Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 25;64(Pt 11):o2206. doi: 10.1107/S1600536808034429

3-(4-Ethoxy­benzo­yl)propionic acid

Sajid Ali a, Aurangzeb Hasan a,*, Nasim Hasan Rama a, Amir Badshah a, Ales Ruczika b
PMCID: PMC2959554  PMID: 21581064

Abstract

The title compound, C12H14O4, is an important inter­mediate in the synthesis of biologically active heterocyclic compounds. In the crystal structure, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules. There are also C—H⋯π contacts between the benzene ring and the methyl­ene groups.

Related literature

For general background, see: Hashem et al. (2007); Husain et al. (2005). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-o2206-scheme1.jpg

Experimental

Crystal data

  • C12H14O4

  • M r = 222.23

  • Triclinic, Inline graphic

  • a = 7.8371 (3) Å

  • b = 8.7399 (5) Å

  • c = 9.8140 (5) Å

  • α = 106.993 (4)°

  • β = 107.541 (4)°

  • γ = 107.142 (4)°

  • V = 556.34 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 150 (1) K

  • 0.34 × 0.32 × 0.31 mm

Data collection

  • Bruker–Nonius KappaCCD area-detector diffractometer

  • Absorption correction: Gaussian (Coppens, 1970) T min = 0.964, T max = 0.987

  • 8993 measured reflections

  • 2508 independent reflections

  • 2089 reflections with I > 2σ(I)

  • R int = 0.059

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.123

  • S = 1.11

  • 2508 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: COLLECT and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808034429/hk2555sup1.cif

e-64-o2206-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034429/hk2555Isup2.hkl

e-64-o2206-Isup2.hkl (123.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.85 2.664 (3) 172
C2—H2B⋯O3ii 0.97 2.44 3.386 (3) 165
C11—H11B⋯O3iii 0.97 2.50 3.445 (3) 166
C3—H3BCg1iv 0.97 2.66 3.528 (3) 150
C11—H11ACg1v 0.97 2.84 3.679 (3) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic. Cg1 is the centroid of the phenyl ring.

Acknowledgments

The authors gratefully acknowledge funds from the Higher Education Commission, Islamabad, Pakistan.

supplementary crystallographic information

Comment

Benzoyl propionic acids are important intermediates in heterocyclic chemistry and have been used for the synthesis of various biologically active five -membered heterocyles such as butenolides, pyrrolones (Husain et al., 2005), oxadiazoles and triazoles (Hashem et al., 2007). In view of the versatility of these compounds, we synthesized the title compound and reported herein its crystal structure.

In the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges . O4, C2, C3, C4, C11 and C12 atoms are -0.011 (3), 0.162 (4), 0.189 (4), -0.09 (3), -0.143 (3) and -0.151 (3) Å away from the phenyl plane, respectively.

In the crystal structure, intermolecular O-H···O and C-H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. There also exist C—H···π contacts (Table 1) between the phenyl ring and the methylene groups.

Experimental

The title compound was synthesized by the condensation of succinic anhydride (2 g, 20 mmol) with 1-ethoxybenzene (10 ml) in the presence of alumium chloride (6 g, 42 mmol). The reaction mixture was refluxed for 4 h. After completion of the reaction, excess solvent (Anisol) was removed by steam distillation. The resultant solid product was purified by dissolving it in sodium hydroxide solution (5%, w/v), filtering followed by addition of hydrochloric acid. The obtained solid mass was filtered, washed with cold water, dried and crystallized from methanol (yield; 67%, m.p. 404-405 K).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme.

Fig. 2.

Fig. 2.

A partial packing diagram. Hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

C12H14O4 Z = 2
Mr = 222.23 F(000) = 236
Triclinic, P1 Dx = 1.327 Mg m3
Hall symbol: -P 1 Melting point: 404(1) K
a = 7.8371 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.7399 (5) Å Cell parameters from 9044 reflections
c = 9.8140 (5) Å θ = 1–27.5°
α = 106.993 (4)° µ = 0.10 mm1
β = 107.541 (4)° T = 150 K
γ = 107.142 (4)° Block, colorless
V = 556.34 (6) Å3 0.34 × 0.32 × 0.31 mm

Data collection

Bruker–Nonius KappaCCD area-detector diffractometer 2508 independent reflections
Radiation source: fine-focus sealed tube 2089 reflections with I > 2σ(I)
graphite Rint = 0.059
Detector resolution: 9.091 pixels mm-1 θmax = 27.5°, θmin = 2.4°
φ and ω scans h = −10→10
Absorption correction: gaussian (Coppens, 1970) k = −11→11
Tmin = 0.964, Tmax = 0.987 l = −12→12
8993 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123 H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.2871P] where P = (Fo2 + 2Fc2)/3
2508 reflections (Δ/σ)max < 0.001
145 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.19232 (17) 0.45879 (16) 0.01166 (16) 0.0387 (3)
O2 −0.11942 (17) 0.27131 (16) −0.14840 (16) 0.0419 (3)
H2 −0.1388 0.3584 −0.1118 0.050*
O3 0.21830 (18) 0.16047 (18) 0.13387 (15) 0.0373 (3)
O4 1.07552 (17) 0.25792 (17) 0.51668 (14) 0.0352 (3)
C1 0.0717 (2) 0.3129 (2) −0.08709 (19) 0.0287 (3)
C2 0.1221 (2) 0.1655 (2) −0.15467 (19) 0.0295 (3)
H2A 0.1061 0.1493 −0.2606 0.035*
H2B 0.0308 0.0577 −0.1615 0.035*
C3 0.3310 (2) 0.1968 (2) −0.05809 (19) 0.0279 (3)
H3A 0.4210 0.3134 −0.0364 0.033*
H3B 0.3658 0.1115 −0.1184 0.033*
C4 0.3542 (2) 0.1827 (2) 0.09544 (18) 0.0261 (3)
C5 0.5470 (2) 0.1981 (2) 0.19915 (18) 0.0258 (3)
C6 0.5593 (2) 0.1507 (2) 0.32477 (19) 0.0302 (4)
H6 0.4458 0.1043 0.3385 0.036*
C7 0.7366 (3) 0.1717 (2) 0.4281 (2) 0.0322 (4)
H7 0.7427 0.1394 0.5111 0.039*
C8 0.9075 (2) 0.2414 (2) 0.40859 (19) 0.0293 (3)
C9 0.8975 (2) 0.2867 (2) 0.2828 (2) 0.0326 (4)
H9 1.0105 0.3314 0.2679 0.039*
C10 0.7176 (2) 0.2637 (2) 0.1798 (2) 0.0306 (4)
H10 0.7107 0.2933 0.0952 0.037*
C11 1.2575 (2) 0.3431 (2) 0.5103 (2) 0.0338 (4)
H11A 1.2781 0.4618 0.5209 0.041*
H11B 1.2554 0.2783 0.4105 0.041*
C12 1.4192 (3) 0.3482 (3) 0.6432 (2) 0.0424 (4)
H12A 1.4192 0.4118 0.7412 0.051*
H12B 1.5439 0.4059 0.6429 0.051*
H12C 1.3981 0.2300 0.6308 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0274 (6) 0.0308 (6) 0.0479 (8) 0.0141 (5) 0.0076 (5) 0.0101 (6)
O2 0.0270 (6) 0.0365 (7) 0.0490 (8) 0.0156 (5) 0.0077 (6) 0.0076 (6)
O3 0.0318 (6) 0.0519 (8) 0.0351 (7) 0.0193 (6) 0.0182 (5) 0.0212 (6)
O4 0.0299 (6) 0.0454 (7) 0.0319 (6) 0.0157 (5) 0.0100 (5) 0.0213 (6)
C1 0.0257 (8) 0.0316 (8) 0.0305 (8) 0.0125 (7) 0.0099 (7) 0.0170 (7)
C2 0.0294 (8) 0.0327 (8) 0.0249 (8) 0.0138 (7) 0.0094 (6) 0.0116 (6)
C3 0.0294 (8) 0.0308 (8) 0.0278 (8) 0.0166 (7) 0.0129 (7) 0.0130 (7)
C4 0.0292 (8) 0.0233 (7) 0.0267 (8) 0.0121 (6) 0.0132 (6) 0.0091 (6)
C5 0.0297 (8) 0.0256 (7) 0.0248 (8) 0.0144 (6) 0.0118 (6) 0.0110 (6)
C6 0.0321 (8) 0.0338 (8) 0.0308 (8) 0.0157 (7) 0.0172 (7) 0.0155 (7)
C7 0.0369 (9) 0.0364 (9) 0.0290 (8) 0.0169 (7) 0.0154 (7) 0.0178 (7)
C8 0.0311 (8) 0.0295 (8) 0.0272 (8) 0.0151 (7) 0.0095 (7) 0.0122 (7)
C9 0.0293 (8) 0.0389 (9) 0.0347 (9) 0.0145 (7) 0.0156 (7) 0.0197 (8)
C10 0.0322 (8) 0.0382 (9) 0.0286 (8) 0.0170 (7) 0.0146 (7) 0.0192 (7)
C11 0.0305 (8) 0.0383 (9) 0.0297 (9) 0.0135 (7) 0.0103 (7) 0.0141 (7)
C12 0.0325 (9) 0.0505 (11) 0.0374 (10) 0.0138 (8) 0.0088 (8) 0.0196 (9)

Geometric parameters (Å, °)

O2—H2 0.8200 C5—C10 1.384 (2)
O3—C4 1.2156 (19) C6—C7 1.373 (2)
O4—C8 1.3552 (19) C6—H6 0.9300
O4—C11 1.431 (2) C7—H7 0.9300
C1—O1 1.214 (2) C8—C7 1.394 (2)
C1—O2 1.3210 (19) C8—C9 1.390 (2)
C1—C2 1.488 (2) C9—H9 0.9300
C2—H2A 0.9700 C10—C9 1.381 (2)
C2—H2B 0.9701 C10—H10 0.9300
C3—C2 1.517 (2) C11—C12 1.500 (2)
C3—C4 1.508 (2) C11—H11A 0.9700
C3—H3A 0.9700 C11—H11B 0.9700
C3—H3B 0.9700 C12—H12A 0.9599
C5—C4 1.487 (2) C12—H12B 0.9600
C5—C6 1.397 (2) C12—H12C 0.9600
C1—O2—H2 109.5 C5—C6—H6 119.6
C8—O4—C11 117.96 (13) C6—C7—C8 120.05 (15)
O1—C1—O2 122.54 (15) C6—C7—H7 120.0
O1—C1—C2 124.21 (14) C8—C7—H7 120.0
O2—C1—C2 113.22 (14) O4—C8—C9 124.30 (15)
C1—C2—C3 112.93 (14) O4—C8—C7 115.80 (14)
C1—C2—H2A 109.0 C9—C8—C7 119.89 (15)
C3—C2—H2A 109.0 C10—C9—C8 119.16 (15)
C1—C2—H2B 109.0 C10—C9—H9 120.4
C3—C2—H2B 108.9 C8—C9—H9 120.4
H2A—C2—H2B 107.8 C9—C10—C5 121.76 (15)
C4—C3—C2 111.95 (13) C9—C10—H10 119.2
C4—C3—H3A 109.1 C5—C10—H10 119.1
C2—C3—H3A 109.1 O4—C11—C12 107.39 (14)
C4—C3—H3B 109.4 O4—C11—H11A 110.2
C2—C3—H3B 109.4 C12—C11—H11A 110.3
H3A—C3—H3B 107.9 O4—C11—H11B 110.3
O3—C4—C5 120.78 (14) C12—C11—H11B 110.2
O3—C4—C3 120.57 (14) H11A—C11—H11B 108.5
C5—C4—C3 118.65 (13) C11—C12—H12A 109.4
C10—C5—C6 118.30 (15) C11—C12—H12B 109.5
C10—C5—C4 122.60 (14) H12A—C12—H12B 109.5
C6—C5—C4 119.06 (14) C11—C12—H12C 109.5
C7—C6—C5 120.82 (15) H12A—C12—H12C 109.5
C7—C6—H6 119.6 H12B—C12—H12C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.82 1.85 2.664 (3) 172
C2—H2B···O3ii 0.97 2.44 3.386 (3) 165
C11—H11B···O3iii 0.97 2.50 3.445 (3) 166
C3—H3B···Cg1iv 0.97 2.66 3.528 (3) 150
C11—H11A···Cg1v 0.97 2.84 3.679 (3) 145

Symmetry codes: (i) −x, −y+1, −z; (ii) −x, −y, −z; (iii) x+1, y, z; (iv) −x+1, −y, −z; (v) −x+2, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2555).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  3. Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.
  4. Hashem, A. I., Youssef, A. S. A., Kandeel, K. A. & Abou-Elmangd, W. S. I. (2007). Eur. J. Med. Chem.42, 934–939. [DOI] [PubMed]
  5. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  6. Husain, A., Khan, M. S. Y., Hasan, S. M. & Alam, M. M. (2005). Eur. J. Med. Chem.40, 1394–1404. [DOI] [PubMed]
  7. Otwinowski, Z. & Minor, W. (1997). Methods in Enzimology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808034429/hk2555sup1.cif

e-64-o2206-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034429/hk2555Isup2.hkl

e-64-o2206-Isup2.hkl (123.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES