Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 4;64(Pt 11):o2054–o2055. doi: 10.1107/S1600536808031231

4-(4-Chloro­phenyl­sulfan­yl)-1-[(E)-2-(4-chloro­phenyl­sulfan­yl)-1-phenyl­ethen­yl]-3-phenyl-1H-pyrazole

P Ramesh a, A Subbiahpandi a, Ramaiyan Manikannan b, S Muthusubramanian b, M N Ponnuswamy c,*
PMCID: PMC2959571  PMID: 21580921

Abstract

In the title compound, C29H20Cl2N2S2, the pyrazole ring adopts a planar conformation. The chlorophenyl rings are twisted from the pyrazole ring at angles of 52.74 (14) and 29.92 (13)°, respectively. The crystal structure is stabilized by C—H⋯N and C—H⋯π inter­actions.

Related literature

For the pharmacological and medicinal properties of the title compound, see: Baraldi et al. (1998); Bruno et al. (1990); Cottineau et al. (2002); Londershausen (1996); Chen & Li (1998); Mishra et al. (1998); Smith et al. (2001). For hybridization, see: Beddoes et al. (1986). For a related structure, see: Jin et al. (2004).graphic file with name e-64-o2054-scheme1.jpg

Experimental

Crystal data

  • C29H20Cl2N2S2

  • M r = 531.49

  • Monoclinic, Inline graphic

  • a = 12.3808 (4) Å

  • b = 21.4667 (7) Å

  • c = 10.4281 (4) Å

  • β = 108.181 (2)°

  • V = 2633.16 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.18 mm

Data collection

  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.883, T max = 0.927

  • 31420 measured reflections

  • 6594 independent reflections

  • 4292 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.142

  • S = 1.02

  • 6594 reflections

  • 316 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808031231/bt2789sup1.cif

e-64-o2054-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031231/bt2789Isup2.hkl

e-64-o2054-Isup2.hkl (316.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C26–C31 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N1 0.93 2.44 2.772 (3) 101
C21—H21⋯Cgi 0.93 2.96 3.808 (3) 153

Symmetry code: (i) Inline graphic.

Acknowledgments

PR thanks Dr Babu Varghese, SAIF, IIT Madras, Chennai, India, for his help with the data collection.

supplementary crystallographic information

Comment

Pyrazole derivatives possess significant antiarrhythmic and sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002), antiviral (Baraldi et al., 1998), and pesticidal (Londershausen et al., 1996) properties. Some pyrazole derivatives are successfully tested for their antifungal (Chen & Li, 1998), antihistaminic (Mishra et al., 1998) and anti-inflammatory (Smith et al., 2001) activities.

An ORTEP plot of the molecule is shown in Fig. 1. The pyrazole ring adopts a planar conformation. The sum of the bond angles at N2 of the pyrazole ring (359.34°) is in accordance with sp2 hybridization (Beddoes et al., 1986). The C—N bond lengths in the pyrazole ring are 1.340 (3) and 1.325 (3) Å, which are shorter than a C—N single bond length of 1.443 Å, but longer than a double bond length of 1.269 Å (Jin et al., 2004), indicating electron delocalization. The chlorophenyl rings are twisted from the pyrazole ring at angles of 52.74 (14)° and 29.92 (13), respectively. The crystal packing shows weak C—H···N (Tab. 1) and C—H···π interactions [C21-H21···cogi(C26,C27,C28,C29,C30,C31); symmetry operator (i) x, 1/2-y, 1/2+z: H···cog 2.956Å, C21···cog 3.808Å, C21-H21···cog 152.9°] in addition to van der Waals forces.

Experimental

To a mixture of 2-[(4-chlorophenyl)sulfanyl]-1-phenyl-1-ethanone N-(E)-2- [(4-chlorophenyl)sulfanyl]-1-phenylethylidenehydrazone (0.003 mole) and 3 ml of dimethyl formamide kept in ice bath at 0° C, phosphorus oxycholride (0.024 mole) was added dropwise for 5–10 minutes. The reaction mixture was then kept in a microwave oven at 600 W for 30–60 sec. The process of the reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and extracted with dichloromethane. The organic layer was dried in anhydrous sodium sulfate. The different compounds present in the mixture were separated by column chromatography using petroleum ether and ethyl acetate mixture as eluent. This isolated compound was recrystallized in dichloromethane to obtain 4-[(4-chlorophenyl)sulfanyl]-1- (E)-2-[(4-chlorophenyl)sulfanyl]-1-phenylethenyl-3-phenyl-1H-pyrazole in 86% yield.

Refinement

All H atoms were positioned geometrically (C—H = 0.93 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for all H atoms. The atom S1 was restrained within an effective standard deviation of 0.1 so that their Uij components approximate to isotropic bahavior.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atomic numbering and 50% probability displacement ellipsoids.

Crystal data

C29H20Cl2N2S2 F(000) = 1096
Mr = 531.49 Dx = 1.341 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4538 reflections
a = 12.3808 (4) Å θ = 1.9–28.4°
b = 21.4667 (7) Å µ = 0.43 mm1
c = 10.4281 (4) Å T = 293 K
β = 108.181 (2)° Block, colorless
V = 2633.16 (16) Å3 0.30 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker Kappa APEXII diffractometer 6594 independent reflections
Radiation source: fine-focus sealed tube 4292 reflections with I > 2σ(I)
graphite Rint = 0.027
ω and φ scans θmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −9→16
Tmin = 0.883, Tmax = 0.927 k = −28→28
31420 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0499P)2 + 1.5769P] where P = (Fo2 + 2Fc2)/3
6594 reflections (Δ/σ)max = 0.001
316 parameters Δρmax = 0.58 e Å3
6 restraints Δρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.05360 (11) 0.97426 (6) 1.29295 (10) 0.1304 (4)
Cl2 0.49992 (8) 0.55063 (4) 0.67733 (9) 0.0936 (3)
S1 −0.22821 (6) 0.89305 (5) 0.68804 (10) 0.0988 (3)
S2 0.13985 (5) 0.72882 (3) 0.29751 (6) 0.05543 (17)
N2 −0.03047 (14) 0.82027 (8) 0.48954 (18) 0.0442 (4)
N1 0.06227 (14) 0.85803 (8) 0.52541 (18) 0.0458 (4)
C4 0.08940 (18) 0.77699 (10) 0.4007 (2) 0.0457 (5)
C5 0.13504 (17) 0.83241 (10) 0.4710 (2) 0.0432 (5)
C3 −0.01665 (18) 0.77170 (10) 0.4154 (2) 0.0474 (5)
H3 −0.0692 0.7402 0.3804 0.057*
C6 −0.12269 (18) 0.83142 (11) 0.5402 (2) 0.0487 (5)
C7 −0.1128 (2) 0.87324 (13) 0.6357 (3) 0.0660 (7)
H7 −0.0430 0.8924 0.6756 0.079*
C8 −0.1672 (2) 0.91670 (13) 0.8564 (3) 0.0708 (7)
C9 −0.0600 (2) 0.90247 (14) 0.9387 (3) 0.0749 (8)
H9 −0.0108 0.8804 0.9040 0.090*
C10 −0.0243 (3) 0.92044 (15) 1.0718 (4) 0.0844 (9)
H10 0.0490 0.9110 1.1262 0.101*
C11 −0.0963 (3) 0.95220 (14) 1.1244 (3) 0.0815 (9)
C12 −0.2020 (3) 0.96751 (19) 1.0443 (4) 0.1049 (12)
H12 −0.2504 0.9899 1.0797 0.126*
C13 −0.2377 (3) 0.95004 (19) 0.9112 (4) 0.1074 (13)
H13 −0.3104 0.9608 0.8570 0.129*
C14 −0.22593 (18) 0.79358 (11) 0.4766 (2) 0.0521 (5)
C15 −0.3037 (2) 0.81280 (15) 0.3589 (3) 0.0748 (8)
H15 −0.2918 0.8497 0.3186 0.090*
C16 −0.4000 (3) 0.7778 (2) 0.2995 (4) 0.0977 (11)
H16 −0.4524 0.7911 0.2192 0.117*
C17 −0.4182 (3) 0.7247 (2) 0.3572 (4) 0.1013 (13)
H17 −0.4834 0.7014 0.3171 0.122*
C18 −0.3416 (4) 0.7046 (2) 0.4741 (4) 0.1147 (15)
H18 −0.3544 0.6677 0.5137 0.138*
C19 −0.2445 (3) 0.73921 (16) 0.5344 (3) 0.0901 (10)
H19 −0.1919 0.7254 0.6141 0.108*
C20 0.23637 (18) 0.67789 (10) 0.4109 (2) 0.0465 (5)
C21 0.3060 (2) 0.64266 (12) 0.3584 (3) 0.0584 (6)
H21 0.2985 0.6456 0.2670 0.070*
C22 0.3863 (2) 0.60336 (12) 0.4394 (3) 0.0656 (7)
H22 0.4333 0.5801 0.4035 0.079*
C23 0.3961 (2) 0.59894 (11) 0.5732 (3) 0.0615 (6)
C24 0.3265 (2) 0.63248 (13) 0.6277 (3) 0.0653 (7)
H24 0.3333 0.6286 0.7187 0.078*
C25 0.2463 (2) 0.67213 (12) 0.5457 (2) 0.0571 (6)
H25 0.1989 0.6950 0.5817 0.069*
C26 0.24546 (18) 0.86348 (11) 0.4912 (2) 0.0471 (5)
C27 0.34364 (19) 0.83066 (12) 0.5004 (2) 0.0544 (6)
H27 0.3402 0.7878 0.4864 0.065*
C28 0.4473 (2) 0.86127 (14) 0.5304 (3) 0.0653 (7)
H28 0.5130 0.8389 0.5364 0.078*
C29 0.4531 (2) 0.92423 (15) 0.5512 (3) 0.0738 (8)
H29 0.5228 0.9445 0.5725 0.089*
C30 0.3564 (2) 0.95734 (14) 0.5405 (3) 0.0780 (8)
H30 0.3604 1.0003 0.5534 0.094*
C31 0.2524 (2) 0.92733 (12) 0.5107 (3) 0.0637 (7)
H31 0.1870 0.9502 0.5039 0.076*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1506 (10) 0.1492 (10) 0.0782 (6) 0.0227 (8) 0.0167 (6) −0.0108 (6)
Cl2 0.0875 (6) 0.0736 (5) 0.1054 (6) 0.0208 (4) 0.0094 (5) 0.0060 (4)
S1 0.0426 (4) 0.1458 (8) 0.1049 (6) 0.0127 (4) 0.0184 (4) −0.0526 (6)
S2 0.0496 (3) 0.0730 (4) 0.0426 (3) 0.0013 (3) 0.0128 (2) −0.0085 (3)
N2 0.0340 (9) 0.0478 (10) 0.0491 (10) −0.0018 (7) 0.0103 (7) 0.0014 (8)
N1 0.0401 (9) 0.0447 (9) 0.0511 (10) −0.0051 (7) 0.0119 (8) 0.0017 (8)
C4 0.0388 (11) 0.0537 (12) 0.0425 (11) −0.0019 (9) 0.0097 (9) −0.0018 (9)
C5 0.0382 (11) 0.0498 (12) 0.0404 (10) −0.0024 (9) 0.0103 (8) 0.0055 (9)
C3 0.0373 (11) 0.0513 (12) 0.0504 (12) −0.0036 (9) 0.0089 (9) −0.0035 (10)
C6 0.0351 (11) 0.0543 (13) 0.0546 (13) 0.0051 (9) 0.0109 (9) 0.0013 (10)
C7 0.0375 (12) 0.0774 (17) 0.0822 (18) 0.0019 (11) 0.0173 (12) −0.0179 (15)
C8 0.0533 (15) 0.0706 (17) 0.089 (2) 0.0111 (13) 0.0222 (14) −0.0161 (15)
C9 0.0548 (16) 0.0710 (18) 0.099 (2) 0.0148 (13) 0.0241 (15) −0.0101 (16)
C10 0.0685 (19) 0.084 (2) 0.092 (2) 0.0161 (16) 0.0113 (16) 0.0015 (18)
C11 0.091 (2) 0.0686 (18) 0.080 (2) 0.0153 (16) 0.0203 (17) −0.0020 (15)
C12 0.103 (3) 0.118 (3) 0.092 (2) 0.049 (2) 0.028 (2) −0.021 (2)
C13 0.074 (2) 0.142 (3) 0.098 (3) 0.051 (2) 0.0150 (18) −0.031 (2)
C14 0.0384 (11) 0.0631 (14) 0.0565 (13) −0.0014 (10) 0.0175 (10) −0.0032 (11)
C15 0.0466 (14) 0.087 (2) 0.0811 (19) −0.0006 (13) 0.0055 (13) 0.0086 (16)
C16 0.0480 (16) 0.140 (3) 0.090 (2) −0.0098 (19) −0.0007 (15) −0.009 (2)
C17 0.072 (2) 0.147 (4) 0.092 (3) −0.055 (2) 0.0362 (19) −0.042 (2)
C18 0.135 (4) 0.118 (3) 0.096 (3) −0.071 (3) 0.043 (3) −0.011 (2)
C19 0.099 (2) 0.091 (2) 0.0697 (19) −0.0358 (19) 0.0118 (17) 0.0075 (17)
C20 0.0432 (11) 0.0498 (12) 0.0489 (12) −0.0083 (9) 0.0177 (9) −0.0106 (10)
C21 0.0645 (15) 0.0629 (15) 0.0545 (14) −0.0016 (12) 0.0283 (12) −0.0093 (12)
C22 0.0661 (16) 0.0593 (15) 0.0797 (18) 0.0048 (13) 0.0347 (14) −0.0102 (13)
C23 0.0583 (15) 0.0484 (13) 0.0731 (17) −0.0009 (11) 0.0136 (13) −0.0042 (12)
C24 0.0750 (18) 0.0684 (16) 0.0510 (14) 0.0034 (14) 0.0175 (12) −0.0034 (12)
C25 0.0569 (14) 0.0674 (15) 0.0510 (13) 0.0055 (12) 0.0227 (11) −0.0067 (11)
C26 0.0421 (11) 0.0585 (13) 0.0391 (11) −0.0097 (10) 0.0103 (9) 0.0051 (9)
C27 0.0453 (12) 0.0629 (14) 0.0555 (13) −0.0062 (11) 0.0164 (10) −0.0006 (11)
C28 0.0421 (13) 0.0853 (19) 0.0682 (16) −0.0075 (12) 0.0167 (11) 0.0051 (14)
C29 0.0478 (15) 0.085 (2) 0.0841 (19) −0.0233 (14) 0.0140 (13) 0.0101 (16)
C30 0.0644 (18) 0.0612 (16) 0.102 (2) −0.0207 (14) 0.0169 (16) 0.0073 (15)
C31 0.0503 (14) 0.0570 (15) 0.0802 (18) −0.0086 (11) 0.0150 (12) 0.0087 (13)

Geometric parameters (Å, °)

Cl1—C11 1.735 (3) C15—H15 0.9300
Cl2—C23 1.742 (3) C16—C17 1.340 (5)
S1—C7 1.734 (3) C16—H16 0.9300
S1—C8 1.756 (3) C17—C18 1.360 (6)
S2—C4 1.742 (2) C17—H17 0.9300
S2—C20 1.772 (2) C18—C19 1.386 (5)
N2—C3 1.340 (3) C18—H18 0.9300
N2—N1 1.359 (2) C19—H19 0.9300
N2—C6 1.420 (3) C20—C25 1.378 (3)
N1—C5 1.325 (3) C20—C21 1.382 (3)
C4—C3 1.373 (3) C21—C22 1.375 (4)
C4—C5 1.419 (3) C21—H21 0.9300
C5—C26 1.476 (3) C22—C23 1.366 (4)
C3—H3 0.9300 C22—H22 0.9300
C6—C7 1.318 (3) C23—C24 1.374 (4)
C6—C14 1.485 (3) C24—C25 1.383 (4)
C7—H7 0.9300 C24—H24 0.9300
C8—C9 1.371 (4) C25—H25 0.9300
C8—C13 1.383 (4) C26—C27 1.382 (3)
C9—C10 1.374 (4) C26—C31 1.384 (3)
C9—H9 0.9300 C27—C28 1.388 (3)
C10—C11 1.366 (4) C27—H27 0.9300
C10—H10 0.9300 C28—C29 1.367 (4)
C11—C12 1.355 (5) C28—H28 0.9300
C12—C13 1.371 (5) C29—C30 1.367 (4)
C12—H12 0.9300 C29—H29 0.9300
C13—H13 0.9300 C30—C31 1.386 (3)
C14—C19 1.365 (4) C30—H30 0.9300
C14—C15 1.366 (4) C31—H31 0.9300
C15—C16 1.382 (4)
C7—S1—C8 104.26 (13) C15—C16—H16 119.9
C4—S2—C20 104.53 (10) C16—C17—C18 120.2 (3)
C3—N2—N1 111.96 (17) C16—C17—H17 119.9
C3—N2—C6 127.43 (18) C18—C17—H17 119.9
N1—N2—C6 120.35 (17) C17—C18—C19 120.0 (4)
C5—N1—N2 105.27 (17) C17—C18—H18 120.0
C3—C4—C5 104.59 (19) C19—C18—H18 120.0
C3—C4—S2 124.02 (17) C14—C19—C18 120.0 (3)
C5—C4—S2 130.90 (16) C14—C19—H19 120.0
N1—C5—C4 110.79 (18) C18—C19—H19 120.0
N1—C5—C26 118.32 (19) C25—C20—C21 119.2 (2)
C4—C5—C26 130.9 (2) C25—C20—S2 124.29 (17)
N2—C3—C4 107.39 (19) C21—C20—S2 116.56 (18)
N2—C3—H3 126.3 C22—C21—C20 120.9 (2)
C4—C3—H3 126.3 C22—C21—H21 119.6
C7—C6—N2 120.0 (2) C20—C21—H21 119.6
C7—C6—C14 125.0 (2) C23—C22—C21 119.2 (2)
N2—C6—C14 114.93 (19) C23—C22—H22 120.4
C6—C7—S1 120.9 (2) C21—C22—H22 120.4
C6—C7—H7 119.5 C22—C23—C24 121.3 (2)
S1—C7—H7 119.5 C22—C23—Cl2 119.4 (2)
C9—C8—C13 117.9 (3) C24—C23—Cl2 119.3 (2)
C9—C8—S1 126.3 (2) C23—C24—C25 119.2 (2)
C13—C8—S1 115.7 (2) C23—C24—H24 120.4
C8—C9—C10 120.9 (3) C25—C24—H24 120.4
C8—C9—H9 119.6 C20—C25—C24 120.3 (2)
C10—C9—H9 119.6 C20—C25—H25 119.8
C11—C10—C9 120.1 (3) C24—C25—H25 119.8
C11—C10—H10 120.0 C27—C26—C31 118.8 (2)
C9—C10—H10 120.0 C27—C26—C5 122.3 (2)
C12—C11—C10 119.9 (3) C31—C26—C5 118.7 (2)
C12—C11—Cl1 119.3 (3) C26—C27—C28 120.4 (2)
C10—C11—Cl1 120.8 (3) C26—C27—H27 119.8
C11—C12—C13 120.1 (3) C28—C27—H27 119.8
C11—C12—H12 119.9 C29—C28—C27 120.2 (3)
C13—C12—H12 119.9 C29—C28—H28 119.9
C12—C13—C8 121.0 (3) C27—C28—H28 119.9
C12—C13—H13 119.5 C30—C29—C28 120.0 (2)
C8—C13—H13 119.5 C30—C29—H29 120.0
C19—C14—C15 119.1 (3) C28—C29—H29 120.0
C19—C14—C6 120.7 (2) C29—C30—C31 120.4 (3)
C15—C14—C6 120.2 (2) C29—C30—H30 119.8
C14—C15—C16 120.4 (3) C31—C30—H30 119.8
C14—C15—H15 119.8 C26—C31—C30 120.2 (3)
C16—C15—H15 119.8 C26—C31—H31 119.9
C17—C16—C15 120.2 (3) C30—C31—H31 119.9
C17—C16—H16 119.9
C3—N2—N1—C5 0.5 (2) C7—C6—C14—C15 94.6 (3)
C6—N2—N1—C5 175.07 (18) N2—C6—C14—C15 −84.7 (3)
C20—S2—C4—C3 −104.7 (2) C19—C14—C15—C16 0.2 (5)
C20—S2—C4—C5 84.6 (2) C6—C14—C15—C16 −179.9 (3)
N2—N1—C5—C4 −0.8 (2) C14—C15—C16—C17 0.3 (5)
N2—N1—C5—C26 179.40 (17) C15—C16—C17—C18 −0.5 (6)
C3—C4—C5—N1 0.8 (2) C16—C17—C18—C19 0.1 (7)
S2—C4—C5—N1 172.85 (17) C15—C14—C19—C18 −0.5 (5)
C3—C4—C5—C26 −179.5 (2) C6—C14—C19—C18 179.6 (3)
S2—C4—C5—C26 −7.4 (4) C17—C18—C19—C14 0.3 (6)
N1—N2—C3—C4 −0.1 (2) C4—S2—C20—C25 11.8 (2)
C6—N2—C3—C4 −174.1 (2) C4—S2—C20—C21 −167.52 (18)
C5—C4—C3—N2 −0.4 (2) C25—C20—C21—C22 −1.6 (4)
S2—C4—C3—N2 −173.19 (16) S2—C20—C21—C22 177.8 (2)
C3—N2—C6—C7 164.7 (2) C20—C21—C22—C23 0.6 (4)
N1—N2—C6—C7 −8.9 (3) C21—C22—C23—C24 0.7 (4)
C3—N2—C6—C14 −15.9 (3) C21—C22—C23—Cl2 −178.5 (2)
N1—N2—C6—C14 170.50 (18) C22—C23—C24—C25 −1.0 (4)
N2—C6—C7—S1 173.84 (18) Cl2—C23—C24—C25 178.2 (2)
C14—C6—C7—S1 −5.5 (4) C21—C20—C25—C24 1.2 (4)
C8—S1—C7—C6 152.2 (2) S2—C20—C25—C24 −178.1 (2)
C7—S1—C8—C9 −19.9 (3) C23—C24—C25—C20 0.0 (4)
C7—S1—C8—C13 163.8 (3) N1—C5—C26—C27 147.7 (2)
C13—C8—C9—C10 0.5 (5) C4—C5—C26—C27 −32.0 (3)
S1—C8—C9—C10 −175.8 (3) N1—C5—C26—C31 −27.8 (3)
C8—C9—C10—C11 0.9 (5) C4—C5—C26—C31 152.5 (2)
C9—C10—C11—C12 −1.8 (6) C31—C26—C27—C28 0.8 (3)
C9—C10—C11—Cl1 179.0 (3) C5—C26—C27—C28 −174.7 (2)
C10—C11—C12—C13 1.4 (6) C26—C27—C28—C29 0.0 (4)
Cl1—C11—C12—C13 −179.4 (3) C27—C28—C29—C30 −0.9 (4)
C11—C12—C13—C8 0.0 (7) C28—C29—C30—C31 1.0 (5)
C9—C8—C13—C12 −1.0 (6) C27—C26—C31—C30 −0.7 (4)
S1—C8—C13—C12 175.7 (4) C5—C26—C31—C30 174.9 (2)
C7—C6—C14—C19 −85.5 (4) C29—C30—C31—C26 −0.1 (5)
N2—C6—C14—C19 95.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7···N1 0.93 2.44 2.772 (3) 101

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2789).

References

  1. Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.
  2. Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Il Farmaco, 45, 147–166. [PubMed]
  5. Chen, H. S. & Li, Z. M. (1998). Chem. J. Chin. Univ.19, 572–576.
  6. Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem.12, 2105–2108. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Jin, Z.-M., Li, L., Li, M.-C., Hu, M.-L. & Shen, L. (2004). Acta Cryst. C60, o642–o643. [DOI] [PubMed]
  9. Londershausen, M. (1996). Pestic. Sci.48, 269–274.
  10. Mishra, P. D., Wahidullah, S. & Kamat, S. Y. (1998). Indian J. Chem. Sect. B, 37, 199.
  11. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol.432, 107–119. [DOI] [PubMed]
  14. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808031231/bt2789sup1.cif

e-64-o2054-sup1.cif (23.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031231/bt2789Isup2.hkl

e-64-o2054-Isup2.hkl (316.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES