Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 31;64(Pt 11):o2224. doi: 10.1107/S1600536808033308

2,4-Dihydroxy­benzaldehyde 4-methyl­thio­semicarbazone

Kong Wai Tan a, Chew Hee Ng b, Mohd Jamil Maah a,*, Seik Weng Ng a
PMCID: PMC2959547  PMID: 21581079

Abstract

The approximately planar mol­ecule of the title compound, C9H11N3O2S, is linked to adjacent mol­ecules by O—H⋯S hydrogen bonds to form a zigzag chain. Adjacent chains are consolidated by N—H⋯O hydrogen bonds into a two-dimensional array. An intramolecular O—H⋯N link is also present.

Related literature

For the structure of isomeric 2,5-dihydroxy­benzaldehyde 4-methyl­thio­semicarbazone, see: Tan et al. (2008).graphic file with name e-64-o2224-scheme1.jpg

Experimental

Crystal data

  • C9H11N3O2S

  • M r = 225.27

  • Monoclinic, Inline graphic

  • a = 18.0046 (6) Å

  • b = 4.6436 (1) Å

  • c = 12.2842 (4) Å

  • β = 106.695 (2)°

  • V = 983.74 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 (2) K

  • 0.09 × 0.06 × 0.03 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.973, T max = 0.991

  • 4390 measured reflections

  • 2128 independent reflections

  • 1925 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.109

  • S = 1.11

  • 2128 reflections

  • 153 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983), with 814 Friedel pairs

  • Flack parameter: 0.00 (1)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808033308/tk2316sup1.cif

e-64-o2224-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033308/tk2316Isup2.hkl

e-64-o2224-Isup2.hkl (104.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯N1 0.84 (1) 1.93 (3) 2.694 (3) 151 (6)
O2—H2O⋯S1i 0.84 (1) 2.54 (1) 3.365 (2) 170 (4)
N2—H2N⋯O1ii 0.87 (1) 2.11 (1) 2.950 (4) 162 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We thank the University of Malaya (PJP FS316/2008 C) for supporting this study. KWT thanks the Ministry of Higher Education for an SLAI scholarship.

supplementary crystallographic information

Comment

In continuation of on-going studies into the structural chemistry of thiosemicarbazones (Tan et al., 2008), the title compound (I) was investigated. Molecule (I), Fig. 1, is essentially planar and is consolidated into a 2-D array by a combination of N-H···O and O-H···S hydrogen bonding contacts, Table 1.

Experimental

4-Methylthiosemicarbazide (0.11 g, 1 mmol) and 2,4-dihydroxybenzaldehyde (0.14 g, 1 mmol) were heated in ethanol (10 ml) for 1 h. Slow evaporation of the solvent yielded yellow crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso>(H) set to 1.2-1.5 Ueq(C). The hydroxy and amino H-atoms were located in a difference Fourier map, and were refined with distance retraints of O–H = 0.84±0.01 and N–H = 0.88±0.01 Å; their temperature factors were freely refined.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid (Barbour, 2001) plot of (I) drawn at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radii.

Crystal data

C9H11N3O2S F(000) = 472
Mr = 225.27 Dx = 1.521 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 1090 reflections
a = 18.0046 (6) Å θ = 2.4–24.9°
b = 4.6436 (1) Å µ = 0.31 mm1
c = 12.2842 (4) Å T = 100 K
β = 106.695 (2)° Prims, yellow
V = 983.74 (5) Å3 0.09 × 0.06 × 0.03 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer 2128 independent reflections
Radiation source: fine-focus sealed tube 1925 reflections with I > 2σ(I)
graphite Rint = 0.034
ω scans θmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −23→22
Tmin = 0.973, Tmax = 0.991 k = −6→6
4390 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0598P)2] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max = 0.001
2128 reflections Δρmax = 0.31 e Å3
153 parameters Δρmin = −0.22 e Å3
6 restraints Absolute structure: Flack (1983), 814 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.00 (1)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.50003 (5) 0.63599 (16) 0.50001 (6) 0.01776 (19)
O1 0.65168 (12) −0.1181 (5) 0.93136 (19) 0.0174 (5)
O2 0.84529 (13) −0.8242 (5) 1.05294 (19) 0.0198 (5)
N1 0.63927 (15) 0.1424 (5) 0.7309 (2) 0.0144 (5)
N2 0.60440 (15) 0.2962 (6) 0.6322 (2) 0.0147 (5)
N3 0.53164 (15) 0.5567 (6) 0.7241 (2) 0.0166 (6)
C1 0.73692 (17) −0.2114 (7) 0.8141 (2) 0.0128 (6)
C2 0.71210 (17) −0.2660 (7) 0.9113 (2) 0.0122 (6)
C3 0.74812 (18) −0.4725 (7) 0.9891 (3) 0.0141 (6)
H3 0.7300 −0.5117 1.0530 0.017*
C4 0.81112 (16) −0.6232 (6) 0.9739 (2) 0.0142 (6)
C5 0.83798 (18) −0.5674 (7) 0.8800 (3) 0.0174 (7)
H5 0.8815 −0.6688 0.8704 0.021*
C6 0.80096 (17) −0.3645 (7) 0.8017 (3) 0.0159 (7)
H6 0.8192 −0.3274 0.7378 0.019*
C7 0.69685 (17) −0.0131 (7) 0.7250 (2) 0.0142 (6)
H7 0.7142 0.0020 0.6590 0.017*
C8 0.54711 (17) 0.4887 (7) 0.6279 (3) 0.0149 (6)
C9 0.47552 (19) 0.7743 (8) 0.7317 (3) 0.0206 (7)
H9A 0.4879 0.8460 0.8099 0.031*
H9B 0.4234 0.6899 0.7100 0.031*
H9C 0.4773 0.9340 0.6804 0.031*
H1O 0.633 (3) −0.017 (11) 0.874 (3) 0.08 (2)*
H2O 0.8796 (19) −0.909 (8) 1.032 (4) 0.038 (13)*
H2N 0.6097 (19) 0.218 (7) 0.5703 (17) 0.011 (8)*
H3N 0.5552 (19) 0.476 (7) 0.7898 (17) 0.018 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0196 (4) 0.0180 (4) 0.0138 (3) 0.0027 (4) 0.0018 (3) 0.0021 (4)
O1 0.0193 (13) 0.0174 (12) 0.0159 (11) 0.0038 (9) 0.0059 (9) 0.0029 (10)
O2 0.0216 (12) 0.0196 (13) 0.0171 (12) 0.0069 (10) 0.0037 (9) 0.0040 (9)
N1 0.0159 (13) 0.0126 (13) 0.0125 (12) −0.0018 (11) 0.0008 (10) 0.0013 (10)
N2 0.0176 (13) 0.0163 (13) 0.0097 (13) 0.0024 (11) 0.0030 (10) −0.0001 (11)
N3 0.0195 (14) 0.0144 (13) 0.0152 (13) 0.0023 (11) 0.0037 (10) 0.0014 (10)
C1 0.0153 (14) 0.0135 (15) 0.0103 (14) −0.0029 (12) 0.0048 (11) −0.0005 (12)
C2 0.0105 (14) 0.0147 (15) 0.0129 (15) −0.0017 (12) 0.0056 (11) −0.0034 (12)
C3 0.0162 (15) 0.0159 (16) 0.0120 (15) −0.0032 (12) 0.0069 (12) −0.0012 (11)
C4 0.0148 (16) 0.0139 (14) 0.0113 (14) −0.0007 (12) −0.0006 (12) 0.0000 (12)
C5 0.0155 (16) 0.0163 (16) 0.0180 (17) 0.0012 (12) 0.0010 (12) −0.0031 (12)
C6 0.0121 (15) 0.0214 (18) 0.0134 (15) −0.0031 (14) 0.0023 (12) −0.0033 (13)
C7 0.0157 (16) 0.0164 (16) 0.0117 (15) −0.0035 (13) 0.0058 (12) −0.0016 (12)
C8 0.0154 (15) 0.0127 (15) 0.0175 (16) −0.0031 (12) 0.0064 (12) 0.0002 (12)
C9 0.0169 (16) 0.0266 (19) 0.0201 (17) 0.0003 (13) 0.0079 (13) −0.0038 (13)

Geometric parameters (Å, °)

S1—C8 1.699 (3) C1—C2 1.413 (4)
O1—C2 1.367 (4) C1—C7 1.454 (4)
O1—H1O 0.838 (10) C2—C3 1.378 (4)
O2—C4 1.360 (4) C3—C4 1.391 (4)
O2—H2O 0.836 (10) C3—H3 0.9500
N1—C7 1.283 (4) C4—C5 1.397 (4)
N1—N2 1.392 (3) C5—C6 1.374 (4)
N2—C8 1.354 (4) C5—H5 0.9500
N2—H2N 0.871 (10) C6—H6 0.9500
N3—C8 1.328 (4) C7—H7 0.9500
N3—C9 1.451 (4) C9—H9A 0.9800
N3—H3N 0.880 (10) C9—H9B 0.9800
C1—C6 1.400 (4) C9—H9C 0.9800
C2—O1—H1O 106 (4) C3—C4—C5 120.5 (3)
C4—O2—H2O 109 (3) C6—C5—C4 119.5 (3)
C7—N1—N2 114.1 (3) C6—C5—H5 120.3
C8—N2—N1 121.4 (3) C4—C5—H5 120.3
C8—N2—H2N 121 (2) C5—C6—C1 121.4 (3)
N1—N2—H2N 114 (2) C5—C6—H6 119.3
C8—N3—C9 123.4 (3) C1—C6—H6 119.3
C8—N3—H3N 123 (3) N1—C7—C1 123.2 (3)
C9—N3—H3N 114 (3) N1—C7—H7 118.4
C6—C1—C2 118.1 (3) C1—C7—H7 118.4
C6—C1—C7 119.1 (3) N3—C8—N2 118.3 (3)
C2—C1—C7 122.8 (3) N3—C8—S1 123.4 (2)
O1—C2—C3 117.7 (3) N2—C8—S1 118.3 (2)
O1—C2—C1 121.6 (3) N3—C9—H9A 109.5
C3—C2—C1 120.8 (3) N3—C9—H9B 109.5
C2—C3—C4 119.8 (3) H9A—C9—H9B 109.5
C2—C3—H3 120.1 N3—C9—H9C 109.5
C4—C3—H3 120.1 H9A—C9—H9C 109.5
O2—C4—C3 117.9 (3) H9B—C9—H9C 109.5
O2—C4—C5 121.6 (3)
C7—N1—N2—C8 −174.4 (3) C4—C5—C6—C1 0.2 (5)
C6—C1—C2—O1 177.7 (3) C2—C1—C6—C5 1.4 (4)
C7—C1—C2—O1 −4.9 (4) C7—C1—C6—C5 −176.0 (3)
C6—C1—C2—C3 −2.5 (4) N2—N1—C7—C1 −174.0 (3)
C7—C1—C2—C3 174.8 (3) C6—C1—C7—N1 −177.7 (3)
O1—C2—C3—C4 −178.3 (3) C2—C1—C7—N1 5.0 (5)
C1—C2—C3—C4 1.9 (5) C9—N3—C8—N2 175.6 (3)
C2—C3—C4—O2 179.7 (3) C9—N3—C8—S1 −3.1 (4)
C2—C3—C4—C5 −0.2 (5) N1—N2—C8—N3 8.8 (4)
O2—C4—C5—C6 179.3 (3) N1—N2—C8—S1 −172.5 (2)
C3—C4—C5—C6 −0.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1O···N1 0.84 (1) 1.93 (3) 2.694 (3) 151 (6)
O2—H2O···S1i 0.84 (1) 2.54 (1) 3.365 (2) 170 (4)
N2—H2N···O1ii 0.87 (1) 2.11 (1) 2.950 (4) 162 (3)

Symmetry codes: (i) x+1/2, −y−1/2, z+1/2; (ii) x, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2316).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Tan, K. W., Ng, C. H., Maah, M. J. & Ng, S. W. (2008). Acta Cryst. E64, o1344. [DOI] [PMC free article] [PubMed]
  7. Westrip, S. P. (2008). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808033308/tk2316sup1.cif

e-64-o2224-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033308/tk2316Isup2.hkl

e-64-o2224-Isup2.hkl (104.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES