Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 11;64(Pt 11):o2100. doi: 10.1107/S1600536808032340

N,N-Dimethyl-N-propyl­propan-1-aminium chloride monohydrate

Minna Kärnä a, Manu Lahtinen a,*, Jussi Valkonen a
PMCID: PMC2959546  PMID: 21580964

Abstract

The title compound, C8H20N+·Cl·H2O, has been prepared by a simple one-pot synthesis route followed by anion exchange using resin. In the crystal structure, the cations are packed in such a way that channels exist parallel to the b axis. These channels are filled by the anions and water mol­ecules, which inter­act via O—H⋯Cl hydrogen bonds [O⋯Cl = 3.285 (3) and 3.239 (3) Å] to form helical chains. The cations are involved in weak inter­molecular C—H⋯Cl and C—H⋯O hydrogen bonds. The title compound is not isomorphous with the bromo or iodo analogues.

Related literature

For general background, see: Ropponen et al. (2004). For related structures, see: Busi et al. (2005).graphic file with name e-64-o2100-scheme1.jpg

Experimental

Crystal data

  • C8H20N+·Cl·H2O

  • M r = 183.72

  • Monoclinic, Inline graphic

  • a = 7.9870 (16) Å

  • b = 9.4210 (19) Å

  • c = 14.875 (3) Å

  • β = 100.23 (3)°

  • V = 1101.5 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.71 mm−1

  • T = 173 (2) K

  • 0.40 × 0.12 × 0.12 mm

Data collection

  • Nonius Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.534, T max = 0.737

  • 6471 measured reflections

  • 1784 independent reflections

  • 1474 reflections with I > 2σ(I)

  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.108

  • S = 1.04

  • 1784 reflections

  • 112 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997; Otwinowski et al., 2003); data reduction: DENZO–SMN; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808032340/cv2460sup1.cif

e-64-o2100-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032340/cv2460Isup2.hkl

e-64-o2100-Isup2.hkl (86.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯Cl1 0.79 (4) 2.47 (4) 3.239 (3) 164 (3)
O1Wi—H2Wi⋯Cl1 0.84 (4) 2.46 (4) 3.285 (3) 172 (4)
C31ii—H5Bii⋯O1W 0.98 2.54 3.489 (4) 162
C21ii—H4Aii⋯Cl1 0.99 2.76 3.742 (2) 172
C41iii—H7Aiii⋯Cl1 0.98 2.80 3.721 (3) 156
C41—H7C⋯Cl1 0.98 2.76 3.691 (3) 158

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Inorganic Materials Chemistry Graduate Program for financial support.

supplementary crystallographic information

Comment

As a part of our ongoing study of small R2R'2N+X--type quaternary ammonium halides (Ropponen et al., 2004; Busi et al., 2005) the title compound (Fig. 1) has been synthesized and its crystal structure is reported here.

The asymmetric unit consists of one cation and one anion with one water molecule. The intermolecular (O)H···Cl distances vary from 2.456 (41) to 2.477 (40) Å. The shortest intermolecular (C)H···Cl distance is 2.779 (1) Å and the shortest (C)H···O distance is 2.561 (3) Å. The packing is affected by these weak intermolecular bonds (Table 1) causing the cations to arrange in layers which are separated by anions and the water molecules. The anions and the water molecules form a hydrogen-bonded chain along the crystallographic b-axis.

Experimental

The mixture of 1-bromopropane (95.2 mmol) and dimethylformamide (0.47 mol) in the presence of potassiumcarbonate (95.2 mmol) was stirred at 70°C for 72 h. The reaction mixture was cooled and filtered and the filtrate was evaporated. The product (white powder) was washed with diethyl ether and recrystallized from dichloromethane and dried in vacuo. The anion exhange was performed in a suitable resin, resulting in a light yellow, hygroscopic final product.

Refinement

The water H atoms were located from the difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.98–0.99 Å and with Uĩso~(H) = 1.2 (1.5 for methyl groups) times U~eq~(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (1) showing the atomic numbering and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The packing of (1) viewed along the crystallographic b-axis. Dashed lines indicate hydrogen bonds. The helical structure of the network between the anions and the water molecules can be seen. The H atoms not involved in the network have been omitted for clarity, as well as some of the cations.

Crystal data

C8H20N+·Cl·H2O F(000) = 408
Mr = 183.72 Dx = 1.108 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54178 Å
a = 7.9870 (16) Å Cell parameters from 1705 reflections
b = 9.4210 (19) Å θ = 0.9–63.7°
c = 14.875 (3) Å µ = 2.71 mm1
β = 100.23 (3)° T = 173 K
V = 1101.5 (4) Å3 Rod, colourless
Z = 4 0.40 × 0.12 × 0.12 mm

Data collection

Nonius Kappa APEXII diffractometer 1784 independent reflections
Radiation source: fine-focus sealed tube 1474 reflections with I > 2σ(I)
graphite Rint = 0.056
φ and ω scans θmax = 63.4°, θmin = 5.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −7→9
Tmin = 0.534, Tmax = 0.737 k = −10→10
6471 measured reflections l = −17→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.2799P] where P = (Fo2 + 2Fc2)/3
1784 reflections (Δ/σ)max < 0.001
112 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.33660 (7) −0.05079 (6) 0.66252 (4) 0.0363 (2)
N1 0.7874 (2) 0.10789 (19) 0.61585 (11) 0.0244 (4)
O1W 0.0649 (3) −0.2974 (3) 0.68554 (19) 0.0673 (7)
C21 0.9430 (2) 0.1617 (2) 0.58112 (14) 0.0272 (5)
H4A 1.0416 0.1023 0.6077 0.033*
H4B 0.9243 0.1489 0.5140 0.033*
C31 0.7647 (3) −0.0457 (2) 0.59034 (16) 0.0311 (5)
H5A 0.6659 −0.0836 0.6131 0.047*
H5B 0.8668 −0.0987 0.6175 0.047*
H5C 0.7466 −0.0551 0.5237 0.047*
C13 0.9427 (3) 0.0851 (3) 0.87601 (15) 0.0366 (6)
H6A 0.9657 0.1866 0.8863 0.055*
H6B 1.0303 0.0295 0.9153 0.055*
H6C 0.8308 0.0622 0.8905 0.055*
C41 0.6317 (3) 0.1857 (3) 0.56898 (16) 0.0333 (5)
H7A 0.6236 0.1783 0.5026 0.050*
H7B 0.6399 0.2859 0.5870 0.050*
H7C 0.5302 0.1437 0.5868 0.050*
C11 0.7990 (2) 0.1267 (2) 0.71770 (13) 0.0269 (5)
H8A 0.6911 0.0936 0.7346 0.032*
H8B 0.8097 0.2294 0.7319 0.032*
C12 0.9448 (3) 0.0497 (3) 0.77691 (15) 0.0319 (5)
H9A 0.9323 −0.0540 0.7672 0.038*
H9B 1.0542 0.0796 0.7604 0.038*
C22 0.9876 (3) 0.3154 (2) 0.60251 (17) 0.0360 (6)
H10A 1.0077 0.3301 0.6695 0.043*
H10B 0.8915 0.3768 0.5749 0.043*
C23 1.1457 (3) 0.3563 (3) 0.5653 (2) 0.0497 (7)
H11A 1.2408 0.2956 0.5929 0.074*
H11B 1.1739 0.4558 0.5802 0.074*
H11C 1.1247 0.3438 0.4989 0.074*
H1W 0.141 (4) −0.250 (4) 0.675 (2) 0.065 (11)*
H2W 0.100 (4) −0.360 (4) 0.724 (3) 0.084 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0368 (3) 0.0399 (4) 0.0335 (3) 0.0034 (2) 0.0099 (2) 0.0041 (2)
N1 0.0251 (9) 0.0244 (10) 0.0234 (9) 0.0008 (7) 0.0037 (7) 0.0005 (7)
O1W 0.0431 (12) 0.0528 (15) 0.1006 (19) −0.0032 (11) −0.0020 (12) 0.0265 (13)
C21 0.0270 (11) 0.0327 (13) 0.0226 (11) 0.0014 (9) 0.0067 (8) 0.0011 (9)
C31 0.0359 (12) 0.0241 (12) 0.0326 (12) −0.0012 (9) 0.0038 (9) −0.0041 (9)
C13 0.0479 (14) 0.0344 (14) 0.0265 (12) 0.0043 (11) 0.0038 (10) −0.0001 (10)
C41 0.0264 (11) 0.0375 (14) 0.0333 (13) 0.0071 (10) −0.0020 (9) 0.0037 (10)
C11 0.0281 (11) 0.0305 (13) 0.0232 (11) 0.0028 (9) 0.0074 (8) 0.0002 (9)
C12 0.0321 (11) 0.0384 (14) 0.0251 (12) 0.0046 (10) 0.0047 (9) 0.0023 (10)
C22 0.0391 (12) 0.0319 (14) 0.0390 (14) −0.0060 (10) 0.0122 (10) −0.0033 (10)
C23 0.0465 (14) 0.0420 (16) 0.0639 (18) −0.0122 (12) 0.0192 (13) 0.0043 (13)

Geometric parameters (Å, °)

N1—C31 1.499 (3) C13—H6C 0.9800
N1—C41 1.504 (3) C41—H7A 0.9800
N1—C11 1.512 (3) C41—H7B 0.9800
N1—C21 1.515 (3) C41—H7C 0.9800
O1W—H1W 0.79 (4) C11—C12 1.514 (3)
O1W—H2W 0.84 (4) C11—H8A 0.9900
C21—C22 1.512 (3) C11—H8B 0.9900
C21—H4A 0.9900 C12—H9A 0.9900
C21—H4B 0.9900 C12—H9B 0.9900
C31—H5A 0.9800 C22—C23 1.516 (3)
C31—H5B 0.9800 C22—H10A 0.9900
C31—H5C 0.9800 C22—H10B 0.9900
C13—C12 1.514 (3) C23—H11A 0.9800
C13—H6A 0.9800 C23—H11B 0.9800
C13—H6B 0.9800 C23—H11C 0.9800
C31—N1—C41 107.48 (16) N1—C41—H7C 109.5
C31—N1—C11 110.50 (16) H7A—C41—H7C 109.5
C41—N1—C11 107.79 (16) H7B—C41—H7C 109.5
C31—N1—C21 107.86 (15) N1—C11—C12 115.50 (16)
C41—N1—C21 109.83 (16) N1—C11—H8A 108.4
C11—N1—C21 113.22 (15) C12—C11—H8A 108.4
H1W—O1W—H2W 110 (3) N1—C11—H8B 108.4
C22—C21—N1 115.22 (17) C12—C11—H8B 108.4
C22—C21—H4A 108.5 H8A—C11—H8B 107.5
N1—C21—H4A 108.5 C13—C12—C11 108.70 (18)
C22—C21—H4B 108.5 C13—C12—H9A 109.9
N1—C21—H4B 108.5 C11—C12—H9A 109.9
H4A—C21—H4B 107.5 C13—C12—H9B 109.9
N1—C31—H5A 109.5 C11—C12—H9B 109.9
N1—C31—H5B 109.5 H9A—C12—H9B 108.3
H5A—C31—H5B 109.5 C21—C22—C23 110.3 (2)
N1—C31—H5C 109.5 C21—C22—H10A 109.6
H5A—C31—H5C 109.5 C23—C22—H10A 109.6
H5B—C31—H5C 109.5 C21—C22—H10B 109.6
C12—C13—H6A 109.5 C23—C22—H10B 109.6
C12—C13—H6B 109.5 H10A—C22—H10B 108.1
H6A—C13—H6B 109.5 C22—C23—H11A 109.5
C12—C13—H6C 109.5 C22—C23—H11B 109.5
H6A—C13—H6C 109.5 H11A—C23—H11B 109.5
H6B—C13—H6C 109.5 C22—C23—H11C 109.5
N1—C41—H7A 109.5 H11A—C23—H11C 109.5
N1—C41—H7B 109.5 H11B—C23—H11C 109.5
H7A—C41—H7B 109.5
C31—N1—C21—C22 −178.85 (18) C41—N1—C11—C12 177.38 (18)
C41—N1—C21—C22 64.3 (2) C21—N1—C11—C12 −60.9 (2)
C11—N1—C21—C22 −56.3 (2) N1—C11—C12—C13 177.40 (18)
C31—N1—C11—C12 60.2 (2) N1—C21—C22—C23 179.42 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1W···Cl1 0.79 (4) 2.47 (4) 3.239 (3) 164 (3)
O1Wi—H2Wi···Cl1 0.84 (4) 2.46 (4) 3.285 (3) 172 (4)
C31ii—H5Bii···O1W 0.98 2.54 3.489 (4) 162
C21ii—H4Aii···Cl1 0.99 2.76 3.742 (2) 172
C41iii—H7Aiii···Cl1 0.98 2.80 3.721 (3) 156
C41—H7C···Cl1 0.98 2.76 3.691 (3) 158

Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) x−1, y, z; (iii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2460).

References

  1. Brandenburg, K. (2008). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.36, 1103.
  3. Busi, S., Lahtinen, M., Mansikkamäki, H., Valkonen, J. & Rissanen, K. (2005). J. Solid State Chem.178, 1722–1737.
  4. Nonius (2002). COLLECT Nonius BV, Delft, The Netherlands.
  5. Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. [DOI] [PubMed]
  6. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  7. Ropponen, J., Lahtinen, M., Busi, S., Nissinen, M., Kolehmainen, E. & Rissanen, K. (2004). New J. Chem.28, 1426–1430.
  8. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808032340/cv2460sup1.cif

e-64-o2100-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032340/cv2460Isup2.hkl

e-64-o2100-Isup2.hkl (86.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES