Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 25;64(Pt 11):m1459. doi: 10.1107/S1600536808033771

Bis(2,2′-bipyridine-κ2 N,N′)(croconato-κ2 O,O′)nickel(II)

Hong-Feng Chen a, Qi Fang a,*, Wen-Tao Yu a
PMCID: PMC2959560  PMID: 21580897

Abstract

The title compound, [Ni(C5O5)(C10H8N2)2], lies across a crystallographic twofold axis, around which two 2,2′-bipyridine (2,2′-bipy) ligands are arranged in a propeller manner. The local geometry of the NiN4O2 coordination core basically adopts an octa­hedral geometry. The mol­ecular twofold axis is along the direction of the mol­ecular dipole moment, and the complex is packed with its dipole moment alternately along the +b and −b directions. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the synthesis, see: Chen et al. (2008). For related structures, see: Chen et al. (2005, 2007). For other related literature, see: Coronado et al. (2007); Wang et al. (2002).graphic file with name e-64-m1459-scheme1.jpg

Experimental

Crystal data

  • [Ni(C5O5)(C10H8N2)2]

  • M r = 511.13

  • Orthorhombic, Inline graphic

  • a = 12.725 (5) Å

  • b = 10.752 (5) Å

  • c = 15.733 (5) Å

  • V = 2152.6 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 293 (2) K

  • 0.20 × 0.19 × 0.10 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (APEX2; Bruker, 2005) T min = 0.821, T max = 0.902

  • 10055 measured reflections

  • 2466 independent reflections

  • 1536 reflections with I > 2σ(I)

  • R int = 0.089

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.102

  • S = 1.02

  • 2466 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808033771/lx2071sup1.cif

e-64-m1459-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033771/lx2071Isup2.hkl

e-64-m1459-Isup2.hkl (121.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.93 2.57 3.340 (4) 141
C8—H8⋯O2ii 0.93 2.24 3.114 (4) 156
C9—H9⋯O3iii 0.93 2.57 3.222 (4) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the PhD Foundation of the Ministry of Education of China and by the National Natural Science Foundation of China (grant No. 50673054).

supplementary crystallographic information

Comment

The croconate C5O52- anion has attracted increasing attention in recent years because this polydentate ligand gave rise to a variety of interesting complexes (Chen et al., 2008; Coronado et al., 2007; Chen et al., 2005; Wang et al., 2002;). Typically, the C5O52- anion serves as a terminal bidentate chelate ligand or a bridging ligand utilizing more than two O atoms for coordination. We previously reported a mixing-coordinated complex [Ni(C5O5)(phen)2] with 1,10-phenanthroline (phen) as the first ligand and the C5O52- anion as the second ligand (Chen et al., 2007). The similar chelating behavior of 2,2'-bipy and 1,10-phen prompted us to replace phen ligand by 2,2'-bipy. In this report, the structure of this mixing-coordinated complex is reported.

The title compound crystalizes to the same space group as [Ni(C5O5)(phen)2]. Both crystals have very similar cell parameters and show many common features. The chiral molecule lies across twofold axis which is along the direction of the molecular dipole moment. Around the molecular axis, two 2,2'-bipy ligands are arranged in a propeller manner. The Ni2+ is coordinated by four N atoms of the two 2,2'-bipy ligands and two O atoms of a croconate ligand to furnish a slightly distored octahedral NiN4O2 coordination core. The dihedral angle between the croconate plane and a 2,2'-bipy plane is 88.7 (1)°, and that between the two 2,2'-bipy planes is 81.9 (1)° in [Ni(C5O5) (2,2'-bipy)2]. These are close to the corresponding dihedral angles (86.9 (1)° and 86.6 (1)°) in [Ni(C5O5)(phen)2]. The C—O bond lengths involving coordinated O atoms are longer than those of other C—O bonds. In both crystals, molecules packed alternately along +b and-b directions.

However, we can not fail to notice some differences between the two crystals. The Ni—O band length of [Ni(C5O5)(2,2'-bipy)2] {2.102 (2) Å} is longer than that {2.098 (3) Å} of [Ni(C5O5)(phen)2]. Meanwhile, the Ni—N band lengths of [Ni(C5O5)(2,2'-bipy)2] {2.059 (2), 2.066 (2) Å} is considerably shorter than those {2.071 (3), 2.088 (3) Å} of [Ni(C5O5)(phen)2]. It seems that 2,2'-bipyridine is a stronger ligand to Ni2+ in comparison with 1,10-phenanthroline. The crystal structure is stabilized by intermolecular C—H···O hydrogen bonds (Table 1).

Experimental

[K2(C5O5)] (0.050 g, 0.23 mmol) and NiCl2.6H2O (0.060 g, 0.25 mmol) were dissolved in mixed solvent of water (15 ml) and dimethylformamide (10 ml). Then 2,2'-bipy (0.080 g, 0.51 mmol) was added. The mixture was heated to 340–350 K under continuous stirring for 20 min and then filtered. The green-yellow prisms crystals were obtained by slow evaporation at 313 K.

Refinement

All H atoms were positioned geometrically and allowed to ride on their attached atom. The C—H bond lengths for aromatic groups were set to 0.93 Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of [Ni(C5O5) (2,2'-bipy)2]. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted. [symmetry code: (i) -x + 1, y, -z + 3/2.]

Crystal data

[Ni(C5O5)(C10H8N2)2] F(000) = 1048
Mr = 511.13 Dx = 1.577 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71069 Å
Hall symbol: -P_2n 2ab Cell parameters from 2518 reflections
a = 12.725 (5) Å θ = 2.5–23.4°
b = 10.752 (5) Å µ = 0.95 mm1
c = 15.733 (5) Å T = 293 K
V = 2152.6 (15) Å3 Prism, green-yellow
Z = 4 0.20 × 0.19 × 0.10 mm

Data collection

Bruker APEXII CCD diffractometer 2466 independent reflections
Radiation source: fine-focus sealed tube 1536 reflections with I > 2σ(I)
graphite Rint = 0.089
Detector resolution: 10.0 pixels mm-1 θmax = 27.5°, θmin = 2.5°
φ and ω scans h = −15→16
Absorption correction: multi-scan (APEX2; Bruker, 2005) k = −13→10
Tmin = 0.821, Tmax = 0.902 l = −20→19
10055 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.0108P] where P = (Fo2 + 2Fc2)/3
2466 reflections (Δ/σ)max < 0.001
160 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.5000 0.46011 (4) 0.2500 0.03546 (17)
O1 0.56048 (15) 0.31353 (15) 0.17633 (10) 0.0439 (5)
O2 0.6016 (2) 0.0512 (2) 0.12408 (16) 0.1053 (10)
O3 0.5000 −0.1097 (3) 0.2500 0.0700 (9)
N1 0.45364 (18) 0.58822 (19) 0.34037 (12) 0.0397 (5)
N2 0.63184 (17) 0.46676 (19) 0.32573 (12) 0.0419 (6)
C1 0.3650 (3) 0.6535 (3) 0.34092 (17) 0.0531 (8)
H1 0.3173 0.6410 0.2970 0.064*
C2 0.3402 (3) 0.7384 (3) 0.4029 (2) 0.0717 (10)
H2 0.2774 0.7824 0.4013 0.086*
C3 0.4114 (4) 0.7561 (3) 0.4673 (2) 0.0742 (11)
H3 0.3977 0.8142 0.5097 0.089*
C4 0.5025 (3) 0.6888 (3) 0.46926 (18) 0.0570 (9)
H4 0.5502 0.6989 0.5135 0.068*
C5 0.5226 (2) 0.6052 (2) 0.40425 (15) 0.0406 (7)
C6 0.6200 (2) 0.5320 (2) 0.39824 (16) 0.0431 (7)
C7 0.6964 (3) 0.5264 (3) 0.4613 (2) 0.0638 (9)
H7 0.6872 0.5696 0.5119 0.077*
C8 0.7854 (3) 0.4569 (4) 0.4486 (2) 0.0770 (12)
H8 0.8367 0.4526 0.4906 0.092*
C9 0.7982 (2) 0.3940 (3) 0.3737 (2) 0.0679 (10)
H9 0.8587 0.3479 0.3633 0.081*
C10 0.7195 (2) 0.4008 (3) 0.31437 (19) 0.0575 (8)
H10 0.7276 0.3572 0.2637 0.069*
C11 0.5300 (2) 0.2129 (3) 0.21214 (15) 0.0393 (6)
C12 0.5511 (3) 0.0864 (3) 0.18605 (18) 0.0530 (8)
C13 0.5000 0.0035 (4) 0.2500 0.0487 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0404 (3) 0.0388 (3) 0.0271 (2) 0.000 −0.0053 (2) 0.000
O1 0.0587 (13) 0.0418 (11) 0.0310 (9) −0.0040 (10) 0.0083 (9) 0.0013 (8)
O2 0.167 (3) 0.0586 (15) 0.0903 (17) −0.0026 (15) 0.0769 (19) −0.0177 (13)
O3 0.086 (2) 0.0405 (17) 0.084 (2) 0.000 0.0118 (18) 0.000
N1 0.0510 (14) 0.0360 (12) 0.0322 (11) −0.0008 (12) −0.0020 (11) 0.0015 (10)
N2 0.0437 (14) 0.0480 (14) 0.0340 (12) 0.0003 (12) −0.0082 (10) 0.0017 (10)
C1 0.064 (2) 0.0507 (18) 0.0443 (16) 0.0138 (17) 0.0003 (16) 0.0011 (14)
C2 0.098 (3) 0.057 (2) 0.060 (2) 0.024 (2) 0.022 (2) −0.0018 (17)
C3 0.119 (3) 0.048 (2) 0.056 (2) −0.002 (2) 0.028 (2) −0.0121 (16)
C4 0.084 (2) 0.0514 (17) 0.0359 (15) −0.022 (2) 0.0095 (16) −0.0076 (13)
C5 0.0582 (19) 0.0341 (14) 0.0295 (13) −0.0130 (14) 0.0012 (12) 0.0026 (11)
C6 0.0535 (18) 0.0442 (16) 0.0317 (14) −0.0198 (15) −0.0080 (13) 0.0070 (13)
C7 0.076 (2) 0.068 (2) 0.0482 (18) −0.023 (2) −0.0272 (17) 0.0038 (15)
C8 0.065 (2) 0.090 (3) 0.076 (3) −0.023 (2) −0.041 (2) 0.033 (2)
C9 0.0442 (18) 0.080 (3) 0.079 (2) 0.0036 (19) −0.0144 (18) 0.026 (2)
C10 0.0494 (19) 0.067 (2) 0.0555 (19) 0.0078 (18) −0.0081 (15) 0.0055 (16)
C11 0.0431 (17) 0.0439 (16) 0.0309 (13) −0.0025 (14) −0.0005 (11) −0.0019 (12)
C12 0.066 (2) 0.0462 (17) 0.0463 (17) −0.0038 (17) 0.0129 (16) −0.0085 (14)
C13 0.052 (2) 0.042 (2) 0.052 (2) 0.000 0.000 (2) 0.000

Geometric parameters (Å, °)

Ni1—N2 2.059 (2) C3—C4 1.367 (4)
Ni1—N2i 2.059 (2) C3—H3 0.9300
Ni1—N1 2.066 (2) C4—C5 1.385 (4)
Ni1—N1i 2.066 (2) C4—H4 0.9300
Ni1—O1i 2.1022 (18) C5—C6 1.472 (4)
Ni1—O1 2.1022 (18) C6—C7 1.389 (4)
O1—C11 1.280 (3) C7—C8 1.371 (5)
O2—C12 1.227 (3) C7—H7 0.9300
O3—C13 1.217 (5) C8—C9 1.369 (5)
N1—C1 1.328 (3) C8—H8 0.9300
N1—C5 1.347 (3) C9—C10 1.370 (4)
N2—C10 1.334 (3) C9—H9 0.9300
N2—C6 1.347 (3) C10—H10 0.9300
C1—C2 1.372 (4) C11—C11i 1.415 (5)
C1—H1 0.9300 C11—C12 1.446 (4)
C2—C3 1.373 (5) C12—C13 1.493 (4)
C2—H2 0.9300 C13—C12i 1.493 (4)
N2—Ni1—N2i 176.02 (12) C3—C4—C5 118.9 (3)
N2—Ni1—N1 79.12 (9) C3—C4—H4 120.6
N2i—Ni1—N1 98.19 (8) C5—C4—H4 120.6
N2—Ni1—N1i 98.19 (8) N1—C5—C4 121.3 (3)
N2i—Ni1—N1i 79.12 (9) N1—C5—C6 115.4 (2)
N1—Ni1—N1i 96.35 (11) C4—C5—C6 123.3 (3)
N2—Ni1—O1i 90.30 (8) N2—C6—C7 120.2 (3)
N2i—Ni1—O1i 92.68 (8) N2—C6—C5 115.3 (2)
N1—Ni1—O1i 90.91 (8) C7—C6—C5 124.5 (3)
N1i—Ni1—O1i 169.72 (7) C8—C7—C6 119.8 (3)
N2—Ni1—O1 92.68 (8) C8—C7—H7 120.1
N2i—Ni1—O1 90.30 (8) C6—C7—H7 120.1
N1—Ni1—O1 169.72 (7) C9—C8—C7 119.5 (3)
N1i—Ni1—O1 90.91 (8) C9—C8—H8 120.2
O1i—Ni1—O1 82.88 (10) C7—C8—H8 120.2
C11—O1—Ni1 106.29 (15) C8—C9—C10 118.2 (3)
C1—N1—C5 118.5 (2) C8—C9—H9 120.9
C1—N1—Ni1 126.82 (19) C10—C9—H9 120.9
C5—N1—Ni1 114.72 (18) N2—C10—C9 123.2 (3)
C10—N2—C6 118.9 (2) N2—C10—H10 118.4
C10—N2—Ni1 125.83 (19) C9—C10—H10 118.4
C6—N2—Ni1 114.66 (19) O1—C11—C11i 122.26 (14)
N1—C1—C2 123.5 (3) O1—C11—C12 127.9 (2)
N1—C1—H1 118.3 C11i—C11—C12 109.83 (15)
C2—C1—H1 118.3 O2—C12—C11 127.8 (3)
C1—C2—C3 117.7 (3) O2—C12—C13 125.4 (3)
C1—C2—H2 121.1 C11—C12—C13 106.8 (2)
C3—C2—H2 121.1 O3—C13—C12i 126.64 (17)
C4—C3—C2 120.2 (3) O3—C13—C12 126.64 (17)
C4—C3—H3 119.9 C12i—C13—C12 106.7 (3)
C2—C3—H3 119.9
N2—Ni1—O1—C11 90.49 (17) C1—N1—C5—C6 −178.6 (2)
N2i—Ni1—O1—C11 −92.14 (18) Ni1—N1—C5—C6 1.2 (3)
N1—Ni1—O1—C11 53.7 (5) C3—C4—C5—N1 −1.0 (4)
N1i—Ni1—O1—C11 −171.27 (17) C3—C4—C5—C6 177.3 (3)
O1i—Ni1—O1—C11 0.52 (13) C10—N2—C6—C7 −2.5 (4)
N2—Ni1—N1—C1 174.7 (2) Ni1—N2—C6—C7 169.1 (2)
N2i—Ni1—N1—C1 −2.3 (2) C10—N2—C6—C5 178.1 (2)
N1i—Ni1—N1—C1 77.5 (2) Ni1—N2—C6—C5 −10.3 (3)
O1i—Ni1—N1—C1 −95.2 (2) N1—C5—C6—N2 6.1 (3)
O1—Ni1—N1—C1 −147.8 (4) C4—C5—C6—N2 −172.3 (2)
N2—Ni1—N1—C5 −5.04 (17) N1—C5—C6—C7 −173.3 (2)
N2i—Ni1—N1—C5 177.93 (18) C4—C5—C6—C7 8.3 (4)
N1i—Ni1—N1—C5 −102.20 (19) N2—C6—C7—C8 1.8 (4)
O1i—Ni1—N1—C5 85.09 (18) C5—C6—C7—C8 −178.8 (3)
O1—Ni1—N1—C5 32.5 (5) C6—C7—C8—C9 0.2 (5)
N1—Ni1—N2—C10 179.3 (2) C7—C8—C9—C10 −1.5 (5)
N1i—Ni1—N2—C10 −85.7 (2) C6—N2—C10—C9 1.2 (4)
O1i—Ni1—N2—C10 88.5 (2) Ni1—N2—C10—C9 −169.4 (2)
O1—Ni1—N2—C10 5.6 (2) C8—C9—C10—N2 0.8 (5)
N1—Ni1—N2—C6 8.43 (17) Ni1—O1—C11—C11i −1.5 (4)
N1i—Ni1—N2—C6 103.37 (17) Ni1—O1—C11—C12 −179.9 (2)
O1i—Ni1—N2—C6 −82.44 (17) O1—C11—C12—O2 −0.7 (5)
O1—Ni1—N2—C6 −165.32 (17) C11i—C11—C12—O2 −179.3 (3)
C5—N1—C1—C2 0.6 (4) O1—C11—C12—C13 178.9 (2)
Ni1—N1—C1—C2 −179.1 (2) C11i—C11—C12—C13 0.3 (4)
N1—C1—C2—C3 0.1 (5) O2—C12—C13—O3 −0.6 (4)
C1—C2—C3—C4 −1.2 (5) C11—C12—C13—O3 179.89 (13)
C2—C3—C4—C5 1.7 (5) O2—C12—C13—C12i 179.4 (4)
C1—N1—C5—C4 −0.1 (4) C11—C12—C13—C12i −0.11 (13)
Ni1—N1—C5—C4 179.63 (19)

Symmetry codes: (i) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4···O1ii 0.93 2.57 3.340 (4) 141
C8—H8···O2iii 0.93 2.24 3.114 (4) 156
C9—H9···O3iv 0.93 2.57 3.222 (4) 127

Symmetry codes: (ii) x, −y+1, z+1/2; (iii) −x+3/2, −y+1/2, z+1/2; (iv) x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2071).

References

  1. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chen, H.-F., Chen, H.-Y., Chen, X., Batsanov, A. S. & Fang, Q. (2008). Acta Cryst. E64, m172. [DOI] [PMC free article] [PubMed]
  3. Chen, X., Chen, H.-F., Xue, G., Chen, H.-Y., Yu, W.-T. & Fang, Q. (2007). Acta Cryst. C63, m166–m168. [DOI] [PubMed]
  4. Chen, H.-Y., Fang, Q., Xue, G. & Yu, W.-T. (2005). Acta Cryst. C61, m535–m537. [DOI] [PubMed]
  5. Coronado, E., Curreli, S., Giménez-Saiz, C., Gómez-García, C.-J., Deplano, P., Mercuri, M.-L., Serpe, A., Pilia, L., Faulmann, C. & Canadell, E. (2007). Inorg. Chem.46, 4446–4457. [DOI] [PubMed]
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Wang, C. C., Yang, C.-H. & Lee, G.-H. (2002). Inorg. Chem.41, 1015–1018. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808033771/lx2071sup1.cif

e-64-m1459-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033771/lx2071Isup2.hkl

e-64-m1459-Isup2.hkl (121.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES