Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 11;64(Pt 11):o2096. doi: 10.1107/S1600536808032108

N-[4-Acetyl-5-(3-methoxy­phen­yl)-4,5-dihydro-1,3,4-thia­diazol-2-yl]acetamide

G Aridoss a, S Amirthaganesan a, D Velmurugan b, S H Kim a, Y T Jeong a,*
PMCID: PMC2959549  PMID: 21580960

Abstract

The title compound, C13H15N3O3S, crystallizes with two mol­ecules in the asymmetric unit. The thia­diazole rings in both the mol­ecules adopt an envelope conformation. The crystal packing is stabilized by inter­molecular N—H⋯O and C—H⋯O inter­actions.

Related literature

For biological activities of thia­diazole derivatives, see: Balasubramanian et al. (2004); Li et al. (2001); Radwan et al. (2007); Supuran et al. (2001). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).graphic file with name e-64-o2096-scheme1.jpg

Experimental

Crystal data

  • C13H15N3O3S

  • M r = 293.34

  • Monoclinic, Inline graphic

  • a = 11.3790 (4) Å

  • b = 10.5993 (3) Å

  • c = 11.9596 (2) Å

  • β = 108.225 (2)°

  • V = 1370.08 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.16 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.930, T max = 0.962

  • 16660 measured reflections

  • 7595 independent reflections

  • 5635 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.109

  • S = 1.03

  • 7595 reflections

  • 367 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983), with 3584 Friedel pairs

  • Flack parameter: 0.07 (7)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808032108/bt2802sup1.cif

e-64-o2096-sup1.cif (25.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032108/bt2802Isup2.hkl

e-64-o2096-Isup2.hkl (364.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O5i 0.86 1.95 2.801 (3) 171
N6—H6A⋯O2ii 0.86 1.96 2.799 (3) 164
C25—H25C⋯O2ii 0.96 2.37 3.238 (4) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This research work was supported by the second stage of the BK21 Program, Republic of Korea. DV acknowledges financial support from the University Grants Commission (UGC-SAP) and the Department of Science and Technology (DST-FIST), Government of India, for providing facilities.

supplementary crystallographic information

Comment

Nitrogen heterocycles are one of the most important classes of biologically active compounds. Suitably substituted 1,3,4-thiadiazoles have attracted great attention owing to their broad spectrum of biological activities in the areas of medicine which includes antimicrobial, antituberculosis, anesthetic, antithrombotic, anticonvulsant, antihypertensive, anti-inflammatory and antiulcer activities (Balasubramanian et al., 2004; Li et al., 2001; Radwan et al. 2007; Supuran et al., 2001). Their action depends directly on the type and location of polar substituents on the heterocyclic ring. In general, pharmacological effect of potential drugs depends sensitively and solely on the stereochemistry and ring conformations. Thus, by keeping in view the promising biological potency of 1,3,4-thiadiazoles and variously substituted 1,3,4-thiadiazole frameworks, we have carried out the crystal structure determination of the title compound.

The title compound crystallizes with two molecules in the asymmetric unit. The sum of the angles at N1 (359.9 (6)°) and N4 (360.0 (6)°) are in accordance with sp2 hybridization. The torsion angles around C6—C1—O1—C13 [0.0 (4)°] and C19—C14—O4—C26 [-1.8 (4)°] indicates the coplanarity of the methoxy groups with the corresponding phenyl rings (C1–C6) and (C14–C19), respectively. The thiadiazole ring in both the molecules adopt envelope conformation with atoms C7 and C20 deviating by 0.395 (3) and 0.350 (3) Å, respectively, from the mean plane of the remaining atoms. The puckering parameters (Cremer & Pople, 1975) and the smallest displacement asymmetry parameters (Nardelli, 1983) for the thiadiazole rings C10—S2—C7—N1—N2 and C20—S2—C23—N5—N4 are q2 = 0.245 (2), 0.217 (2) Å, φ = 36.4 (6), 215.4 (6)° and Δs(C7) = 6.9 (2), Δs(C20) = 5.4 (2), respectively. N—H···O and C—H···O intermolecular interactions stabilize the crystal packing (Table 1).

Experimental

The title compound was obtained by applying the method of Balasubramanian et al. (2004). 3-Methoxybenzadehyde thiosemicarbazone obtained by the reaction of 3-Methoxybenzadehyde and thiosemicarbazide was refluxed with excess of freshly distilled acetic anhydride on a water bath for about 7 h. After the completion of reaction, the excess of acetic anhydride was distilled off under reduced pressure and the obtained crude mass was purified by column chromatography (benzene–ethylacetate 5:1 v/v). Crystals were obtained from the solution of freshly distilled ethanol by slow evaporation at room temperature. 1H NMR (DMSO-d6, p.p.m.): 10.90 (s, 1H, amide NH); 7.36–6.76 (m, 5H, aromatic and ring methine protons); 3.78 (s, 3H, OCH3); 2.38 (s, 3H, –COCH3); 2.28 (s, 3H, –COCH3).

Refinement

All H-atoms were refined using a riding model with d(C—H) = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic, 0.98 Å, Uiso = 1.2Ueq (C) for CH, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 and 0.86 Å, Uiso = 1.2Ueq (N) for NH atoms. The methyl groups were allowed to rotate but not to tip.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The molecular packing of the title compound. For clarity, hydrogen atoms which are not involved in hydrogen bonding were omitted.

Crystal data

C13H15N3O3S F(000) = 616
Mr = 293.34 Dx = 1.422 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 5353 reflections
a = 11.3790 (4) Å θ = 1.8–29.6°
b = 10.5993 (3) Å µ = 0.25 mm1
c = 11.9596 (2) Å T = 293 K
β = 108.225 (2)° Prism, colourless
V = 1370.08 (7) Å3 0.30 × 0.20 × 0.16 mm
Z = 4

Data collection

Bruker Kappa-APEXII CCD diffractometer 7595 independent reflections
Radiation source: fine-focus sealed tube 5635 reflections with I > 2σ(I)
graphite Rint = 0.030
ω and φ scans θmax = 29.6°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −15→15
Tmin = 0.930, Tmax = 0.962 k = −14→14
16660 measured reflections l = −14→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.2666P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
7595 reflections Δρmax = 0.33 e Å3
367 parameters Δρmin = −0.25 e Å3
1 restraint Absolute structure: Flack (1983), with 3584 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.07 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5869 (2) 0.7772 (2) 0.4618 (2) 0.0397 (5)
C2 0.6405 (3) 0.8511 (3) 0.3955 (3) 0.0498 (8)
H2 0.6027 0.8595 0.3148 0.060*
C3 0.7499 (3) 0.9119 (3) 0.4499 (2) 0.0538 (7)
H3 0.7862 0.9615 0.4055 0.065*
C4 0.8069 (2) 0.9005 (3) 0.5697 (2) 0.0442 (6)
H4 0.8808 0.9428 0.6055 0.053*
C5 0.7547 (2) 0.8268 (2) 0.6360 (2) 0.0309 (5)
C6 0.64253 (18) 0.7665 (2) 0.5812 (2) 0.0350 (5)
H6 0.6051 0.7186 0.6258 0.042*
C7 0.8123 (2) 0.8112 (3) 0.7677 (2) 0.0324 (6)
H7 0.7546 0.8419 0.8076 0.039*
C8 0.9343 (2) 1.0017 (3) 0.8382 (2) 0.0363 (6)
C9 1.0571 (2) 1.0645 (3) 0.8708 (3) 0.0441 (7)
H9A 1.0464 1.1541 0.8742 0.066*
H9B 1.0969 1.0455 0.8129 0.066*
H9C 1.1074 1.0346 0.9464 0.066*
C10 1.0096 (2) 0.6892 (3) 0.8300 (2) 0.0315 (6)
C11 1.0879 (3) 0.4753 (3) 0.8707 (2) 0.0390 (6)
C12 1.1970 (3) 0.3942 (3) 0.8773 (3) 0.0569 (8)
H12A 1.1920 0.3658 0.7997 0.085*
H12B 1.1975 0.3226 0.9267 0.085*
H12C 1.2716 0.4420 0.9098 0.085*
C13 0.4198 (2) 0.6425 (3) 0.4616 (3) 0.0548 (7)
H13A 0.3971 0.6925 0.5186 0.082*
H13B 0.4748 0.5763 0.5011 0.082*
H13C 0.3468 0.6062 0.4074 0.082*
C14 0.8900 (2) 0.2827 (3) 0.5333 (2) 0.0431 (6)
C15 0.8399 (3) 0.3437 (3) 0.6089 (3) 0.0499 (8)
H15 0.8734 0.3319 0.6897 0.060*
C16 0.7400 (3) 0.4223 (3) 0.5648 (2) 0.0524 (7)
H16 0.7053 0.4623 0.6162 0.063*
C17 0.6906 (2) 0.4425 (2) 0.4454 (2) 0.0420 (6)
H17 0.6236 0.4967 0.4164 0.050*
C18 0.7410 (2) 0.3820 (3) 0.3691 (2) 0.0313 (5)
C19 0.84171 (19) 0.3018 (2) 0.4136 (2) 0.0365 (5)
H19 0.8764 0.2611 0.3626 0.044*
C20 0.6864 (2) 0.3966 (3) 0.2384 (2) 0.0316 (5)
H20 0.7459 0.3662 0.2005 0.038*
C21 0.5698 (2) 0.2018 (3) 0.1704 (2) 0.0352 (6)
C22 0.4489 (2) 0.1337 (3) 0.1313 (3) 0.0457 (7)
H22A 0.4280 0.1056 0.1990 0.069*
H22B 0.4554 0.0621 0.0844 0.069*
H22C 0.3857 0.1895 0.0855 0.069*
C23 0.4851 (2) 0.5119 (3) 0.1630 (2) 0.0307 (5)
C24 0.4060 (2) 0.7251 (3) 0.1174 (2) 0.0371 (6)
C25 0.2952 (2) 0.8055 (3) 0.1067 (3) 0.0520 (8)
H25A 0.2616 0.8347 0.0271 0.078*
H25B 0.3190 0.8766 0.1587 0.078*
H25C 0.2340 0.7569 0.1275 0.078*
C26 1.0400 (3) 0.1360 (3) 0.5113 (3) 0.0692 (9)
H26A 1.0753 0.1935 0.4686 0.104*
H26B 0.9772 0.0863 0.4568 0.104*
H26C 1.1035 0.0814 0.5586 0.104*
N1 0.92957 (17) 0.8777 (2) 0.81336 (18) 0.0319 (5)
N2 1.03611 (17) 0.8057 (2) 0.8278 (2) 0.0339 (5)
N3 1.10017 (18) 0.5994 (2) 0.8432 (2) 0.0383 (5)
H3A 1.1689 0.6224 0.8336 0.046*
N4 0.57049 (17) 0.3249 (2) 0.1927 (2) 0.0332 (5)
N5 0.46128 (17) 0.3956 (2) 0.16790 (19) 0.0330 (5)
N6 0.39184 (18) 0.6002 (2) 0.1401 (2) 0.0357 (5)
H6A 0.3199 0.5754 0.1399 0.043*
O1 0.47967 (16) 0.7197 (2) 0.39944 (16) 0.0550 (5)
O2 0.83930 (16) 1.0588 (2) 0.8297 (2) 0.0525 (5)
O3 0.99404 (17) 0.4378 (2) 0.88764 (19) 0.0514 (5)
O4 0.98715 (18) 0.2046 (2) 0.58456 (19) 0.0676 (6)
O5 0.66898 (16) 0.1464 (2) 0.18601 (19) 0.0513 (5)
O6 0.50089 (16) 0.7653 (2) 0.10697 (18) 0.0487 (5)
S1 0.85560 (5) 0.64828 (6) 0.81229 (6) 0.03785 (17)
S2 0.63984 (5) 0.55696 (6) 0.18841 (6) 0.03857 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0346 (10) 0.0384 (13) 0.0415 (13) 0.0002 (9) 0.0053 (10) −0.0048 (10)
C2 0.0547 (16) 0.054 (2) 0.0347 (15) −0.0045 (14) 0.0053 (13) 0.0004 (13)
C3 0.0597 (15) 0.0617 (19) 0.0407 (15) −0.0191 (14) 0.0166 (12) 0.0057 (13)
C4 0.0404 (12) 0.0500 (15) 0.0426 (14) −0.0140 (11) 0.0136 (11) −0.0016 (12)
C5 0.0285 (10) 0.0297 (14) 0.0349 (13) 0.0004 (9) 0.0102 (10) −0.0034 (11)
C6 0.0299 (9) 0.0337 (12) 0.0405 (12) −0.0024 (8) 0.0099 (9) −0.0001 (10)
C7 0.0236 (10) 0.0341 (14) 0.0378 (14) −0.0022 (10) 0.0071 (10) −0.0053 (12)
C8 0.0347 (12) 0.0371 (16) 0.0382 (15) 0.0007 (11) 0.0129 (11) −0.0028 (12)
C9 0.0377 (12) 0.0392 (16) 0.0552 (18) −0.0079 (13) 0.0142 (12) −0.0115 (15)
C10 0.0253 (10) 0.0370 (16) 0.0324 (13) −0.0024 (10) 0.0093 (9) −0.0015 (11)
C11 0.0412 (13) 0.0371 (16) 0.0370 (15) −0.0039 (12) 0.0096 (11) −0.0004 (12)
C12 0.0521 (16) 0.0326 (16) 0.086 (2) 0.0014 (14) 0.0209 (16) 0.0069 (17)
C13 0.0384 (12) 0.0568 (17) 0.0667 (18) −0.0103 (12) 0.0129 (12) −0.0108 (15)
C14 0.0331 (10) 0.0456 (15) 0.0455 (14) −0.0001 (10) 0.0048 (10) 0.0045 (11)
C15 0.0554 (16) 0.055 (2) 0.0351 (16) −0.0062 (14) 0.0080 (13) −0.0022 (13)
C16 0.0600 (15) 0.0552 (18) 0.0441 (15) 0.0019 (13) 0.0192 (13) −0.0117 (13)
C17 0.0406 (11) 0.0386 (13) 0.0458 (14) 0.0050 (10) 0.0119 (11) −0.0053 (11)
C18 0.0251 (10) 0.0291 (14) 0.0374 (14) −0.0036 (9) 0.0066 (10) −0.0007 (11)
C19 0.0301 (9) 0.0380 (12) 0.0417 (13) 0.0036 (9) 0.0118 (9) 0.0018 (11)
C20 0.0237 (10) 0.0339 (14) 0.0383 (14) −0.0015 (10) 0.0112 (10) −0.0012 (12)
C21 0.0325 (12) 0.0351 (15) 0.0398 (15) −0.0032 (11) 0.0141 (10) −0.0071 (12)
C22 0.0401 (13) 0.0432 (18) 0.0551 (18) −0.0099 (13) 0.0167 (12) −0.0118 (15)
C23 0.0268 (10) 0.0343 (15) 0.0289 (13) −0.0005 (10) 0.0056 (9) 0.0035 (10)
C24 0.0371 (13) 0.0330 (15) 0.0358 (14) −0.0013 (11) 0.0036 (11) 0.0008 (12)
C25 0.0428 (14) 0.0347 (16) 0.074 (2) 0.0065 (12) 0.0111 (14) 0.0046 (16)
C26 0.0557 (16) 0.066 (2) 0.088 (2) 0.0258 (16) 0.0253 (16) 0.0328 (19)
N1 0.0219 (9) 0.0343 (13) 0.0381 (12) −0.0010 (8) 0.0074 (8) −0.0054 (10)
N2 0.0238 (9) 0.0348 (13) 0.0425 (13) 0.0014 (9) 0.0096 (9) −0.0019 (10)
N3 0.0308 (10) 0.0327 (13) 0.0541 (14) −0.0009 (8) 0.0171 (9) 0.0045 (10)
N4 0.0234 (9) 0.0334 (13) 0.0407 (13) −0.0005 (9) 0.0069 (8) −0.0048 (10)
N5 0.0257 (9) 0.0332 (13) 0.0388 (12) 0.0007 (9) 0.0083 (8) −0.0038 (10)
N6 0.0272 (9) 0.0322 (13) 0.0461 (12) −0.0002 (8) 0.0089 (8) 0.0034 (10)
O1 0.0433 (9) 0.0665 (13) 0.0459 (10) −0.0145 (9) 0.0006 (8) −0.0070 (10)
O2 0.0383 (9) 0.0388 (12) 0.0845 (15) 0.0039 (10) 0.0252 (10) −0.0079 (12)
O3 0.0465 (11) 0.0472 (14) 0.0617 (13) −0.0102 (10) 0.0187 (10) 0.0077 (11)
O4 0.0572 (11) 0.0840 (16) 0.0567 (12) 0.0303 (11) 0.0110 (10) 0.0231 (12)
O5 0.0363 (9) 0.0405 (12) 0.0795 (14) 0.0048 (10) 0.0216 (9) −0.0079 (12)
O6 0.0431 (10) 0.0430 (13) 0.0617 (13) −0.0049 (9) 0.0187 (9) 0.0097 (11)
S1 0.0281 (3) 0.0403 (4) 0.0434 (4) −0.0051 (3) 0.0087 (2) 0.0057 (3)
S2 0.0264 (3) 0.0371 (4) 0.0505 (4) −0.0023 (3) 0.0096 (3) 0.0090 (3)

Geometric parameters (Å, °)

C1—O1 1.359 (3) C14—C19 1.377 (3)
C1—C6 1.374 (3) C15—C16 1.374 (4)
C1—C2 1.384 (4) C15—H15 0.9300
C2—C3 1.372 (4) C16—C17 1.378 (4)
C2—H2 0.9300 C16—H16 0.9300
C3—C4 1.380 (4) C17—C18 1.378 (3)
C3—H3 0.9300 C17—H17 0.9300
C4—C5 1.374 (3) C18—C19 1.392 (3)
C4—H4 0.9300 C18—C20 1.499 (3)
C5—C6 1.394 (3) C19—H19 0.9300
C5—C7 1.514 (4) C20—N4 1.471 (3)
C6—H6 0.9300 C20—S2 1.824 (3)
C7—N1 1.456 (3) C20—H20 0.9800
C7—S1 1.829 (3) C21—O5 1.234 (3)
C7—H7 0.9800 C21—N4 1.332 (4)
C8—O2 1.215 (3) C21—C22 1.493 (3)
C8—N1 1.345 (4) C22—H22A 0.9600
C8—C9 1.486 (4) C22—H22B 0.9600
C9—H9A 0.9600 C22—H22C 0.9600
C9—H9B 0.9600 C23—N5 1.267 (4)
C9—H9C 0.9600 C23—N6 1.377 (3)
C10—N2 1.274 (3) C23—S2 1.757 (2)
C10—N3 1.375 (3) C24—N6 1.370 (4)
C10—S1 1.753 (2) C24—C25 1.493 (4)
C11—O3 1.215 (3) C25—H25A 0.9600
C11—N3 1.373 (4) C25—H25B 0.9600
C11—C12 1.492 (4) C25—H25C 0.9600
C12—H12A 0.9600 C26—O4 1.410 (4)
C12—H12B 0.9600 C26—H26A 0.9600
C12—H12C 0.9600 C26—H26B 0.9600
C13—O1 1.416 (3) C26—H26C 0.9600
C13—H13A 0.9600 N1—N2 1.397 (3)
C13—H13B 0.9600 N3—H3A 0.8600
C13—H13C 0.9600 N4—N5 1.401 (3)
C14—O4 1.364 (3) N6—H6A 0.8600
C14—C15 1.373 (4)
O1—C1—C6 125.1 (2) C16—C17—C18 119.6 (2)
O1—C1—C2 114.9 (2) C16—C17—H17 120.2
C6—C1—C2 120.0 (2) C18—C17—H17 120.2
C3—C2—C1 119.4 (3) C17—C18—C19 119.6 (2)
C3—C2—H2 120.3 C17—C18—C20 121.3 (2)
C1—C2—H2 120.3 C19—C18—C20 119.0 (2)
C2—C3—C4 120.9 (3) C14—C19—C18 120.0 (2)
C2—C3—H3 119.6 C14—C19—H19 120.0
C4—C3—H3 119.6 C18—C19—H19 120.0
C5—C4—C3 120.1 (2) N4—C20—C18 111.4 (2)
C5—C4—H4 120.0 N4—C20—S2 103.01 (16)
C3—C4—H4 120.0 C18—C20—S2 114.9 (2)
C4—C5—C6 119.2 (2) N4—C20—H20 109.1
C4—C5—C7 122.5 (2) C18—C20—H20 109.1
C6—C5—C7 118.3 (2) S2—C20—H20 109.1
C1—C6—C5 120.5 (2) O5—C21—N4 119.2 (2)
C1—C6—H6 119.8 O5—C21—C22 121.8 (3)
C5—C6—H6 119.8 N4—C21—C22 118.9 (2)
N1—C7—C5 112.6 (2) C21—C22—H22A 109.5
N1—C7—S1 102.46 (16) C21—C22—H22B 109.5
C5—C7—S1 113.33 (19) H22A—C22—H22B 109.5
N1—C7—H7 109.4 C21—C22—H22C 109.5
C5—C7—H7 109.4 H22A—C22—H22C 109.5
S1—C7—H7 109.4 H22B—C22—H22C 109.5
O2—C8—N1 119.7 (3) N5—C23—N6 120.6 (2)
O2—C8—C9 122.5 (3) N5—C23—S2 118.25 (19)
N1—C8—C9 117.7 (2) N6—C23—S2 121.2 (2)
C8—C9—H9A 109.5 O6—C24—N6 121.8 (3)
C8—C9—H9B 109.5 O6—C24—C25 123.3 (3)
H9A—C9—H9B 109.5 N6—C24—C25 114.9 (2)
C8—C9—H9C 109.5 C24—C25—H25A 109.5
H9A—C9—H9C 109.5 C24—C25—H25B 109.5
H9B—C9—H9C 109.5 H25A—C25—H25B 109.5
N2—C10—N3 120.0 (2) C24—C25—H25C 109.5
N2—C10—S1 118.12 (19) H25A—C25—H25C 109.5
N3—C10—S1 121.8 (2) H25B—C25—H25C 109.5
O3—C11—N3 120.9 (3) O4—C26—H26A 109.5
O3—C11—C12 124.3 (3) O4—C26—H26B 109.5
N3—C11—C12 114.8 (3) H26A—C26—H26B 109.5
C11—C12—H12A 109.5 O4—C26—H26C 109.5
C11—C12—H12B 109.5 H26A—C26—H26C 109.5
H12A—C12—H12B 109.5 H26B—C26—H26C 109.5
C11—C12—H12C 109.5 C8—N1—N2 122.2 (2)
H12A—C12—H12C 109.5 C8—N1—C7 121.6 (2)
H12B—C12—H12C 109.5 N2—N1—C7 116.1 (2)
O1—C13—H13A 109.5 C10—N2—N1 109.3 (2)
O1—C13—H13B 109.5 C11—N3—C10 124.2 (2)
H13A—C13—H13B 109.5 C11—N3—H3A 117.9
O1—C13—H13C 109.5 C10—N3—H3A 117.9
H13A—C13—H13C 109.5 C21—N4—N5 122.2 (2)
H13B—C13—H13C 109.5 C21—N4—C20 122.0 (2)
O4—C14—C15 115.8 (2) N5—N4—C20 115.8 (2)
O4—C14—C19 124.1 (2) C23—N5—N4 110.0 (2)
C15—C14—C19 120.2 (2) C24—N6—C23 124.4 (2)
C14—C15—C16 119.7 (3) C24—N6—H6A 117.8
C14—C15—H15 120.1 C23—N6—H6A 117.8
C16—C15—H15 120.1 C1—O1—C13 117.9 (2)
C15—C16—C17 120.9 (3) C14—O4—C26 118.5 (2)
C15—C16—H16 119.6 C10—S1—C7 88.3 (1)
C17—C16—H16 119.6 C23—S2—C20 88.6 (1)
O1—C1—C2—C3 −179.1 (3) N3—C10—N2—N1 179.8 (2)
C6—C1—C2—C3 0.8 (4) S1—C10—N2—N1 1.3 (3)
C1—C2—C3—C4 −0.1 (5) C8—N1—N2—C10 162.3 (3)
C2—C3—C4—C5 0.5 (5) C7—N1—N2—C10 −18.8 (3)
C3—C4—C5—C6 −1.4 (4) O3—C11—N3—C10 −1.5 (4)
C3—C4—C5—C7 −179.6 (3) C12—C11—N3—C10 178.4 (3)
O1—C1—C6—C5 178.2 (2) N2—C10—N3—C11 166.0 (3)
C2—C1—C6—C5 −1.8 (4) S1—C10—N3—C11 −15.5 (4)
C4—C5—C6—C1 2.1 (4) O5—C21—N4—N5 174.7 (2)
C7—C5—C6—C1 −179.6 (2) C22—C21—N4—N5 −7.5 (4)
C4—C5—C7—N1 −2.5 (4) O5—C21—N4—C20 −1.6 (4)
C6—C5—C7—N1 179.3 (2) C22—C21—N4—C20 176.2 (2)
C4—C5—C7—S1 −118.2 (2) C18—C20—N4—C21 −81.9 (3)
C6—C5—C7—S1 63.5 (3) S2—C20—N4—C21 154.4 (2)
O4—C14—C15—C16 −178.6 (3) C18—C20—N4—N5 101.6 (3)
C19—C14—C15—C16 1.1 (4) S2—C20—N4—N5 −22.2 (3)
C14—C15—C16—C17 −1.1 (5) N6—C23—N5—N4 −179.8 (2)
C15—C16—C17—C18 0.8 (4) S2—C23—N5—N4 −0.8 (3)
C16—C17—C18—C19 −0.4 (4) C21—N4—N5—C23 −160.5 (3)
C16—C17—C18—C20 177.1 (3) C20—N4—N5—C23 16.0 (3)
O4—C14—C19—C18 179.0 (2) O6—C24—N6—C23 5.9 (4)
C15—C14—C19—C18 −0.7 (4) C25—C24—N6—C23 −174.3 (2)
C17—C18—C19—C14 0.4 (4) N5—C23—N6—C24 −170.8 (3)
C20—C18—C19—C14 −177.2 (2) S2—C23—N6—C24 10.3 (4)
C17—C18—C20—N4 −74.4 (3) C6—C1—O1—C13 0.0 (4)
C19—C18—C20—N4 103.1 (2) C2—C1—O1—C13 180.0 (2)
C17—C18—C20—S2 42.2 (3) C15—C14—O4—C26 177.9 (3)
C19—C18—C20—S2 −140.2 (2) C19—C14—O4—C26 −1.8 (4)
O2—C8—N1—N2 −176.4 (2) N2—C10—S1—C7 11.6 (2)
C9—C8—N1—N2 6.0 (4) N3—C10—S1—C7 −166.9 (2)
O2—C8—N1—C7 4.7 (4) N1—C7—S1—C10 −18.96 (18)
C9—C8—N1—C7 −172.9 (2) C5—C7—S1—C10 102.70 (18)
C5—C7—N1—C8 82.3 (3) N5—C23—S2—C20 −10.6 (2)
S1—C7—N1—C8 −155.5 (2) N6—C23—S2—C20 168.4 (2)
C5—C7—N1—N2 −96.6 (3) N4—C20—S2—C23 16.77 (18)
S1—C7—N1—N2 25.5 (3) C18—C20—S2—C23 −104.62 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···O5i 0.86 1.95 2.801 (3) 171
N6—H6A···O2ii 0.86 1.96 2.799 (3) 164
C25—H25C···O2ii 0.96 2.37 3.238 (4) 150

Symmetry codes: (i) −x+2, y+1/2, −z+1; (ii) −x+1, y−1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2802).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  2. Balasubramanian, S., Ramalingan, C., Aridoss, G., Parthiban, S. & Kabilan, S. (2004). Med. Chem. Res.13(5), 297–311.
  3. Bruker (1999). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Li, Z., Wang, X. & Da, Y. (2001). Synth. Commun.31, 1829–1936.
  8. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  9. Radwan, M. A. A., Ragab, E. A., Sabry, N. M. & El-Shenawy, S. M. (2007). Bioorg. Med. Chem.15, 3832–3841. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  12. Supuran, C. T., Briganti, F., Tilli, S., Chegwidden, W. R. & Scozzafava, A. (2001). Bioorg. Med. Chem.9, 703–714. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808032108/bt2802sup1.cif

e-64-o2096-sup1.cif (25.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032108/bt2802Isup2.hkl

e-64-o2096-Isup2.hkl (364.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES