196 (4)
H26A 0.3618 0.6176 0.5828 0.024*
H26B 0.4432 0.4792 0.5841 0.024*
C27 0.29830 (18) 0.49355 (18) 0.69518 (12) 0.0184 (4)
C28 0.19012 (19) 0.57800 (19) 0.72970 (13) 0.0223 (4)
H28A 0.1794 0.6628 0.7065 0.027*
C29 0.0977 (2) 0.5369 (2) 0.79870 (14) 0.0267 (4)
H29A 0.0255 0.5944 0.8212 0.032*
C30 0.1120 (2) 0.4103 (2) 0.83452 (14) 0.0271 (5)
H30A 0.0501 0.3828 0.8808 0.033*
C31 0.2201 (2) 0.3260 (2) 0.79992 (14) 0.0269 (5)
H31A 0.2306 0.2412 0.8232 0.032*
C32 0.3130 (2) 0.36672 (19) 0.73082 (13) 0.0226 (4)
H32A 0.3851 0.3092 0.7083 0.027*
O3 0.92255 (14) 0.04315 (14) 0.61308 (10) 0.0298 (3)
O4 0.74454 (15) 0.07607 (14) 0.71534 (10) 0.0311 (4)
C33 0.8540 (2) 0.01148 (18) 0.68752 (14) 0.0239 (4)
C34 0.9041 (3) −0.1168 (2) 0.74904 (15) 0.0358 (6)
H34A 0.8474 −0.1657 0.7587 0.043*
H34B 0.9869 −0.1587 0.7186 0.043*
C35 0.9159 (2) −0.11314 (18) 0.83942 (15) 0.0283 (5)
C36 1.0334 (2) −0.1482 (2) 0.86166 (17) 0.0370 (6)
H36A 1.1067 −0.1717 0.8196 0.044*
C37 1.0441 (2) −0.1489 (2) 0.94604 (19) 0.0414 (6)
H37A 1.1241 −0.1726 0.9597 0.050*
C38 0.9367 (2) −0.1145 (2) 1.00936 (17) 0.0343 (5)
H38A 0.9438 −0.1161 1.0660 0.041*
C39 0.8190 (2) −0.0779 (2) 0.98804 (15) 0.0320 (5)
H39A 0.7462 −0.0532 1.0301 0.038*
C40 0.8079 (2) −0.0776 (2) 0.90389 (15) 0.0299 (5)
H40A 0.7277 −0.0535 0.8905 0.036*
O5 0.39349 (18) 1.03378 (16) 0.68444 (12) 0.0399 (4)
H5B 0.3819 0.9842 0.6619 0.048*
H5C 0.4245 1.0861 0.6352 0.048*
O6 0.35322 (16) 0.87072 (14) 0.61361 (12) 0.0356 (4)
H6B 0.3705 0.7956 0.6428 0.043*
H6C 0.2684 0.8806 0.6087 0.043*
O7 1.14845 (15) −0.11805 (14) 0.55998 (10) 0.0307 (3)
H7B 1.0657 −0.0635 0.5770 0.037*
H7C 1.1480 −0.1006 0.5005 0.037*
O8 0.52945 (16) 0.78513 (16) 0.46170 (11) 0.0351 (4)
H8B 0.4871 0.8222 0.5025 0.042*
H8C 0.4789 0.7740 0.4378 0.042*
O9 0.54855 (19) −0.03208 (19) 0.80451 (11) 0.0478 (5)
H9B 0.5011 −0.0164 0.7692 0.057*
H9C 0.6005 −0.0017 0.7841 0.057*
O10 0.64854 (14) 0.27146 (13) 0.58757 (9) 0.0261 (3)
H10B 0.6377 0.3379 0.6076 0.031*
H10C 0.6953 0.2065 0.6203 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu 0.01848 (13) 0.01903 (12) 0.01421 (11) −0.01010 (9) −0.00353 (9) 0.00032 (9)
N1 0.0194 (8) 0.0230 (8) 0.0198 (8) −0.0072 (7) −0.0056 (7) −0.0048 (7)
N2 0.0204 (8) 0.0226 (8) 0.0146 (7) −0.0111 (7) −0.0037 (6) −0.0010 (7)
C1 0.0251 (11) 0.0232 (10) 0.0267 (10) −0.0075 (9) −0.0077 (9) −0.0048 (9)
C2 0.0268 (11) 0.0281 (11) 0.0364 (12) −0.0003 (9) −0.0133 (10) −0.0123 (10)
C3 0.0190 (10) 0.0410 (13) 0.0285 (11) −0.0049 (9) −0.0070 (9) −0.0158 (10)
C4 0.0196 (10) 0.0378 (12) 0.0194 (9) −0.0108 (9) −0.0043 (8) −0.0127 (9)
C5 0.0195 (10) 0.0486 (14) 0.0180 (9) −0.0175 (10) −0.0001 (8) −0.0123 (10)
C6 0.0274 (11) 0.0469 (13) 0.0165 (9) −0.0255 (10) −0.0008 (8) −0.0057 (9)
C7 0.0266 (11) 0.0336 (11) 0.0131 (8) −0.0187 (9) −0.0036 (8) −0.0032 (8)
C8 0.0375 (12) 0.0311 (11) 0.0178 (9) −0.0242 (10) −0.0061 (9) 0.0015 (9)
C9 0.0346 (12) 0.0238 (10) 0.0233 (10) −0.0147 (9) −0.0096 (9) 0.0017 (9)
C10 0.0252 (11) 0.0233 (10) 0.0206 (9) −0.0105 (8) −0.0060 (8) −0.0013 (8)
C11 0.0214 (10) 0.0280 (10) 0.0126 (8) −0.0123 (8) −0.0046 (7) −0.0048 (8)
C12 0.0202 (10) 0.0272 (10) 0.0145 (8) −0.0106 (8) −0.0047 (7) −0.0054 (8)
N3 0.0163 (8) 0.0219 (8) 0.0181 (8) −0.0073 (7) −0.0038 (6) −0.0039 (7)
N4 0.0175 (8) 0.0192 (8) 0.0169 (7) −0.0076 (7) −0.0032 (6) −0.0018 (7)
C13 0.0219 (10) 0.0255 (10) 0.0235 (10) −0.0113 (8) −0.0045 (8) −0.0022 (9)
C14 0.0246 (11) 0.0327 (11) 0.0336 (11) −0.0123 (9) −0.0065 (9) −0.0137 (10)
C15 0.0223 (11) 0.0344 (12) 0.0261 (10) −0.0031 (9) −0.0073 (9) −0.0145 (10)
C16 0.0161 (9) 0.0265 (10) 0.0183 (9) −0.0016 (8) −0.0026 (7) −0.0067 (8)
C17 0.0234 (11) 0.0313 (11) 0.0159 (9) −0.0018 (9) −0.0042 (8) −0.0048 (9)
C18 0.0226 (10) 0.0280 (11) 0.0161 (9) −0.0039 (9) −0.0012 (8) 0.0001 (8)
C19 0.0161 (9) 0.0205 (9) 0.0172 (9) −0.0027 (8) −0.0012 (7) −0.0001 (8)
C20 0.0210 (10) 0.0187 (9) 0.0222 (10) −0.0065 (8) −0.0009 (8) 0.0040 (8)
C21 0.0236 (11) 0.0204 (10) 0.0282 (10) −0.0101 (8) −0.0054 (9) −0.0017 (9)
C22 0.0227 (10) 0.0236 (10) 0.0205 (9) −0.0090 (8) −0.0046 (8) −0.0039 (8)
C23 0.0131 (9) 0.0184 (9) 0.0148 (8) −0.0026 (7) −0.0025 (7) −0.0012 (7)
C24 0.0132 (9) 0.0201 (9) 0.0174 (9) −0.0015 (7) −0.0035 (7) −0.0038 (8)
O1 0.0204 (7) 0.0212 (7) 0.0170 (6) −0.0089 (6) −0.0052 (5) −0.0010 (6)
O2 0.0237 (7) 0.0284 (7) 0.0179 (6) −0.0100 (6) −0.0019 (6) −0.0076 (6)
C25 0.0195 (10) 0.0213 (9) 0.0107 (8) −0.0101 (8) −0.0012 (7) 0.0016 (7)
C26 0.0199 (10) 0.0236 (10) 0.0155 (9) −0.0066 (8) −0.0056 (7) −0.0030 (8)
C27 0.0194 (10) 0.0228 (9) 0.0162 (8) −0.0084 (8) −0.0084 (7) −0.0019 (8)
C28 0.0211 (10) 0.0230 (10) 0.0231 (10) −0.0075 (8) −0.0059 (8) −0.0034 (8)
C29 0.0183 (10) 0.0347 (12) 0.0275 (10) −0.0077 (9) −0.0032 (8) −0.0095 (9)
C30 0.0255 (11) 0.0383 (12) 0.0211 (10) −0.0202 (10) −0.0038 (8) −0.0007 (9)
C31 0.0356 (12) 0.0244 (10) 0.0251 (10) −0.0168 (9) −0.0131 (9) 0.0034 (9)
C32 0.0239 (10) 0.0225 (10) 0.0229 (10) −0.0058 (8) −0.0089 (8) −0.0048 (8)
O3 0.0261 (8) 0.0244 (8) 0.0299 (8) −0.0068 (6) −0.0034 (6) 0.0023 (7)
O4 0.0313 (9) 0.0238 (8) 0.0272 (8) −0.0068 (7) −0.0010 (7) 0.0023 (6)
C33 0.0302 (11) 0.0166 (9) 0.0239 (10) −0.0085 (9) −0.0076 (9) −0.0001 (8)
C34 0.0529 (16) 0.0179 (10) 0.0274 (11) −0.0038 (10) −0.0079 (11) −0.0012 (9)
C35 0.0354 (12) 0.0139 (9) 0.0286 (11) −0.0048 (9) −0.0056 (9) 0.0006 (9)
C36 0.0304 (13) 0.0282 (12) 0.0446 (14) −0.0035 (10) −0.0012 (11) −0.0101 (11)
C37 0.0309 (13) 0.0395 (14) 0.0561 (16) −0.0032 (11) −0.0164 (12) −0.0156 (13)
C38 0.0400 (14) 0.0268 (11) 0.0363 (12) −0.0072 (10) −0.0150 (11) −0.0041 (10)
C39 0.0330 (12) 0.0288 (11) 0.0256 (11) −0.0069 (10) −0.0035 (9) −0.0002 (9)
C40 0.0274 (11) 0.0268 (11) 0.0275 (11) −0.0052 (9) −0.0078 (9) 0.0026 (9)
O5 0.0506 (11) 0.0361 (9) 0.0412 (9) −0.0205 (8) −0.0180 (8) −0.0034 (8)
O6 0.0385 (9) 0.0259 (8) 0.0460 (10) −0.0092 (7) −0.0167 (8) −0.0065 (7)
O7 0.0279 (8) 0.0314 (8) 0.0277 (8) −0.0047 (7) −0.0064 (6) −0.0044 (7)
O8 0.0335 (9) 0.0430 (10) 0.0340 (8) −0.0173 (8) −0.0045 (7) −0.0114 (8)
O9 0.0638 (13) 0.0678 (13) 0.0242 (8) −0.0491 (11) −0.0145 (8) 0.0113 (8)
O10 0.0317 (8) 0.0221 (7) 0.0245 (7) −0.0073 (6) −0.0095 (6) −0.0031 (6)

Geometric parameters (Å, °)

Cu—N2 2.0009 (18) C21—H21A 0.9300
Cu—O1 2.0011 (14) C22—H22A 0.9300
Cu—N4 2.0128 (17) C23—C24 1.430 (3)
Cu—N3 2.0600 (16) O1—C25 1.281 (2)
Cu—N1 2.1866 (19) O2—C25 1.247 (2)
N1—C1 1.330 (3) C25—C26 1.522 (3)
N1—C12 1.357 (3) C26—C27 1.517 (3)
N2—C10 1.336 (3) C26—H26A 0.9700
N2—C11 1.365 (3) C26—H26B 0.9700
C1—C2 1.405 (3) C27—C28 1.388 (3)
C1—H1A 0.9300 C27—C32 1.395 (3)
C2—C3 1.366 (3) C28—C29 1.389 (3)
C2—H2A 0.9300 C28—H28A 0.9300
C3—C4 1.408 (3) C29—C30 1.393 (3)
C3—H3A 0.9300 C29—H29A 0.9300
C4—C12 1.404 (3) C30—C31 1.387 (3)
C4—C5 1.441 (3) C30—H30A 0.9300
C5—C6 1.347 (3) C31—C32 1.391 (3)
C5—H5A 0.9300 C31—H31A 0.9300
C6—C7 1.434 (3) C32—H32A 0.9300
C6—H6A 0.9300 O3—C33 1.250 (3)
C7—C8 1.407 (3) O4—C33 1.254 (3)
C7—C11 1.410 (3) C33—C34 1.536 (3)
C8—C9 1.366 (3) C34—C35 1.513 (3)
C8—H8A 0.9300 C34—H34A 0.9700
C9—C10 1.403 (3) C34—H34B 0.9700
C9—H9A 0.9300 C35—C36 1.382 (3)
C10—H10A 0.9300 C35—C40 1.395 (3)
C11—C12 1.441 (3) C36—C37 1.394 (4)
N3—C13 1.327 (3) C36—H36A 0.9300
N3—C24 1.365 (3) C37—C38 1.378 (4)
N4—C22 1.329 (2) C37—H37A 0.9300
N4—C23 1.367 (2) C38—C39 1.375 (3)
C13—C14 1.402 (3) C38—H38A 0.9300
C13—H13A 0.9300 C39—C40 1.393 (3)
C14—C15 1.373 (3) C39—H39A 0.9300
C14—H14A 0.9300 C40—H40A 0.9300
C15—C16 1.409 (3) O5—H5B 0.8492
C15—H15A 0.9300 O5—H5C 0.9025
C16—C24 1.401 (3) O6—H6B 0.8443
C16—C17 1.429 (3) O6—H6C 0.9634
C17—C18 1.359 (3) O7—H7B 0.9596
C17—H17A 0.9300 O7—H7C 0.9107
C18—C19 1.438 (3) O8—H8B 0.8418
C18—H18A 0.9300 O8—H8C 0.8508
C19—C23 1.404 (3) O9—H9B 0.8328
C19—C20 1.410 (3) O9—H9C 0.7473
C20—C21 1.371 (3) O10—H10B 0.9033
C20—H20A 0.9300 O10—H10C 0.8749
C21—C22 1.404 (3)
N2—Cu—O1 95.38 (6) C20—C19—C18 124.14 (18)
N2—Cu—N4 173.84 (6) C21—C20—C19 119.44 (18)
O1—Cu—N4 90.11 (6) C21—C20—H20A 120.3
N2—Cu—N3 92.59 (7) C19—C20—H20A 120.3
O1—Cu—N3 159.85 (6) C20—C21—C22 119.49 (19)
N4—Cu—N3 81.31 (7) C20—C21—H21A 120.3
N2—Cu—N1 80.25 (7) C22—C21—H21A 120.3
O1—Cu—N1 99.99 (6) N4—C22—C21 122.70 (18)
N4—Cu—N1 101.58 (7) N4—C22—H22A 118.7
N3—Cu—N1 99.58 (7) C21—C22—H22A 118.7
C1—N1—C12 118.02 (18) N4—C23—C19 123.02 (18)
C1—N1—Cu 132.56 (14) N4—C23—C24 116.59 (16)
C12—N1—Cu 109.42 (13) C19—C23—C24 120.39 (17)
C10—N2—C11 118.72 (17) N3—C24—C16 123.45 (18)
C10—N2—Cu 126.25 (14) N3—C24—C23 116.65 (17)
C11—N2—Cu 114.99 (13) C16—C24—C23 119.90 (18)
N1—C1—C2 122.3 (2) C25—O1—Cu 108.11 (12)
N1—C1—H1A 118.8 O2—C25—O1 122.11 (18)
C2—C1—H1A 118.8 O2—C25—C26 119.94 (18)
C3—C2—C1 119.9 (2) O1—C25—C26 117.82 (17)
C3—C2—H2A 120.1 C27—C26—C25 108.99 (15)
C1—C2—H2A 120.1 C27—C26—H26A 109.9
C2—C3—C4 119.2 (2) C25—C26—H26A 109.9
C2—C3—H3A 120.4 C27—C26—H26B 109.9
C4—C3—H3A 120.4 C25—C26—H26B 109.9
C12—C4—C3 117.3 (2) H26A—C26—H26B 108.3
C12—C4—C5 119.5 (2) C28—C27—C32 119.05 (19)
C3—C4—C5 123.19 (19) C28—C27—C26 120.48 (18)
C6—C5—C4 121.05 (19) C32—C27—C26 120.47 (18)
C6—C5—H5A 119.5 C27—C28—C29 120.5 (2)
C4—C5—H5A 119.5 C27—C28—H28A 119.8
C5—C6—C7 121.2 (2) C29—C28—H28A 119.8
C5—C6—H6A 119.4 C28—C29—C30 120.6 (2)
C7—C6—H6A 119.4 C28—C29—H29A 119.7
C8—C7—C11 117.52 (19) C30—C29—H29A 119.7
C8—C7—C6 123.42 (19) C31—C30—C29 118.83 (19)
C11—C7—C6 119.0 (2) C31—C30—H30A 120.6
C9—C8—C7 119.88 (19) C29—C30—H30A 120.6
C9—C8—H8A 120.1 C30—C31—C32 120.7 (2)
C7—C8—H8A 120.1 C30—C31—H31A 119.6
C8—C9—C10 119.5 (2) C32—C31—H31A 119.6
C8—C9—H9A 120.3 C31—C32—C27 120.3 (2)
C10—C9—H9A 120.3 C31—C32—H32A 119.9
N2—C10—C9 122.2 (2) C27—C32—H32A 119.9
N2—C10—H10A 118.9 O3—C33—O4 124.60 (19)
C9—C10—H10A 118.9 O3—C33—C34 118.50 (19)
N2—C11—C7 122.18 (19) O4—C33—C34 116.88 (19)
N2—C11—C12 117.75 (17) C35—C34—C33 114.35 (18)
C7—C11—C12 120.06 (18) C35—C34—H34A 108.7
N1—C12—C4 123.28 (19) C33—C34—H34A 108.7
N1—C12—C11 117.49 (17) C35—C34—H34B 108.7
C4—C12—C11 119.20 (18) C33—C34—H34B 108.7
C13—N3—C24 117.51 (17) H34A—C34—H34B 107.6
C13—N3—Cu 130.54 (14) C36—C35—C40 118.0 (2)
C24—N3—Cu 111.93 (12) C36—C35—C34 121.2 (2)
C22—N4—C23 118.00 (17) C40—C35—C34 120.9 (2)
C22—N4—Cu 128.52 (13) C35—C36—C37 121.2 (2)
C23—N4—Cu 113.47 (12) C35—C36—H36A 119.4
N3—C13—C14 123.11 (19) C37—C36—H36A 119.4
N3—C13—H13A 118.4 C38—C37—C36 120.3 (2)
C14—C13—H13A 118.4 C38—C37—H37A 119.8
C15—C14—C13 119.33 (19) C36—C37—H37A 119.8
C15—C14—H14A 120.3 C39—C38—C37 119.4 (2)
C13—C14—H14A 120.3 C39—C38—H38A 120.3
C14—C15—C16 119.35 (19) C37—C38—H38A 120.3
C14—C15—H15A 120.3 C38—C39—C40 120.5 (2)
C16—C15—H15A 120.3 C38—C39—H39A 119.8
C24—C16—C15 117.25 (19) C40—C39—H39A 119.8
C24—C16—C17 119.03 (19) C39—C40—C35 120.8 (2)
C15—C16—C17 123.72 (19) C39—C40—H40A 119.6
C18—C17—C16 121.23 (19) C35—C40—H40A 119.6
C18—C17—H17A 119.4 H5B—O5—H5C 102.2
C16—C17—H17A 119.4 H6B—O6—H6C 97.9
C17—C18—C19 120.92 (19) H7B—O7—H7C 97.3
C17—C18—H18A 119.5 H8B—O8—H8C 109.3
C19—C18—H18A 119.5 H9B—O9—H9C 112.4
C23—C19—C20 117.33 (18) H10B—O10—H10C 107.4
C23—C19—C18 118.53 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5B···O6 0.849 1.920 2.769 (3) 178.64
O5—H5C···O8i 0.902 1.898 2.794 (3) 171.66
O6—H6B···O2 0.844 1.912 2.723 (2) 160.78
O6—H6C···O7ii 0.963 1.767 2.682 (3) 157.25
O7—H7B···O3 0.960 1.754 2.710 (2) 173.79
O7—H7C···O3iii 0.911 2.028 2.896 (2) 158.83
O8—H8B···O6 0.842 2.076 2.888 (3) 161.67
O8—H8C···O10iv 0.851 1.915 2.749 (3) 166.41
O9—H9B···O5v 0.833 1.915 2.746 (3) 175.07
O9—H9C···O4 0.747 2.046 2.790 (3) 173.58
O10—H10B···O1 0.903 1.911 2.812 (2) 175.12
O10—H10C···O4 0.875 1.842 2.686 (2) 161.44

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x−1, y+1, z; (iii) −x+2, −y, −z+1; (iv) −x+1, −y+1, −z+1; (v) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2118).

References

  1. Addison, A. W. & Rao, N. T. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1984.
  2. Baruah, A. M., Karmaker, A. & Baruah, J. B. (2007). Polyhedron, 26, 4479–4488.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  5. Kuroda-Sowa, T., Horino, T., Yamamoto, M., Ohno, Y., Maekawa, M. & Munakata, M. (1997). Inorg. Chem.36, 6382–6389.
  6. Lehn, J. M. (2007). Chem. Rev.36, 151–160. [DOI] [PubMed]
  7. Li, X., Cheng, D. Y., Li, Z. F. & Zheng, Y. Q. (2008). Cryst. Growth Des.8, 2853–2861.
  8. Liu, Q. Y. & Xu, L. (2005). CrystEngComm, 7, 87–89.
  9. Ma, B. Q., Sun, H. L. & Gao, S. (2005). Chem. Commun. pp. 2336–2338. [DOI] [PubMed]
  10. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  11. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sugimori, T., Masuda, H., Ohata, N., Koiwai, K., Odani, A. & Yamauchi, O. (1997). Inorg. Chem.36, 576–583.
  14. Zheng, Y. Q., Sun, J. & Lin, J. L. (2001). Z. Anorg. Allg. Chem.627, 90–94.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808032480/pk2118sup1.cif

e-64-m1475-sup1.cif (28.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032480/pk2118Isup2.hkl

e-64-m1475-Isup2.hkl (419.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES