Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 31;64(Pt 11):m1444. doi: 10.1107/S1600536808034776

Bis[1-(2,6-dichloro­benz­yl)-3-methyl­pyrazin-1-ium] bis­(maleonitrile­dithiol­ato)nickelate(II)

Shan-Shan Yu a, Hua Xian a, Zheng-Fang Tian b,*
PMCID: PMC2959589  PMID: 21580883

Abstract

In the crystal structure of the title compound, (C12H11Cl2N2)2[Ni(C4N2S2)2], the NiII complex dianion is located on an inversion centre. The NiII atom is coordinated by four S atoms in a square-planar geometry. In the cation, the dihedral angle between the benzene and pyrazine rings is 85.2 (2)°.

Related literature

For general background, see: Ni et al. (2005); Nishijo et al. (2000); Robertson & Cronin (2002). For related structures, see: Ni et al. (2004); Ren et al. (2004).graphic file with name e-64-m1444-scheme1.jpg

Experimental

Crystal data

  • (C12H11Cl2N2)2[Ni(C4N2S2)2]

  • M r = 847.33

  • Monoclinic, Inline graphic

  • a = 9.081 (2) Å

  • b = 20.238 (5) Å

  • c = 10.489 (2) Å

  • β = 111.243 (4)°

  • V = 1796.6 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.732, T max = 0.809

  • 8822 measured reflections

  • 3159 independent reflections

  • 2170 reflections with I > 2σ(I)

  • R int = 0.086

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.114

  • S = 0.96

  • 3159 reflections

  • 224 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808034776/is2350sup1.cif

e-64-m1444-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034776/is2350Isup2.hkl

e-64-m1444-Isup2.hkl (155KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Science and Technology Department of Jiangsu Province, P. R. China and the Natural Science Foundation of China for financial support (grant No. 10774076).

supplementary crystallographic information

Comment

Molecular solids based on transition metal dithiolene complexes have attracted intense interest in recent years, not only owing to the fundamental research of magnetic interactions and magneto-structural correlations but also to the development of new functional molecule-based materials (Robertson & Cronin, 2002). Much work has been performed in molecular solids based on M[dithiolene]2 complexes owing to their application as building blocks in molecular-based materials showing magnetic, superconducting and optical properties (Nishijo et al., 2000; Ni et al., 2005). Herein, we report the crystal structure of the title compound, (I).

The molecular structure of (I) is illustrated in Fig. 1. Compound (I) crystallizes in monoclinic system, with one half [Ni(mnt)2]2- dianion and one 1-(2,6-dichlorobenzyl)-3-methylpyrazine cation in an asymmetric unit. The anion [Ni(mnt)2]2- possesses an approximated planar geometry and most of the bond lengths and angles are in good agreement with the various [Ni(mnt)2]2- compounds (Ni et al., 2004; Ren et al., 2004).

Experimental

Disodium maleonitriledithiolate (456 mg, 2.5 mmol) and nickel chloride hexahydrate (297 mg, 1.25 mmol) were mixed under stirring in water (20 mL) at room temperature. Subsequently, a solution of 1-(2,6-dichlorobenzyl)-3-methylpyrazine iodide (952 mg, 2.5 mmol) in methanol (10 mL) was added to the mixture. The black precipitate that was immediately formed was filtered off and washed with methanol. The crude product was recrystallized in acetone (20 mL) to give black block crystals. Anal. Calcd. for C32H22Cl4N8NiS4: C 48.73, H 2.81, N 14.21%. Found: C 48.69, H 2.78, N 14.09%.

Refinement

The H atoms were placed in geometrically idealized positions (C—H = 0.93–0.97 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level. The suffix A corresponds to symmetry code (-x, -y+1, -z).

Crystal data

(C12H11Cl2N2)2[Ni(C4N2S2)2] F(000) = 860
Mr = 847.33 Dx = 1.566 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 773 reflections
a = 9.081 (2) Å θ = 2.6–21.2°
b = 20.238 (5) Å µ = 1.11 mm1
c = 10.489 (2) Å T = 298 K
β = 111.243 (4)° Block, black
V = 1796.6 (7) Å3 0.30 × 0.20 × 0.20 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 3159 independent reflections
Radiation source: fine-focus sealed tube 2170 reflections with I > 2σ(I)
graphite Rint = 0.086
φ and ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −10→6
Tmin = 0.732, Tmax = 0.809 k = −24→23
8822 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0362P)2] where P = (Fo2 + 2Fc2)/3
3159 reflections (Δ/σ)max = 0.001
224 parameters Δρmax = 0.51 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.0000 0.5000 0.0000 0.0410 (2)
C1 0.1965 (5) 0.45625 (18) −0.1702 (4) 0.0434 (10)
C2 0.3109 (6) 0.45822 (19) −0.2353 (5) 0.0475 (11)
C3 −0.0857 (5) 0.59184 (19) 0.1944 (4) 0.0445 (11)
C4 −0.0777 (5) 0.6476 (2) 0.2820 (5) 0.0489 (11)
C5 0.5497 (5) 0.67689 (19) 0.7483 (4) 0.0418 (10)
C6 0.4392 (5) 0.6850 (2) 0.6168 (5) 0.0508 (11)
C7 0.3690 (6) 0.7445 (3) 0.5682 (5) 0.0676 (14)
H7 0.2936 0.7477 0.4804 0.081*
C8 0.4110 (6) 0.7986 (2) 0.6501 (6) 0.0735 (16)
H8 0.3661 0.8394 0.6172 0.088*
C9 0.5185 (6) 0.7936 (2) 0.7801 (6) 0.0675 (14)
H9 0.5465 0.8309 0.8356 0.081*
C10 0.5857 (5) 0.7331 (2) 0.8293 (5) 0.0505 (12)
C11 0.6274 (5) 0.61171 (19) 0.7983 (4) 0.0486 (11)
H11A 0.6794 0.6130 0.8970 0.058*
H11B 0.5479 0.5772 0.7759 0.058*
C12 0.7394 (5) 0.53854 (19) 0.6677 (5) 0.0512 (12)
H12 0.6629 0.5071 0.6629 0.061*
C13 0.8486 (6) 0.5274 (2) 0.6073 (4) 0.0524 (12)
H13 0.8429 0.4881 0.5597 0.063*
C14 0.9720 (5) 0.6256 (2) 0.6865 (4) 0.0448 (10)
C15 0.8622 (5) 0.63866 (18) 0.7459 (4) 0.0408 (10)
H15 0.8696 0.6776 0.7949 0.049*
C16 1.1035 (5) 0.6723 (2) 0.7000 (5) 0.0666 (14)
H16A 1.2027 0.6502 0.7430 0.100*
H16B 1.0971 0.7094 0.7547 0.100*
H16C 1.0953 0.6874 0.6109 0.100*
Cl1 0.38504 (16) 0.61665 (7) 0.50983 (14) 0.0775 (4)
Cl2 0.71852 (16) 0.72925 (6) 0.99706 (13) 0.0719 (4)
N1 0.4021 (5) 0.46159 (18) −0.2871 (4) 0.0651 (12)
N2 −0.0664 (5) 0.69443 (19) 0.3446 (4) 0.0688 (12)
N3 0.7460 (4) 0.59632 (15) 0.7340 (3) 0.0415 (9)
N4 0.9619 (4) 0.57012 (18) 0.6139 (4) 0.0535 (10)
S1 0.20391 (14) 0.51963 (5) −0.05585 (12) 0.0484 (3)
S2 0.05266 (14) 0.59091 (5) 0.11563 (12) 0.0532 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0481 (5) 0.0298 (4) 0.0442 (5) 0.0004 (3) 0.0155 (4) −0.0004 (3)
C1 0.053 (3) 0.030 (2) 0.048 (3) 0.002 (2) 0.018 (2) 0.0027 (18)
C2 0.058 (3) 0.031 (2) 0.054 (3) −0.002 (2) 0.021 (3) 0.000 (2)
C3 0.054 (3) 0.034 (2) 0.047 (3) 0.005 (2) 0.020 (2) −0.0004 (19)
C4 0.056 (3) 0.037 (3) 0.056 (3) 0.001 (2) 0.024 (2) 0.002 (2)
C5 0.040 (3) 0.036 (2) 0.057 (3) −0.0008 (18) 0.027 (2) 0.006 (2)
C6 0.042 (3) 0.050 (3) 0.066 (3) −0.005 (2) 0.027 (2) 0.005 (2)
C7 0.049 (3) 0.075 (4) 0.077 (4) 0.015 (3) 0.021 (3) 0.031 (3)
C8 0.075 (4) 0.045 (3) 0.113 (5) 0.025 (3) 0.049 (4) 0.021 (3)
C9 0.079 (4) 0.044 (3) 0.098 (4) 0.008 (3) 0.053 (3) 0.001 (3)
C10 0.051 (3) 0.045 (3) 0.066 (3) 0.005 (2) 0.034 (2) 0.005 (2)
C11 0.055 (3) 0.043 (2) 0.057 (3) −0.001 (2) 0.031 (2) 0.005 (2)
C12 0.052 (3) 0.033 (2) 0.066 (3) 0.000 (2) 0.019 (2) 0.003 (2)
C13 0.059 (3) 0.041 (3) 0.054 (3) 0.005 (2) 0.016 (2) −0.004 (2)
C14 0.042 (3) 0.046 (3) 0.046 (3) 0.001 (2) 0.015 (2) 0.003 (2)
C15 0.044 (3) 0.029 (2) 0.047 (3) −0.0017 (19) 0.014 (2) 0.0026 (18)
C16 0.056 (3) 0.059 (3) 0.089 (4) −0.011 (2) 0.032 (3) −0.007 (3)
Cl1 0.0753 (10) 0.0753 (9) 0.0747 (10) −0.0217 (7) 0.0185 (7) −0.0094 (7)
Cl2 0.0806 (10) 0.0729 (9) 0.0635 (9) −0.0026 (7) 0.0276 (7) −0.0100 (6)
N1 0.070 (3) 0.052 (3) 0.083 (3) −0.004 (2) 0.040 (3) −0.001 (2)
N2 0.091 (3) 0.045 (2) 0.076 (3) −0.004 (2) 0.036 (2) −0.017 (2)
N3 0.046 (2) 0.0282 (19) 0.049 (2) 0.0030 (15) 0.0164 (17) 0.0058 (15)
N4 0.053 (3) 0.054 (2) 0.053 (2) 0.0067 (19) 0.0196 (19) −0.0017 (19)
S1 0.0551 (8) 0.0365 (6) 0.0549 (8) −0.0057 (5) 0.0214 (6) −0.0049 (5)
S2 0.0621 (8) 0.0388 (6) 0.0658 (8) −0.0115 (5) 0.0316 (6) −0.0107 (5)

Geometric parameters (Å, °)

Ni1—S2 2.1596 (11) C8—H8 0.9300
Ni1—S2i 2.1596 (11) C9—C10 1.382 (6)
Ni1—S1i 2.1715 (12) C9—H9 0.9300
Ni1—S1 2.1715 (12) C10—Cl2 1.737 (5)
C1—C3i 1.356 (5) C11—N3 1.496 (5)
C1—C2 1.436 (6) C11—H11A 0.9700
C1—S1 1.741 (4) C11—H11B 0.9700
C2—N1 1.145 (5) C12—N3 1.351 (5)
C3—C1i 1.356 (5) C12—C13 1.375 (6)
C3—C4 1.441 (6) C12—H12 0.9300
C3—S2 1.736 (4) C13—N4 1.326 (5)
C4—N2 1.136 (5) C13—H13 0.9300
C5—C10 1.387 (5) C14—N4 1.341 (5)
C5—C6 1.391 (6) C14—C15 1.379 (5)
C5—C11 1.498 (5) C14—C16 1.489 (6)
C6—C7 1.370 (6) C15—N3 1.330 (5)
C6—Cl1 1.737 (4) C15—H15 0.9300
C7—C8 1.358 (7) C16—H16A 0.9600
C7—H7 0.9300 C16—H16B 0.9600
C8—C9 1.363 (7) C16—H16C 0.9600
S2—Ni1—S2i 180.00 (3) C5—C10—Cl2 120.4 (3)
S2—Ni1—S1i 92.37 (4) N3—C11—C5 110.5 (3)
S2i—Ni1—S1i 87.63 (4) N3—C11—H11A 109.6
S2—Ni1—S1 87.63 (4) C5—C11—H11A 109.6
S2i—Ni1—S1 92.37 (4) N3—C11—H11B 109.6
S1i—Ni1—S1 180.0 C5—C11—H11B 109.6
C3i—C1—C2 123.1 (4) H11A—C11—H11B 108.1
C3i—C1—S1 119.9 (3) N3—C12—C13 118.3 (4)
C2—C1—S1 117.0 (3) N3—C12—H12 120.8
N1—C2—C1 178.2 (4) C13—C12—H12 120.8
C1i—C3—C4 123.0 (4) N4—C13—C12 122.9 (4)
C1i—C3—S2 121.3 (3) N4—C13—H13 118.5
C4—C3—S2 115.7 (3) C12—C13—H13 118.5
N2—C4—C3 174.5 (5) N4—C14—C15 120.4 (4)
C10—C5—C6 115.8 (4) N4—C14—C16 118.2 (4)
C10—C5—C11 122.1 (4) C15—C14—C16 121.4 (4)
C6—C5—C11 122.1 (4) N3—C15—C14 120.9 (4)
C7—C6—C5 123.0 (4) N3—C15—H15 119.6
C7—C6—Cl1 118.3 (4) C14—C15—H15 119.6
C5—C6—Cl1 118.7 (3) C14—C16—H16A 109.5
C8—C7—C6 119.1 (5) C14—C16—H16B 109.5
C8—C7—H7 120.5 H16A—C16—H16B 109.5
C6—C7—H7 120.5 C14—C16—H16C 109.5
C7—C8—C9 120.6 (5) H16A—C16—H16C 109.5
C7—C8—H8 119.7 H16B—C16—H16C 109.5
C9—C8—H8 119.7 C15—N3—C12 119.4 (4)
C8—C9—C10 119.9 (5) C15—N3—C11 120.0 (3)
C8—C9—H9 120.0 C12—N3—C11 120.5 (3)
C10—C9—H9 120.0 C13—N4—C14 117.9 (4)
C9—C10—C5 121.6 (4) C1—S1—Ni1 103.14 (15)
C9—C10—Cl2 118.0 (4) C3—S2—Ni1 103.02 (14)
C10—C5—C6—C7 0.1 (6) C16—C14—C15—N3 −179.5 (4)
C11—C5—C6—C7 −178.7 (4) C14—C15—N3—C12 2.8 (6)
C10—C5—C6—Cl1 −178.9 (3) C14—C15—N3—C11 −179.5 (4)
C11—C5—C6—Cl1 2.3 (5) C13—C12—N3—C15 −3.9 (6)
C5—C6—C7—C8 1.6 (7) C13—C12—N3—C11 178.4 (4)
Cl1—C6—C7—C8 −179.4 (4) C5—C11—N3—C15 56.1 (5)
C6—C7—C8—C9 −1.7 (8) C5—C11—N3—C12 −126.2 (4)
C7—C8—C9—C10 0.1 (8) C12—C13—N4—C14 2.1 (6)
C8—C9—C10—C5 1.7 (7) C15—C14—N4—C13 −3.3 (6)
C8—C9—C10—Cl2 −178.5 (4) C16—C14—N4—C13 177.1 (4)
C6—C5—C10—C9 −1.7 (6) C3i—C1—S1—Ni1 −4.5 (4)
C11—C5—C10—C9 177.1 (4) C2—C1—S1—Ni1 175.2 (3)
C6—C5—C10—Cl2 178.5 (3) S2—Ni1—S1—C1 −175.14 (14)
C11—C5—C10—Cl2 −2.7 (5) S2i—Ni1—S1—C1 4.86 (14)
C10—C5—C11—N3 −105.5 (4) C1i—C3—S2—Ni1 −2.9 (4)
C6—C5—C11—N3 73.2 (5) C4—C3—S2—Ni1 179.2 (3)
N3—C12—C13—N4 1.5 (6) S1i—Ni1—S2—C3 4.39 (15)
N4—C14—C15—N3 0.9 (6) S1—Ni1—S2—C3 −175.61 (15)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2350).

References

  1. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Ni, C.-L., Dang, D.-B. & Song, Y. (2004). Chem. Phys. Lett.396, 353–358.
  3. Ni, Z.-P., Ren, X.-M. & Ma, J. (2005). J. Am. Chem. Soc.127, 14330–14338. [DOI] [PubMed]
  4. Nishijo, J., Ogura, E., Yamaura, J. & Miyazaki, A. (2000). Solid State Commun.116, 661–664.
  5. Ren, X.-M., Okudera, H., Kremer, R. K., Song, Y, He, C., Meng, Q. J. & Wu, P. H. (2004). Inorg. Chem.43, 2569–2576. [DOI] [PubMed]
  6. Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev.227, 93–127.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808034776/is2350sup1.cif

e-64-m1444-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034776/is2350Isup2.hkl

e-64-m1444-Isup2.hkl (155KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES