Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 9;64(Pt 11):o2084. doi: 10.1107/S1600536808031383

2-Bromo-4-chloro-6-[(1-phenyl­ethyl)­imino­meth­yl]phenol

Xinli Zhang a,*
PMCID: PMC2959591  PMID: 21580949

Abstract

The title compound, C15H13BrClNO, is a Schiff base derived from the condensation of equimolar quanti­ties of 3-bromo-5-chloro­salicylaldehyde and 1-phenyl­ethanamine. The structure displays a trans configuration with respect to the imine C=N double bond. The N atom is also involved in an intra­molecular O—H—N hydrogen bond, which stabilizes the configuration of the compound.

Related literature

Schiff base ligands have demonstrated significant biological activities and new examples are being tested for their antimicrobial activity (Ali et al., 2002; Cukurovali et al., 2002) and antiviral activity (Tarafder et al., 2002).graphic file with name e-64-o2084-scheme1.jpg

Experimental

Crystal data

  • C15H13BrClNO

  • M r = 338.62

  • Monoclinic, Inline graphic

  • a = 21.764 (2) Å

  • b = 9.5088 (13) Å

  • c = 15.3591 (16) Å

  • β = 113.426 (2)°

  • V = 2916.6 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.99 mm−1

  • T = 298 (2) K

  • 0.36 × 0.22 × 0.19 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.412, T max = 0.600 (expected range = 0.389–0.566)

  • 7192 measured reflections

  • 2574 independent reflections

  • 1377 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.108

  • S = 1.00

  • 2574 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031383/gw2049sup1.cif

e-64-o2084-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031383/gw2049Isup2.hkl

e-64-o2084-Isup2.hkl (126.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.87 2.591 (4) 147

Acknowledgments

The author is grateful for a research grant (No. 08JZ09) supported by the Phytochemistry Key Laboratory of Shaanxi province.

supplementary crystallographic information

Comment

In recent years, the role of Schiff base and its derivatives in biological processes have become a topic of study. Schiff base ligands have demonstrated significant biological activities and new examples are being tested for their antitumor, antimicrobial and antiviral activities (Tarafder et al., 2002; Cukurovali et al., 2002; Ali et al., 2002). These properties stimulated our interest in this field. Crystals of the title compound, (I), were obtained as a new Schiff base compound. The title compound (I) is an 3-bromine-5-chloro-salicylaldehyde derivative. All bond lengths and bond angles are in the normal ranges and comparable to those observed in a similar salicylaldehyde Schiff base. its molecular Structure and a Crystal packing are illusrated in Figs. 1 and 2, respectively. The C1═N1 bond length of 1.257 (5) Å conforms to the value for a double bond. The torsional angles of C8—N1–2 and N1—C1—C2—C7 are 176.5 (4)° and -175.6 (4)°, respectively. Atom O1 deviates from the benzene mean plane by 0.026 (3)°, whereas atoms Br and Cl by 0.072 (4)° and 0.047 (4)°, respectively. The molecular structure adopts a trans configuration about the C1═N1 bond. In the molecule, there exists a intramolecular O—H—N hydrogen bond involving hydroxy atom O1 and imine atom N1 (Table 1). Furthermore, a more interesting phenomenon observed is shown in Fig. 2. Pairs of phen ligands from neighbouring complexes are interleaved to form a pi–pi stacking along the c axis. The distance between two phen ring Centroids are 3.744 (3) Å indicating significant pi–pi stacking packing interactions. The structure of (I) is thus stabilized by the hydrogen-bond system and aromatic-ring stacking interactions.

Experimental

3-bromine-5-Chlorosalicylaldehyde (0.1 mmol, 23.55 mg) and 1-phenylethanamine (0.1 mmol, 12.1 mg) were dissolved in methanol (10 ml). The mixture was stirred for 30 min at room temperature to give a clear brown solution. After allowing the resulting solution to stand in air for 7 d, yellow block-shaped crystals of (I) were formed on slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield 54%). Analysis found: C 46.32%, H 3.35%, calculated for C15H13BrClNO: C 46.33%, H 3.35%.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.97 Å and Uiso(H) = 1.2Ueq or 1.5Ueq(C/O)

Figures

Fig. 1.

Fig. 1.

The structure of the title compound in 30% probability ellipsoids. H atoms are shown as spheres of arbitrary radii. The dotted line represent a hydrogen bond.

Fig. 2.

Fig. 2.

The molecular packing of (I) viewed along the b axis.

Crystal data

C15H13BrClNO F(000) = 1360
Mr = 338.62 Dx = 1.542 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 21.764 (2) Å Cell parameters from 1447 reflections
b = 9.5088 (13) Å θ = 2.4–21.8°
c = 15.3591 (16) Å µ = 2.99 mm1
β = 113.426 (2)° T = 298 K
V = 2916.6 (6) Å3 Block, yellow
Z = 8 0.36 × 0.22 × 0.19 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2574 independent reflections
Radiation source: fine-focus sealed tube 1377 reflections with I > 2σ(I)
graphite Rint = 0.038
φ and ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −25→25
Tmin = 0.412, Tmax = 0.600 k = −9→11
7192 measured reflections l = −17→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0381P)2 + 4.3819P] where P = (Fo2 + 2Fc2)/3
2574 reflections (Δ/σ)max = 0.002
172 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 1.16005 (2) 0.40337 (6) 0.56363 (4) 0.0873 (3)
Cl1 1.03028 (8) 0.89286 (15) 0.39942 (12) 0.1095 (6)
N1 0.91088 (17) 0.2822 (5) 0.2946 (2) 0.0644 (11)
O1 1.03226 (14) 0.2790 (3) 0.4226 (2) 0.0702 (9)
H1 0.9971 0.2461 0.3842 0.105*
C1 0.9157 (2) 0.4134 (6) 0.2895 (3) 0.0638 (13)
H1A 0.8799 0.4629 0.2457 0.077*
C2 0.9755 (2) 0.4910 (5) 0.3496 (3) 0.0554 (12)
C3 1.0310 (2) 0.4192 (5) 0.4141 (3) 0.0526 (11)
C4 1.08586 (19) 0.4972 (5) 0.4726 (3) 0.0545 (11)
C5 1.0864 (2) 0.6413 (5) 0.4677 (3) 0.0583 (12)
H5 1.1236 0.6919 0.5071 0.070*
C6 1.0313 (2) 0.7100 (5) 0.4038 (3) 0.0646 (13)
C7 0.9767 (2) 0.6361 (5) 0.3458 (3) 0.0662 (13)
H7 0.9397 0.6840 0.3031 0.079*
C8 0.8465 (2) 0.2157 (5) 0.2340 (3) 0.0716 (15)
H8 0.8179 0.2867 0.1903 0.086*
C9 0.8613 (3) 0.1015 (6) 0.1769 (4) 0.101 (2)
H9A 0.8795 0.1429 0.1352 0.151*
H9B 0.8208 0.0522 0.1401 0.151*
H9C 0.8932 0.0369 0.2191 0.151*
C10 0.8132 (2) 0.1667 (5) 0.2970 (3) 0.0535 (12)
C11 0.7589 (3) 0.2392 (6) 0.2985 (3) 0.0720 (14)
H11 0.7422 0.3159 0.2585 0.086*
C12 0.7289 (3) 0.1996 (8) 0.3585 (5) 0.0954 (19)
H12 0.6926 0.2505 0.3592 0.114*
C13 0.7519 (4) 0.0872 (8) 0.4165 (4) 0.096 (2)
H13 0.7311 0.0603 0.4562 0.115*
C14 0.8051 (4) 0.0142 (6) 0.4165 (4) 0.0885 (18)
H14 0.8213 −0.0624 0.4569 0.106*
C15 0.8358 (3) 0.0533 (6) 0.3563 (4) 0.0729 (14)
H15 0.8721 0.0019 0.3562 0.088*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0491 (3) 0.0926 (4) 0.1028 (5) 0.0052 (3) 0.0120 (3) 0.0109 (3)
Cl1 0.0987 (11) 0.0682 (9) 0.1278 (14) −0.0118 (8) 0.0094 (9) 0.0236 (9)
N1 0.060 (2) 0.077 (3) 0.054 (2) −0.018 (2) 0.0212 (19) −0.011 (2)
O1 0.0555 (19) 0.068 (2) 0.084 (2) −0.0020 (16) 0.0243 (17) −0.0038 (18)
C1 0.054 (3) 0.087 (4) 0.047 (3) −0.008 (3) 0.016 (2) 0.003 (3)
C2 0.048 (3) 0.080 (4) 0.040 (3) −0.007 (2) 0.020 (2) 0.000 (2)
C3 0.056 (3) 0.060 (3) 0.056 (3) −0.005 (3) 0.037 (2) −0.004 (2)
C4 0.042 (2) 0.070 (3) 0.055 (3) −0.001 (2) 0.023 (2) 0.001 (2)
C5 0.052 (3) 0.073 (3) 0.052 (3) −0.016 (2) 0.023 (2) −0.003 (2)
C6 0.063 (3) 0.069 (3) 0.059 (3) −0.014 (3) 0.020 (3) 0.006 (3)
C7 0.061 (3) 0.077 (4) 0.056 (3) 0.002 (3) 0.018 (2) 0.015 (3)
C8 0.062 (3) 0.092 (4) 0.052 (3) −0.021 (3) 0.012 (3) −0.005 (3)
C9 0.096 (4) 0.142 (5) 0.079 (4) −0.043 (4) 0.050 (3) −0.052 (4)
C10 0.051 (3) 0.064 (3) 0.038 (2) −0.012 (2) 0.010 (2) −0.006 (2)
C11 0.064 (3) 0.077 (4) 0.061 (3) −0.006 (3) 0.010 (3) −0.004 (3)
C12 0.067 (4) 0.120 (6) 0.100 (5) −0.015 (4) 0.035 (4) −0.037 (4)
C13 0.108 (5) 0.113 (6) 0.076 (4) −0.046 (5) 0.047 (4) −0.023 (4)
C14 0.126 (5) 0.066 (4) 0.060 (4) −0.021 (4) 0.023 (4) −0.003 (3)
C15 0.078 (3) 0.078 (4) 0.060 (3) −0.002 (3) 0.024 (3) −0.009 (3)

Geometric parameters (Å, °)

Br1—C4 1.888 (4) C8—C9 1.510 (7)
Cl1—C6 1.740 (5) C8—H8 0.9800
N1—C1 1.257 (5) C9—H9A 0.9600
N1—C8 1.481 (5) C9—H9B 0.9600
O1—C3 1.339 (5) C9—H9C 0.9600
O1—H1 0.8200 C10—C15 1.371 (6)
C1—C2 1.462 (6) C10—C11 1.377 (6)
C1—H1A 0.9300 C11—C12 1.375 (7)
C2—C7 1.382 (6) C11—H11 0.9300
C2—C3 1.398 (6) C12—C13 1.354 (8)
C3—C4 1.389 (5) C12—H12 0.9300
C4—C5 1.372 (6) C13—C14 1.350 (8)
C5—C6 1.376 (6) C13—H13 0.9300
C5—H5 0.9300 C14—C15 1.390 (8)
C6—C7 1.363 (6) C14—H14 0.9300
C7—H7 0.9300 C15—H15 0.9300
C8—C10 1.494 (6)
C1—N1—C8 117.8 (4) C10—C8—H8 108.7
C3—O1—H1 109.5 C9—C8—H8 108.7
N1—C1—C2 122.5 (4) C8—C9—H9A 109.5
N1—C1—H1A 118.7 C8—C9—H9B 109.5
C2—C1—H1A 118.7 H9A—C9—H9B 109.5
C7—C2—C3 119.5 (4) C8—C9—H9C 109.5
C7—C2—C1 120.3 (4) H9A—C9—H9C 109.5
C3—C2—C1 120.2 (4) H9B—C9—H9C 109.5
O1—C3—C4 119.3 (4) C15—C10—C11 117.8 (5)
O1—C3—C2 122.3 (4) C15—C10—C8 122.5 (5)
C4—C3—C2 118.4 (4) C11—C10—C8 119.7 (5)
C5—C4—C3 121.4 (4) C12—C11—C10 120.9 (5)
C5—C4—Br1 119.3 (3) C12—C11—H11 119.5
C3—C4—Br1 119.3 (4) C10—C11—H11 119.5
C4—C5—C6 119.3 (4) C13—C12—C11 120.4 (6)
C4—C5—H5 120.4 C13—C12—H12 119.8
C6—C5—H5 120.4 C11—C12—H12 119.8
C7—C6—C5 120.5 (4) C14—C13—C12 119.9 (6)
C7—C6—Cl1 119.7 (4) C14—C13—H13 120.0
C5—C6—Cl1 119.7 (4) C12—C13—H13 120.0
C6—C7—C2 120.9 (4) C13—C14—C15 120.1 (6)
C6—C7—H7 119.6 C13—C14—H14 120.0
C2—C7—H7 119.6 C15—C14—H14 120.0
N1—C8—C10 107.9 (3) C10—C15—C14 120.8 (5)
N1—C8—C9 107.7 (4) C10—C15—H15 119.6
C10—C8—C9 115.0 (4) C14—C15—H15 119.6
N1—C8—H8 108.7
C8—N1—C1—C2 176.5 (4) C3—C2—C7—C6 0.3 (7)
N1—C1—C2—C7 −175.6 (4) C1—C2—C7—C6 177.8 (4)
N1—C1—C2—C3 1.9 (7) C1—N1—C8—C10 −109.5 (5)
C7—C2—C3—O1 178.5 (4) C1—N1—C8—C9 125.8 (5)
C1—C2—C3—O1 1.0 (6) N1—C8—C10—C15 −72.1 (6)
C7—C2—C3—C4 0.0 (6) C9—C8—C10—C15 48.1 (6)
C1—C2—C3—C4 −177.6 (4) N1—C8—C10—C11 106.0 (5)
O1—C3—C4—C5 −178.8 (4) C9—C8—C10—C11 −133.8 (5)
C2—C3—C4—C5 −0.3 (6) C15—C10—C11—C12 0.7 (7)
O1—C3—C4—Br1 −1.0 (5) C8—C10—C11—C12 −177.5 (4)
C2—C3—C4—Br1 177.6 (3) C10—C11—C12—C13 −0.8 (8)
C3—C4—C5—C6 0.3 (7) C11—C12—C13—C14 0.8 (8)
Br1—C4—C5—C6 −177.5 (3) C12—C13—C14—C15 −0.8 (8)
C4—C5—C6—C7 −0.1 (7) C11—C10—C15—C14 −0.7 (7)
C4—C5—C6—Cl1 178.0 (3) C8—C10—C15—C14 177.5 (4)
C5—C6—C7—C2 −0.2 (7) C13—C14—C15—C10 0.7 (8)
Cl1—C6—C7—C2 −178.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···N1 0.82 1.87 2.591 (4) 147

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2049).

References

  1. Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H. & Keat, T. B. (2002). J. Inorg. Biochem.92, 141–148. [DOI] [PubMed]
  2. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cukurovali, A., Yilmaz, I., Ozmen, H. & Ahmedzade, M. (2002). Transition Met. Chem.27, 171–176.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547–2554.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031383/gw2049sup1.cif

e-64-o2084-sup1.cif (16.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031383/gw2049Isup2.hkl

e-64-o2084-Isup2.hkl (126.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES