Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 22;64(Pt 11):m1448. doi: 10.1107/S1600536808033618

(R,S P)-1-Diphenyl­phosphino-2-(1-ethoxy­ethyl)ferrocene

Hao Yuan a, Zhi-Ming Zhou a,*
PMCID: PMC2959569  PMID: 21580887

Abstract

In the crystal structure of the title compound, [Fe(C5H5)(C21H22OP)], the cyclo­penta­dienyl (Cp) rings are almost parallel and are essentially eclipsed. The absolute configuration was determined as S for the planar and R for the central chirality.

Related literature

For background to ferrocene derivatives applied as catalysts, see: Blaser & Schmidt (2004); Gomez Arrayas et al. (2006); Hayashi et al. (1988); Ohmura et al. (1995); Ojima (2000). For the structures of closely related compounds, see: Jin et al. (2004); Cheelama & Knochel (2007); Podlaha et al. (1996).graphic file with name e-64-m1448-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C21H22OP)]

  • M r = 442.30

  • Orthorhombic, Inline graphic

  • a = 11.003 (2) Å

  • b = 12.191 (2) Å

  • c = 16.599 (3) Å

  • V = 2226.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 113 (2) K

  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2001) T min = 0.914, T max = 0.942

  • 22928 measured reflections

  • 3929 independent reflections

  • 3847 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.062

  • S = 1.05

  • 3929 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983), with 1688 Friedel pairs

  • Flack parameter: 0.019 (12)

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808033618/nc2112sup1.cif

e-64-m1448-sup1.cif (32.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033618/nc2112Isup2.hkl

e-64-m1448-Isup2.hkl (192.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of China (grant No. 20572009) and the Basic Research Fund of Beijing Institute of Technology (grant No. 000Y05 for financial support of this work.

supplementary crystallographic information

Comment

Asymmetric metal catalysis is one of the most active areas in modern organic chemistry, and considerable efforts have been made to the development of novel ligands for catalytic asymmetric transformations (Ojima, 2000). In this context, ferrocene-based ligands incorporating both chirality are very important (Gomez Arrayas et al., 2006) and some of them have already been applied in industrial processes because of their stability, low price and unique structure (Blaser & Schmidt, 2004).

(S,Rp)-1-(diphenylphosphino)-2-(1-ethoxyethyl)-ferrocene, the enantiomorph of title compound, has been used to synthesize 1,1'-binaphthyls via asymmetric Ni-catalysed Grignard cross-coupling with up to 68% ee, and the (S,Rp)-1-(diphenylphosphino)-2-(1-methoxyethyl)-ferrocene provided axially chiral binaphthalenes in enantioselectivities up to 95% ee (Hayashi et al., 1988). In addition, the (R,Sp)-1-(diphenylphosphino)-2-(1-ethoxyethyl)-ferrocene was also used in asymmetric hydrosilyation (Ohmura et al., 1995).

The Fe—C bond distances within the ferrocene group are in the range of 2.038 (2)–2.050 (2) Å for the unsubstituted cyclopentadienyl (Cp) ring [C1–C5] and 2.025 (2)–2.046 (2) Å for the substituted Cp ring [C6–C10]. The Cp rings are almost parallel, the dihedral angle between the Cp ring planes is 1.80 (10)°. The Cp rings are essentially eclipsed and the Fe–centroid distances are 1.654 (9) (Cg1) and 1.639 (9) Å (Cg2) with Cg1 and Cg2 are the centroids of the [C1–C5] and [C6–C10] rings. The [Cg1—Fe1—Cg2] angle is 178.60 (18)°. The C11 atom is almost in the plane of their carrier Cp ring, while the P1 atom is tilted slightly out of the plane by 0.102 (10) Å.

The two phenyl rings are oriented almost perpendicular, with a dihedral angle of 90.90 (10)°. The O1—C11 and C10—C11 bonds lengths are in agreement with those in the related complex 1-(1-Ferrocenyl-1-methoxy-3-phenyl-2-propyl)-1H-1,2,4-triazole (Jin et al., 2004) and the geometric parameters of the PPh2 group are in agreement with those in the similar structure 1-carboxy-1'-(diphenylphosphino)-ferrocene (Podlaha et al., 1996).

The title compound has both central chirality and planar chirality with the configuration of C11 atom being R, and the configuration of planar chirality being S.

Experimental

The title compound was prepared from (R,Sp)-1-[1-(acetyloxy)ethyl]-2-(diphenylphosphino)-ferrocene according to literature procedures (Hayashi et al., 1988). Single crystals of the title compound suitable for X-ray diffraction analysis were obtained by slow evaporation of a hexane solution.

Refinement

All H atoms were positioned with idealized geometry with C—H = 0.93 (aromatic), 0.96 (methyl), 0.97 (methylene) or 0.98 Å (cyclopentadienyl and Cp—CH) and were refined isotropic with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C) using a riding model. The absolute structure was determined on the basis of 1688 Friedel pairs.

Figures

Fig. 1.

Fig. 1.

A molecular view of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are draw at the 30% probability level.

Crystal data

[Fe(C5H5)(C21H22OP)] F(000) = 928
Mr = 442.30 Dx = 1.319 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 7176 reflections
a = 11.003 (2) Å θ = 2.2–27.9°
b = 12.191 (2) Å µ = 0.76 mm1
c = 16.599 (3) Å T = 113 K
V = 2226.6 (8) Å3 Block, red
Z = 4 0.12 × 0.10 × 0.08 mm

Data collection

Rigaku Saturn diffractometer 3929 independent reflections
Radiation source: rotating anode 3847 reflections with I > 2σ(I)
confocal Rint = 0.050
ω scans θmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2001) h = −13→12
Tmin = 0.914, Tmax = 0.942 k = −14→14
22928 measured reflections l = −19→19

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026 H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0301P)2 + 0.2869P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.002
3929 reflections Δρmax = 0.18 e Å3
262 parameters Δρmin = −0.28 e Å3
0 restraints Absolute structure: Flack (1983), with 1688 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.019 (12)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 −0.03864 (3) 0.77799 (2) 0.905322 (18) 0.02169 (9)
P1 0.07707 (4) 0.98992 (4) 1.01327 (3) 0.01930 (12)
O1 0.18641 (12) 1.04499 (11) 0.82901 (9) 0.0230 (3)
C1 0.09790 (19) 0.66545 (15) 0.91286 (14) 0.0272 (5)
H1A 0.1815 0.6758 0.8941 0.033*
C2 0.0010 (2) 0.62243 (18) 0.86702 (16) 0.0358 (6)
H2A 0.0055 0.5980 0.8108 0.043*
C3 −0.1039 (2) 0.62123 (19) 0.9163 (2) 0.0513 (8)
H3A −0.1850 0.5958 0.9004 0.062*
C4 −0.0708 (3) 0.6634 (2) 0.99241 (18) 0.0517 (8)
H4A −0.1254 0.6724 1.0386 0.062*
C5 0.0538 (2) 0.69041 (18) 0.99089 (14) 0.0373 (6)
H5A 0.1011 0.7209 1.0356 0.045*
C6 −0.01527 (17) 0.94062 (15) 0.93016 (11) 0.0178 (4)
C7 −0.14254 (18) 0.91375 (16) 0.92785 (12) 0.0210 (4)
H7A −0.2004 0.9224 0.9723 0.025*
C8 −0.16938 (19) 0.87040 (17) 0.84996 (13) 0.0260 (5)
H8A −0.2489 0.8442 0.8315 0.031*
C9 −0.06047 (19) 0.87097 (17) 0.80413 (12) 0.0230 (4)
H9A −0.0519 0.8449 0.7486 0.028*
C10 0.03465 (19) 0.91267 (15) 0.85299 (11) 0.0198 (4)
C11 0.16655 (19) 0.92877 (16) 0.83152 (12) 0.0204 (4)
H11A 0.2167 0.8975 0.8746 0.024*
C12 0.2039 (2) 0.87699 (19) 0.75210 (13) 0.0306 (5)
H12A 0.2887 0.8903 0.7428 0.046*
H12B 0.1572 0.9086 0.7091 0.046*
H12C 0.1894 0.7994 0.7542 0.046*
C13 0.3051 (2) 1.07659 (18) 0.85426 (15) 0.0291 (5)
H13A 0.3658 1.0419 0.8204 0.035*
H13B 0.3188 1.0538 0.9095 0.035*
C14 0.3145 (2) 1.19937 (17) 0.84759 (15) 0.0334 (5)
H14A 0.3939 1.2225 0.8645 0.050*
H14B 0.2541 1.2329 0.8813 0.050*
H14C 0.3014 1.2210 0.7927 0.050*
C15 0.06768 (17) 1.14024 (16) 1.00256 (11) 0.0189 (4)
C16 0.1436 (2) 1.20172 (18) 1.05214 (12) 0.0253 (5)
H16A 0.1945 1.1661 1.0885 0.030*
C17 0.1443 (2) 1.31563 (18) 1.04809 (13) 0.0308 (5)
H17A 0.1950 1.3558 1.0819 0.037*
C18 0.0702 (2) 1.36905 (18) 0.99405 (13) 0.0300 (5)
H18A 0.0702 1.4452 0.9913 0.036*
C19 −0.0040 (2) 1.30890 (18) 0.94408 (14) 0.0305 (5)
H19A −0.0540 1.3448 0.9074 0.037*
C20 −0.00485 (19) 1.19497 (17) 0.94788 (13) 0.0263 (5)
H20A −0.0547 1.1553 0.9133 0.032*
C21 −0.02654 (17) 0.96925 (15) 1.09878 (11) 0.0203 (4)
C22 −0.13214 (18) 1.03066 (16) 1.10886 (12) 0.0231 (5)
H22A −0.1524 1.0840 1.0711 0.028*
C23 −0.2073 (2) 1.01308 (18) 1.17447 (13) 0.0277 (5)
H23A −0.2772 1.0551 1.1809 0.033*
C24 −0.1788 (2) 0.93330 (19) 1.23050 (13) 0.0303 (5)
H24A −0.2297 0.9215 1.2744 0.036*
C25 −0.0752 (2) 0.8714 (2) 1.22134 (13) 0.0319 (5)
H25A −0.0562 0.8173 1.2588 0.038*
C26 0.0012 (2) 0.88959 (18) 1.15610 (12) 0.0281 (5)
H26A 0.0716 0.8481 1.1506 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.02261 (15) 0.01571 (14) 0.02675 (16) −0.00025 (12) 0.00374 (13) 0.00058 (13)
P1 0.0201 (3) 0.0192 (3) 0.0186 (3) 0.0020 (2) −0.0007 (2) 0.0016 (2)
O1 0.0219 (7) 0.0174 (7) 0.0297 (8) −0.0010 (6) 0.0016 (6) 0.0015 (6)
C1 0.0283 (11) 0.0154 (10) 0.0378 (12) 0.0046 (9) 0.0035 (11) 0.0019 (10)
C2 0.0387 (14) 0.0162 (11) 0.0525 (15) 0.0022 (10) 0.0012 (12) −0.0069 (10)
C3 0.0332 (14) 0.0176 (12) 0.103 (3) −0.0032 (10) 0.0143 (17) 0.0083 (16)
C4 0.066 (2) 0.0258 (13) 0.0637 (19) 0.0156 (12) 0.0410 (16) 0.0200 (13)
C5 0.0570 (16) 0.0207 (11) 0.0343 (13) 0.0130 (11) 0.0039 (13) 0.0061 (10)
C6 0.0184 (10) 0.0137 (9) 0.0212 (10) 0.0026 (8) 0.0010 (8) 0.0027 (8)
C7 0.0203 (10) 0.0186 (10) 0.0240 (11) 0.0018 (8) 0.0014 (9) 0.0005 (8)
C8 0.0229 (11) 0.0258 (11) 0.0292 (12) −0.0001 (10) −0.0050 (10) 0.0000 (10)
C9 0.0275 (11) 0.0218 (10) 0.0196 (10) 0.0000 (9) −0.0023 (9) −0.0007 (8)
C10 0.0247 (11) 0.0148 (10) 0.0198 (10) 0.0011 (9) 0.0010 (9) 0.0004 (8)
C11 0.0243 (11) 0.0159 (10) 0.0209 (10) 0.0003 (9) −0.0016 (9) 0.0005 (8)
C12 0.0309 (12) 0.0322 (12) 0.0287 (12) 0.0012 (10) 0.0077 (10) −0.0052 (10)
C13 0.0230 (11) 0.0258 (12) 0.0386 (13) −0.0053 (9) 0.0007 (11) 0.0006 (10)
C14 0.0289 (12) 0.0259 (12) 0.0454 (14) −0.0053 (10) 0.0065 (11) −0.0037 (11)
C15 0.0182 (11) 0.0198 (10) 0.0188 (10) −0.0007 (8) 0.0048 (8) −0.0003 (8)
C16 0.0269 (11) 0.0293 (12) 0.0198 (10) −0.0029 (9) −0.0046 (9) 0.0015 (9)
C17 0.0350 (13) 0.0291 (12) 0.0282 (12) −0.0125 (10) −0.0001 (11) −0.0055 (10)
C18 0.0364 (14) 0.0188 (11) 0.0349 (13) −0.0005 (9) 0.0095 (11) 0.0023 (10)
C19 0.0310 (12) 0.0240 (12) 0.0366 (12) 0.0028 (9) −0.0037 (11) 0.0091 (10)
C20 0.0267 (11) 0.0229 (11) 0.0292 (11) −0.0015 (9) −0.0055 (10) 0.0005 (9)
C21 0.0235 (10) 0.0193 (10) 0.0181 (9) −0.0017 (8) −0.0012 (10) 0.0015 (8)
C22 0.0309 (12) 0.0192 (10) 0.0190 (10) 0.0000 (9) −0.0003 (9) 0.0004 (8)
C23 0.0291 (12) 0.0276 (12) 0.0264 (11) −0.0029 (10) 0.0045 (10) −0.0071 (10)
C24 0.0346 (13) 0.0367 (13) 0.0196 (11) −0.0114 (11) 0.0040 (10) −0.0014 (10)
C25 0.0382 (14) 0.0332 (13) 0.0243 (12) −0.0045 (11) −0.0031 (10) 0.0095 (10)
C26 0.0313 (12) 0.0285 (12) 0.0245 (11) 0.0005 (10) −0.0039 (10) 0.0038 (9)

Geometric parameters (Å, °)

Fe1—C10 2.025 (2) C11—C12 1.518 (3)
Fe1—C1 2.038 (2) C11—H11A 0.9800
Fe1—C9 2.041 (2) C12—H12A 0.9600
Fe1—C6 2.041 (2) C12—H12B 0.9600
Fe1—C4 2.042 (2) C12—H12C 0.9600
Fe1—C8 2.045 (2) C13—C14 1.505 (3)
Fe1—C7 2.046 (2) C13—H13A 0.9700
Fe1—C2 2.047 (2) C13—H13B 0.9700
Fe1—C5 2.047 (2) C14—H14A 0.9600
Fe1—C3 2.050 (2) C14—H14B 0.9600
P1—C6 1.816 (2) C14—H14C 0.9600
P1—C21 1.838 (2) C15—C20 1.381 (3)
P1—C15 1.844 (2) C15—C16 1.392 (3)
O1—C13 1.424 (3) C16—C17 1.390 (3)
O1—C11 1.434 (2) C16—H16A 0.9300
C1—C2 1.411 (3) C17—C18 1.376 (3)
C1—C5 1.416 (3) C17—H17A 0.9300
C1—H1A 0.9800 C18—C19 1.375 (3)
C2—C3 1.415 (4) C18—H18A 0.9300
C2—H2A 0.9800 C19—C20 1.390 (3)
C3—C4 1.412 (4) C19—H19A 0.9300
C3—H3A 0.9800 C20—H20A 0.9300
C4—C5 1.410 (4) C21—C22 1.392 (3)
C4—H4A 0.9800 C21—C26 1.393 (3)
C5—H5A 0.9800 C22—C23 1.384 (3)
C6—C10 1.435 (3) C22—H22A 0.9300
C6—C7 1.439 (3) C23—C24 1.382 (3)
C7—C8 1.428 (3) C23—H23A 0.9300
C7—H7A 0.9800 C24—C25 1.376 (3)
C8—C9 1.419 (3) C24—H24A 0.9300
C8—H8A 0.9800 C25—C26 1.388 (3)
C9—C10 1.418 (3) C25—H25A 0.9300
C9—H9A 0.9800 C26—H26A 0.9300
C10—C11 1.507 (3)
C10—Fe1—C1 106.17 (9) C8—C7—C6 108.05 (18)
C10—Fe1—C9 40.83 (8) C8—C7—Fe1 69.55 (12)
C1—Fe1—C9 120.74 (9) C6—C7—Fe1 69.22 (11)
C10—Fe1—C6 41.32 (7) C8—C7—H7A 126.0
C1—Fe1—C6 123.26 (8) C6—C7—H7A 126.0
C9—Fe1—C6 68.99 (8) Fe1—C7—H7A 126.0
C10—Fe1—C4 158.10 (11) C9—C8—C7 107.99 (18)
C1—Fe1—C4 67.90 (9) C9—C8—Fe1 69.49 (12)
C9—Fe1—C4 160.50 (11) C7—C8—Fe1 69.60 (12)
C6—Fe1—C4 122.93 (10) C9—C8—H8A 126.0
C10—Fe1—C8 68.94 (9) C7—C8—H8A 126.0
C1—Fe1—C8 156.45 (9) Fe1—C8—H8A 126.0
C9—Fe1—C8 40.66 (8) C10—C9—C8 108.57 (18)
C6—Fe1—C8 69.17 (8) C10—C9—Fe1 69.00 (11)
C4—Fe1—C8 124.97 (10) C8—C9—Fe1 69.86 (12)
C10—Fe1—C7 69.21 (8) C10—C9—H9A 125.7
C1—Fe1—C7 160.92 (8) C8—C9—H9A 125.7
C9—Fe1—C7 68.61 (8) Fe1—C9—H9A 125.7
C6—Fe1—C7 41.22 (8) C9—C10—C6 108.25 (18)
C4—Fe1—C7 109.11 (9) C9—C10—C11 128.47 (18)
C8—Fe1—C7 40.85 (8) C6—C10—C11 123.28 (18)
C10—Fe1—C2 122.21 (9) C9—C10—Fe1 70.17 (12)
C1—Fe1—C2 40.41 (9) C6—C10—Fe1 69.95 (11)
C9—Fe1—C2 106.50 (9) C11—C10—Fe1 126.19 (14)
C6—Fe1—C2 159.33 (9) O1—C11—C10 106.40 (16)
C4—Fe1—C2 67.84 (10) O1—C11—C12 110.14 (17)
C8—Fe1—C2 121.37 (10) C10—C11—C12 114.32 (17)
C7—Fe1—C2 157.70 (9) O1—C11—H11A 108.6
C10—Fe1—C5 121.51 (10) C10—C11—H11A 108.6
C1—Fe1—C5 40.56 (9) C12—C11—H11A 108.6
C9—Fe1—C5 156.82 (9) C11—C12—H12A 109.5
C6—Fe1—C5 107.69 (9) C11—C12—H12B 109.5
C4—Fe1—C5 40.35 (11) H12A—C12—H12B 109.5
C8—Fe1—C5 161.50 (9) C11—C12—H12C 109.5
C7—Fe1—C5 124.93 (9) H12A—C12—H12C 109.5
C2—Fe1—C5 68.07 (10) H12B—C12—H12C 109.5
C10—Fe1—C3 158.99 (11) O1—C13—C14 108.08 (18)
C1—Fe1—C3 68.00 (9) O1—C13—H13A 110.1
C9—Fe1—C3 123.33 (12) C14—C13—H13A 110.1
C6—Fe1—C3 158.72 (10) O1—C13—H13B 110.1
C4—Fe1—C3 40.39 (12) C14—C13—H13B 110.1
C8—Fe1—C3 107.86 (10) H13A—C13—H13B 108.4
C7—Fe1—C3 122.83 (10) C13—C14—H14A 109.5
C2—Fe1—C3 40.40 (10) C13—C14—H14B 109.5
C5—Fe1—C3 68.07 (11) H14A—C14—H14B 109.5
C6—P1—C21 101.20 (9) C13—C14—H14C 109.5
C6—P1—C15 102.97 (9) H14A—C14—H14C 109.5
C21—P1—C15 100.13 (8) H14B—C14—H14C 109.5
C13—O1—C11 113.47 (16) C20—C15—C16 118.39 (19)
C2—C1—C5 108.3 (2) C20—C15—P1 125.17 (15)
C2—C1—Fe1 70.13 (13) C16—C15—P1 116.40 (15)
C5—C1—Fe1 70.05 (12) C17—C16—C15 120.8 (2)
C2—C1—H1A 125.9 C17—C16—H16A 119.6
C5—C1—H1A 125.9 C15—C16—H16A 119.6
Fe1—C1—H1A 125.9 C18—C17—C16 120.0 (2)
C1—C2—C3 108.0 (2) C18—C17—H17A 120.0
C1—C2—Fe1 69.47 (12) C16—C17—H17A 120.0
C3—C2—Fe1 69.90 (13) C19—C18—C17 119.5 (2)
C1—C2—H2A 126.0 C19—C18—H18A 120.2
C3—C2—H2A 126.0 C17—C18—H18A 120.2
Fe1—C2—H2A 126.0 C18—C19—C20 120.6 (2)
C4—C3—C2 107.6 (2) C18—C19—H19A 119.7
C4—C3—Fe1 69.49 (14) C20—C19—H19A 119.7
C2—C3—Fe1 69.70 (13) C15—C20—C19 120.57 (19)
C4—C3—H3A 126.2 C15—C20—H20A 119.7
C2—C3—H3A 126.2 C19—C20—H20A 119.7
Fe1—C3—H3A 126.2 C22—C21—C26 118.38 (19)
C5—C4—C3 108.6 (2) C22—C21—P1 122.46 (15)
C5—C4—Fe1 70.04 (14) C26—C21—P1 119.16 (15)
C3—C4—Fe1 70.12 (15) C23—C22—C21 120.66 (19)
C5—C4—H4A 125.7 C23—C22—H22A 119.7
C3—C4—H4A 125.7 C21—C22—H22A 119.7
Fe1—C4—H4A 125.7 C24—C23—C22 120.2 (2)
C4—C5—C1 107.4 (2) C24—C23—H23A 119.9
C4—C5—Fe1 69.61 (15) C22—C23—H23A 119.9
C1—C5—Fe1 69.39 (13) C25—C24—C23 120.0 (2)
C4—C5—H5A 126.3 C25—C24—H24A 120.0
C1—C5—H5A 126.3 C23—C24—H24A 120.0
Fe1—C5—H5A 126.3 C24—C25—C26 120.0 (2)
C10—C6—C7 107.14 (18) C24—C25—H25A 120.0
C10—C6—P1 122.87 (15) C26—C25—H25A 120.0
C7—C6—P1 129.82 (15) C25—C26—C21 120.8 (2)
C10—C6—Fe1 68.73 (11) C25—C26—H26A 119.6
C7—C6—Fe1 69.57 (11) C21—C26—H26A 119.6
P1—C6—Fe1 123.06 (10)
C10—Fe1—C1—C2 −121.03 (14) Fe1—C6—C7—C8 −58.89 (14)
C9—Fe1—C1—C2 −79.11 (16) C10—C6—C7—Fe1 58.67 (13)
C6—Fe1—C1—C2 −162.88 (13) P1—C6—C7—Fe1 −116.57 (17)
C4—Fe1—C1—C2 81.32 (16) C10—Fe1—C7—C8 81.47 (13)
C8—Fe1—C1—C2 −46.7 (3) C1—Fe1—C7—C8 160.7 (2)
C7—Fe1—C1—C2 166.0 (2) C9—Fe1—C7—C8 37.56 (12)
C5—Fe1—C1—C2 119.1 (2) C6—Fe1—C7—C8 119.68 (17)
C3—Fe1—C1—C2 37.59 (16) C4—Fe1—C7—C8 −121.79 (15)
C10—Fe1—C1—C5 119.87 (14) C2—Fe1—C7—C8 −43.7 (3)
C9—Fe1—C1—C5 161.79 (14) C5—Fe1—C7—C8 −163.90 (13)
C6—Fe1—C1—C5 78.03 (16) C3—Fe1—C7—C8 −79.16 (17)
C4—Fe1—C1—C5 −37.78 (16) C10—Fe1—C7—C6 −38.21 (11)
C8—Fe1—C1—C5 −165.8 (2) C1—Fe1—C7—C6 41.0 (3)
C7—Fe1—C1—C5 46.9 (3) C9—Fe1—C7—C6 −82.12 (12)
C2—Fe1—C1—C5 −119.1 (2) C4—Fe1—C7—C6 118.53 (14)
C3—Fe1—C1—C5 −81.51 (17) C8—Fe1—C7—C6 −119.68 (17)
C5—C1—C2—C3 0.4 (2) C2—Fe1—C7—C6 −163.4 (2)
Fe1—C1—C2—C3 −59.49 (16) C5—Fe1—C7—C6 76.41 (15)
C5—C1—C2—Fe1 59.89 (14) C3—Fe1—C7—C6 161.16 (15)
C10—Fe1—C2—C1 76.58 (16) C6—C7—C8—C9 −0.4 (2)
C9—Fe1—C2—C1 118.33 (14) Fe1—C7—C8—C9 −59.09 (14)
C6—Fe1—C2—C1 44.2 (3) C6—C7—C8—Fe1 58.68 (13)
C4—Fe1—C2—C1 −81.47 (16) C10—Fe1—C8—C9 37.24 (12)
C8—Fe1—C2—C1 160.08 (13) C1—Fe1—C8—C9 −44.9 (3)
C7—Fe1—C2—C1 −167.9 (2) C6—Fe1—C8—C9 81.63 (13)
C5—Fe1—C2—C1 −37.77 (14) C4—Fe1—C8—C9 −162.03 (14)
C3—Fe1—C2—C1 −119.2 (2) C7—Fe1—C8—C9 119.40 (17)
C10—Fe1—C2—C3 −164.18 (16) C2—Fe1—C8—C9 −78.50 (15)
C1—Fe1—C2—C3 119.2 (2) C5—Fe1—C8—C9 165.2 (3)
C9—Fe1—C2—C3 −122.42 (17) C3—Fe1—C8—C9 −120.72 (15)
C6—Fe1—C2—C3 163.5 (3) C10—Fe1—C8—C7 −82.16 (12)
C4—Fe1—C2—C3 37.78 (18) C1—Fe1—C8—C7 −164.33 (19)
C8—Fe1—C2—C3 −80.68 (19) C9—Fe1—C8—C7 −119.40 (17)
C7—Fe1—C2—C3 −48.7 (3) C6—Fe1—C8—C7 −37.77 (12)
C5—Fe1—C2—C3 81.48 (18) C4—Fe1—C8—C7 78.57 (16)
C1—C2—C3—C4 −0.2 (3) C2—Fe1—C8—C7 162.10 (12)
Fe1—C2—C3—C4 −59.38 (16) C5—Fe1—C8—C7 45.8 (3)
C1—C2—C3—Fe1 59.22 (15) C3—Fe1—C8—C7 119.88 (15)
C10—Fe1—C3—C4 158.9 (2) C7—C8—C9—C10 0.9 (2)
C1—Fe1—C3—C4 81.29 (16) Fe1—C8—C9—C10 −58.27 (14)
C9—Fe1—C3—C4 −165.50 (15) C7—C8—C9—Fe1 59.16 (14)
C6—Fe1—C3—C4 −45.1 (4) C1—Fe1—C9—C10 −78.90 (14)
C8—Fe1—C3—C4 −123.40 (15) C6—Fe1—C9—C10 38.18 (11)
C7—Fe1—C3—C4 −80.96 (18) C4—Fe1—C9—C10 169.5 (3)
C2—Fe1—C3—C4 118.9 (2) C8—Fe1—C9—C10 120.27 (18)
C5—Fe1—C3—C4 37.39 (15) C7—Fe1—C9—C10 82.54 (13)
C10—Fe1—C3—C2 40.1 (3) C2—Fe1—C9—C10 −120.49 (13)
C1—Fe1—C3—C2 −37.59 (15) C5—Fe1—C9—C10 −47.8 (3)
C9—Fe1—C3—C2 75.63 (18) C3—Fe1—C9—C10 −161.40 (12)
C6—Fe1—C3—C2 −163.9 (2) C10—Fe1—C9—C8 −120.27 (18)
C4—Fe1—C3—C2 −118.9 (2) C1—Fe1—C9—C8 160.83 (12)
C8—Fe1—C3—C2 117.72 (16) C6—Fe1—C9—C8 −82.09 (13)
C7—Fe1—C3—C2 160.17 (14) C4—Fe1—C9—C8 49.2 (3)
C5—Fe1—C3—C2 −81.48 (16) C7—Fe1—C9—C8 −37.73 (12)
C2—C3—C4—C5 −0.1 (3) C2—Fe1—C9—C8 119.24 (13)
Fe1—C3—C4—C5 −59.65 (16) C5—Fe1—C9—C8 −168.1 (2)
C2—C3—C4—Fe1 59.51 (16) C3—Fe1—C9—C8 78.33 (16)
C10—Fe1—C4—C5 −40.2 (3) C8—C9—C10—C6 −1.0 (2)
C1—Fe1—C4—C5 37.97 (14) Fe1—C9—C10—C6 −59.82 (13)
C9—Fe1—C4—C5 158.4 (2) C8—C9—C10—C11 179.80 (19)
C6—Fe1—C4—C5 −78.28 (16) Fe1—C9—C10—C11 121.0 (2)
C8—Fe1—C4—C5 −164.60 (13) C8—C9—C10—Fe1 58.80 (15)
C7—Fe1—C4—C5 −121.88 (14) C7—C6—C10—C9 0.8 (2)
C2—Fe1—C4—C5 81.75 (15) P1—C6—C10—C9 176.41 (14)
C3—Fe1—C4—C5 119.5 (2) Fe1—C6—C10—C9 59.96 (14)
C10—Fe1—C4—C3 −159.8 (2) C7—C6—C10—C11 179.99 (17)
C1—Fe1—C4—C3 −81.58 (15) P1—C6—C10—C11 −4.4 (3)
C9—Fe1—C4—C3 38.8 (3) Fe1—C6—C10—C11 −120.81 (18)
C6—Fe1—C4—C3 162.18 (14) C7—C6—C10—Fe1 −59.20 (13)
C8—Fe1—C4—C3 75.85 (17) P1—C6—C10—Fe1 116.45 (14)
C7—Fe1—C4—C3 118.57 (15) C1—Fe1—C10—C9 118.58 (13)
C2—Fe1—C4—C3 −37.80 (15) C6—Fe1—C10—C9 −119.07 (17)
C5—Fe1—C4—C3 −119.5 (2) C4—Fe1—C10—C9 −170.6 (2)
C3—C4—C5—C1 0.4 (3) C8—Fe1—C10—C9 −37.08 (12)
Fe1—C4—C5—C1 −59.31 (15) C7—Fe1—C10—C9 −80.95 (13)
C3—C4—C5—Fe1 59.71 (17) C2—Fe1—C10—C9 77.55 (15)
C2—C1—C5—C4 −0.5 (2) C5—Fe1—C10—C9 159.99 (13)
Fe1—C1—C5—C4 59.45 (16) C3—Fe1—C10—C9 48.0 (3)
C2—C1—C5—Fe1 −59.94 (15) C1—Fe1—C10—C6 −122.34 (12)
C10—Fe1—C5—C4 163.58 (15) C9—Fe1—C10—C6 119.07 (17)
C1—Fe1—C5—C4 −118.8 (2) C4—Fe1—C10—C6 −51.5 (3)
C9—Fe1—C5—C4 −161.8 (2) C8—Fe1—C10—C6 81.99 (12)
C6—Fe1—C5—C4 120.39 (16) C7—Fe1—C10—C6 38.12 (11)
C8—Fe1—C5—C4 43.3 (4) C2—Fe1—C10—C6 −163.37 (12)
C7—Fe1—C5—C4 78.15 (18) C5—Fe1—C10—C6 −80.93 (14)
C2—Fe1—C5—C4 −81.13 (16) C3—Fe1—C10—C6 167.1 (2)
C3—Fe1—C5—C4 −37.42 (16) C1—Fe1—C10—C11 −5.16 (19)
C10—Fe1—C5—C1 −77.66 (15) C9—Fe1—C10—C11 −123.7 (2)
C9—Fe1—C5—C1 −43.0 (3) C6—Fe1—C10—C11 117.2 (2)
C6—Fe1—C5—C1 −120.84 (13) C4—Fe1—C10—C11 65.6 (3)
C4—Fe1—C5—C1 118.8 (2) C8—Fe1—C10—C11 −160.82 (19)
C8—Fe1—C5—C1 162.1 (2) C7—Fe1—C10—C11 155.30 (19)
C7—Fe1—C5—C1 −163.08 (12) C2—Fe1—C10—C11 −46.2 (2)
C2—Fe1—C5—C1 37.63 (13) C5—Fe1—C10—C11 36.2 (2)
C3—Fe1—C5—C1 81.34 (15) C3—Fe1—C10—C11 −75.7 (3)
C21—P1—C6—C10 −163.25 (16) C13—O1—C11—C10 146.74 (17)
C15—P1—C6—C10 93.47 (17) C13—O1—C11—C12 −88.9 (2)
C21—P1—C6—C7 11.3 (2) C9—C10—C11—O1 111.4 (2)
C15—P1—C6—C7 −91.94 (19) C6—C10—C11—O1 −67.6 (2)
C21—P1—C6—Fe1 −78.69 (12) Fe1—C10—C11—O1 −156.03 (13)
C15—P1—C6—Fe1 178.04 (11) C9—C10—C11—C12 −10.4 (3)
C1—Fe1—C6—C10 76.02 (14) C6—C10—C11—C12 170.58 (18)
C9—Fe1—C6—C10 −37.74 (12) Fe1—C10—C11—C12 82.2 (2)
C4—Fe1—C6—C10 159.63 (14) C11—O1—C13—C14 179.14 (17)
C8—Fe1—C6—C10 −81.41 (12) C6—P1—C15—C20 5.9 (2)
C7—Fe1—C6—C10 −118.85 (17) C21—P1—C15—C20 −98.16 (18)
C2—Fe1—C6—C10 43.3 (3) C6—P1—C15—C16 −171.67 (15)
C5—Fe1—C6—C10 117.91 (13) C21—P1—C15—C16 84.23 (16)
C3—Fe1—C6—C10 −167.2 (3) C20—C15—C16—C17 1.5 (3)
C10—Fe1—C6—C7 118.85 (16) P1—C15—C16—C17 179.30 (17)
C1—Fe1—C6—C7 −165.12 (12) C15—C16—C17—C18 −0.6 (3)
C9—Fe1—C6—C7 81.11 (12) C16—C17—C18—C19 −0.3 (3)
C4—Fe1—C6—C7 −81.52 (15) C17—C18—C19—C20 0.2 (3)
C8—Fe1—C6—C7 37.44 (12) C16—C15—C20—C19 −1.6 (3)
C2—Fe1—C6—C7 162.1 (2) P1—C15—C20—C19 −179.18 (17)
C5—Fe1—C6—C7 −123.24 (13) C18—C19—C20—C15 0.8 (3)
C3—Fe1—C6—C7 −48.4 (3) C6—P1—C21—C22 −68.60 (17)
C10—Fe1—C6—P1 −116.20 (17) C15—P1—C21—C22 36.93 (18)
C1—Fe1—C6—P1 −40.17 (16) C6—P1—C21—C26 111.64 (17)
C9—Fe1—C6—P1 −153.94 (14) C15—P1—C21—C26 −142.83 (16)
C4—Fe1—C6—P1 43.43 (16) C26—C21—C22—C23 0.3 (3)
C8—Fe1—C6—P1 162.39 (14) P1—C21—C22—C23 −179.51 (16)
C7—Fe1—C6—P1 124.95 (17) C21—C22—C23—C24 −0.6 (3)
C2—Fe1—C6—P1 −72.9 (3) C22—C23—C24—C25 0.3 (3)
C5—Fe1—C6—P1 1.71 (14) C23—C24—C25—C26 0.4 (3)
C3—Fe1—C6—P1 76.6 (3) C24—C25—C26—C21 −0.8 (3)
C10—C6—C7—C8 −0.2 (2) C22—C21—C26—C25 0.5 (3)
P1—C6—C7—C8 −175.46 (15) P1—C21—C26—C25 −179.76 (17)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2112).

References

  1. Blaser, H. U. & Schmidt, E. (2004). In Asymmetric Catalysis on Industrial Scale. Weinheim: Wiley-VCH.
  2. Cheelama, M. N. & Knochel, P. (2007). Org. Lett.9, 3089–3092. [DOI] [PubMed]
  3. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  4. Gomez Arrayas, R., Adrio, J. & Carretero, J. C. (2006). Angew. Chem. Int. Ed.45, 7674–7715. [DOI] [PubMed]
  5. Hayashi, T., Hayashizaki, K., Kiyoi, T. & Ito, Y. (1988). J. Am. Chem. Soc.120, 8153–8156.
  6. Jin, Z., Song, H., Liu, W., Hu, Y., Liu, J., Shao, L. & Fang, J. (2004). Acta Cryst. E60, m1692–m1694.
  7. Ohmura, H., Matsuhashi, H., Tanaka, M., Kuroboshi, M., Hiyama, T., Hatanaka, Y. & Goda, K. (1995). J. Organomet. Chem.499, 167–171.
  8. Ojima, I. (2000). In Catalytic Asymmetric Synthesis, 2nd ed. New York: Wiley-VCH.
  9. Podlaha, J., Štěpnicka, P., Štěpnicka, L. J. & Císarova, I. (1996). Organometallics, 15, 543–550.
  10. Rigaku (2001). CrystalClear and CrystalStructure Rigaku Corporation, Tokyo, Japan.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808033618/nc2112sup1.cif

e-64-m1448-sup1.cif (32.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033618/nc2112Isup2.hkl

e-64-m1448-Isup2.hkl (192.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES