Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 18;64(Pt 11):m1435. doi: 10.1107/S1600536808033151

{N,N′-Bis[1-(2-pyrid­yl)ethyl­idene]ethane-1,2-diamine-κ4 N,N′,N′′,N′′′}bis­(trifluoro­methane­sulfanato-κO)copper(II)

Simon J Coles a,*, Abdurrahman Sengul b,, Ozgur Kurt b, Safinaz Altin b
PMCID: PMC2959593  PMID: 21580878

Abstract

A discrete neutral CuII complex, [Cu(CF3SO3)2(C16H18N4)], has been derived from the symmetrical tetra­dentate Schiff base, N,N′-bis­[1-(pyridin-2-yl)ethyl­idene]ethane-1,2-diamine. The copper centre assumes a tetra­gonally distorted pseudo-octa­hedral geometry with the O atoms of two trifluoro­methane­sulfonate anions coordinated weakly in the axial positions. The Cu—N distances lie in the range 1.941 (3)–2.011 (3) Å and the Cu—O distances are 2.474 (3) and 2.564 (3) Å.

Related literature

For general background, see: Gourbatsis et al. (1999); Hamblin et al. (2002); Menteş et al. (2007); Szklarzewicz & Samotus (2002). For related synthesis, see: Hanack et al. (1988); Luo et al. (1993); Marks (1990). For related structural characteristics, see: Bowyer et al. (1998); Gourbatsis et al. (1998); Cremer & Pople (1975); Fielden et al. (2006); Haynes et al. (1988); Şengül & Büyükgüngör (2005).graphic file with name e-64-m1435-scheme1.jpg

Experimental

Crystal data

  • [Cu(CF3SO3)2(C16H18N4)]

  • M r = 628.02

  • Monoclinic, Inline graphic

  • a = 9.2228 (4) Å

  • b = 25.5574 (13) Å

  • c = 9.8189 (5) Å

  • β = 94.961 (3)°

  • V = 2305.75 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 120 (2) K

  • 0.35 × 0.2 × 0.06 mm

Data collection

  • Bruker Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.78, T max = 0.93

  • 18769 measured reflections

  • 5052 independent reflections

  • 4062 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.118

  • S = 1.09

  • 5052 reflections

  • 334 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO and COLLECT (Nonius, 1998); data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808033151/bg2203sup1.cif

e-64-m1435-sup1.cif (24.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033151/bg2203Isup2.hkl

e-64-m1435-Isup2.hkl (243.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the reserach project fund of Zonguldak Karaelmas University (grant Nos. 2007/2-13-02-12 and 2007/2-13-02-10) and the UK Engineering and Physical Sciences Research Council.

supplementary crystallographic information

Comment

Recently, the coordination chemistry of di-Schiff bases derived from 2-pyridyl ketones or aldehydes has generated a great deal of interest (Hamblin et al., 2002; Gourbatsis et al., 1998; Szklarzewicz & Samotus, 2002; Mentes et al., 2007). These studies have been mostly stimulated by an interest in modelling the enzyme, copper-zinc superoxide dismutase (SOD) (Luo et al., 1993) and also for the synthesis of metal containing polymers with interesting optical, magnetic and electrical properties (Hanack et al., 1988; Marks, 1990). It has also been found that such tetradentate Schiff base ligands may form complexes with different nuclearity according to the coordination preferences of the metal centre (Fielden et al., 2006).

Our interest in the ligand, L, (Scheme 2) was stimulated by the analogy between its donor set and that of the pyridylmethylketazine (L1) and 2-pyridinealdazine (L2) system which form triple-stranded helical complexes with the formula [M2(L)3]4+ (M = Co, Fe and Ni). The helical complexes were shown to undergo exchange reactions on standing to form mono-nuclear complexes [M(L)2]2+ in which the ligand twists to coordinate as tridentate with non-coordinated imine residue (Hamblin et al., 2002). Mononuclear species are favoured by coordination to octahedral metal centres whose equatorial sites are occupied by N4 donor set of the bis(axial) ligand, and their axial sites being occuppied by solvent molecules or counterions. In addition, dinuclear metal complexes are favoured by the four-coordinate tetrahedral metal centres whose ca 90° twist angle provides good geometric match for the bis(equatorial) ligand (Fielden et al., 2006).

Recently, the single-crystal X-ray analysis of L was reported (Mentes et al., 2007). The molecule adopts a centrosymmetric trans geometry and forms a dinuclear complex by reacting with Mo(CO)6. The reaction of L with ZnX2 (X = Cl or Br) in tetrahydrofuran yielded an octahedral complex [ZnX2(L)] (Gourbatsis et al., 1999), whereas by reacting with a silver(I) cation the double-stranded helical complex [Ag2(L)2][BF4]2 (Bowyer et al., 1998) is formed. The synthesis of copper(II) complex by using Cu(NO3)2.3H2O resulted in the tetragonally distorted octahedral complex, [Cu(L)(ONO2)(OH2)][NO3] (Gourbatsis et al., 1998).

Herein we present the synthesis and structure of the complex [Cu(L)(OTf)2], (where OTf = trifluoromethanesulfonate) with a molecular structure as illustrated in Scheme 1 and Figure 1. The crystal structure is composed of discrete neutral [Cu(L)(OTf)2] units. The copper ion exhibits an elongated tetragonal octahedral CuN4O2 cromophore with four nitrogen atoms from the ligand occupying the equatorial plane and two axial oxygen atoms from the trans-coordinated unidentate trifluoromethanesulfonate anions. The four equatorial Cu–N distances [Cu1–N1 2.008 (3) Å, Cu1–N4 2.011 (3) Å, Cu1–N2 1.950 (2) Å, and Cu1–N3 1.944 (2) Å] are normal for this class of compounds and also very similar to those of Cu1–Npyridine 2.002 (4) and 2.022 (4) Å, and Cu1–Nimine 1.943 (4) and 1.938 (4) Å as found in [Cu(L)(ONO2)(OH2)][NO3] (Gourbatsis et al., 1998). The bond lengths to the imine N atoms are slightly shorter than those to the pyridine N atoms (Table 1), which is presumably a consequence of the more effective σ donation or π back donation (Hamblin et al., 2002). The coordination is of the 4 + 2 type and thus belongs to the myriad of examples of such Jahn-Teller elongated pseudo-octahedral structures (Şengül & Büyükgüngör, 2005).

The structure contains unidentate trifluoromethanesulfonate anions which are semi-coordinated to the copper ion [Cu1–O2 2.568 (3) Å and Cu1–O4 2.476 (4) Å] in the axial positions with the angle of O2–Cu1–O4 177.9 (4)°. The bonding parameters for the trifluoromethanesulfonate anions are similar to those found for [Cu(pyridine)4(CF3SO3)2] (Haynes et al., 1988). For example, the trifluoromethanesulfonate anions adopt a staggered-ethane configuration about the S–C bond and the O–S–O angles [O3–S1–O1 116.01 (15)°, O3–S1–O2 113.97 (14)°, O1–S1–O2 114.93 (15)°] are greater than the C–S–O angles [C17–S1–O3 103.25 (15)°, C17–S1–O1 103.00 (15)°, and C17–S1–O2 103.25 (15)°]. The S–O bond lengths are also very similar to those found in [Cu(pyridine)4(CF3SO3)2], the S1–O2 1.450 (2) and S2–O4 1.446 (2) Å bonds involving the O atoms bound to copper being longer than those involving the terminally bound oxygen atoms [S1–O1 1.442 (2), S1–O3 1.440 (2) Å and S2–O5 1.441 (2), S2–O6 1.440 (2) Å].

The bite angles around the copper ion [N2–Cu1–N3 83.2 (2), N1–Cu1–N2 81.9 (7), N3–Cu1–N4 81.6 (7)°] are very similar to those found in [Cu(L)(ONO2)(OH2)][NO3] with the corresponding angles of 83.2 (2), 80.6 (2) and 81.4 (2)°, respectively.

In the free ligand the pyridylimine units adopt a transoid configuration to minimize unfavourable electronic interactions between the lone pairs of pyridine nitrogen and imine nitrogen atoms. However, in the presence of a metal ion, the pyridine rings rotate by 180° with respect to the Aryl–C bond, positioning the two nitrogen atoms of each pyridylimine moiety on the same side of the ligand. Otherwise the geometric parameters in the free ligand are very similar to those of the coordinated moiety.

The pyridylimine units are not ideally planar due to a combined effect of the ring to the metal centre and a twist induced by the ethylene bridge [Cu1, N1, N2, C1>C6 and Cu1, N3, N4, C10, C12>C16 have devaitions from the mean plane of 0.088 (6) Å and 0.106 (6) Å for N2 and N3 respectively]. From puckering analysis (Cremer & Pople, 1975) the ring formed by the metal centre, the imine N atoms and the ethylene bridge has a Q value of 0.283 (3) Å and forms a twisted envelope conformation about the C8—C9 bond. This effect has the result of pushing the methyl groups out of the ring unit plane, with C7 deviating by 0.149 (5) Å and C11 by 0.167 (6) Å and accordingly the pyridylimine units are not coplanar, with the angle formed between these planes being 12.98 (9)°.

The crystal structure does not exhibit any classical hydrogen bonds and is primarily comprised of stacked undulating sheets formed by close packing and C—H···O interactions between the SO3 group and pyridylimine ring H atoms.

Experimental

The ligand, N,N'-bis-(1-pyridin-2-yl-ethylidene)-ethane-1,2-diamine (L) (0.213 g; 0.8 mmol) and Cu(CF3SO3)2 (0.297 g; 0.8 mmol) were dissolved in a minimum amount of methanol. The solution was stirred at room temperature for half an hour and filtered. The navy blue solution was poured into sample tubes and left for crystallization to yield very dark navy blue block crystals suitable for X-ray diffraction analysis. Anal. Calc.: C, 34.42; H, 2.89; N, 8.92. Found: C, 34.64; H, 3.07; N, 9.06%. ESI-MS (m/z) = 478.0 [Cu(L)(OTf)]+.

Refinement

All non H atoms were refined anisotropically. All hydrogen atoms were fixed in idealized positions [0.98 Å (CH3), 0.99 Å (CH2) & 0.95 Å (CH)] and refined using the riding model with Uiso(H) set to 1.2 or 1.5Ueq(carrier) for CH or CH2 and CH3 respectively. When including H atoms, methyl groups were allowed to rotate to enable matching with electron density maxima.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound (50% probability displacement ellipsoids).

Crystal data

[Cu(CF3SO3)2(C16H18N4)] F(000) = 1268
Mr = 628.02 Dx = 1.809 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 26348 reflections
a = 9.2228 (4) Å θ = 2.9–27.5°
b = 25.5574 (13) Å µ = 1.22 mm1
c = 9.8189 (5) Å T = 120 K
β = 94.961 (3)° Block, blue
V = 2305.75 (19) Å3 0.35 × 0.2 × 0.06 mm
Z = 4

Data collection

Bruker–Nonius KappaCCD area-detector diffractometer 4062 reflections with I > 2σ(I)
φ and ω scans Rint = 0.043
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) θmax = 27.5°, θmin = 3.0°
Tmin = 0.78, Tmax = 0.93 h = −11→11
18769 measured reflections k = −30→33
5052 independent reflections l = −12→12

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0383P)2 + 4.934P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118 (Δ/σ)max = 0.001
S = 1.09 Δρmax = 0.43 e Å3
5052 reflections Δρmin = −0.64 e Å3
334 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.36217 (4) 0.096617 (15) 0.13089 (4) 0.01732 (17)
S1 0.61344 (9) 0.13260 (3) −0.13780 (9) 0.0201 (2)
S2 0.11834 (9) 0.11566 (4) 0.40390 (9) 0.0216 (2)
F1 0.6938 (2) 0.20219 (8) 0.0510 (2) 0.0335 (5)
F2 0.8673 (2) 0.15164 (8) −0.0042 (2) 0.0339 (6)
F3 0.7879 (2) 0.21298 (8) −0.1408 (3) 0.0395 (6)
F4 −0.1392 (2) 0.14451 (8) 0.2941 (2) 0.0329 (5)
F5 −0.0500 (3) 0.19350 (10) 0.4589 (3) 0.0529 (8)
F6 0.0325 (2) 0.19887 (9) 0.2612 (3) 0.0451 (7)
O1 0.5026 (3) 0.16759 (10) −0.1968 (3) 0.0294 (6)
O2 0.5698 (3) 0.10044 (9) −0.0264 (3) 0.0246 (6)
O3 0.6956 (3) 0.10514 (10) −0.2337 (3) 0.0293 (6)
O4 0.1560 (3) 0.09377 (9) 0.2761 (3) 0.0260 (6)
O5 0.0389 (3) 0.08055 (11) 0.4852 (3) 0.0321 (6)
O6 0.2334 (3) 0.14490 (11) 0.4778 (3) 0.0349 (7)
N1 0.2386 (3) 0.05333 (10) −0.0051 (3) 0.0169 (6)
N2 0.2689 (3) 0.15379 (10) 0.0252 (3) 0.0188 (6)
N3 0.4497 (3) 0.15332 (10) 0.2410 (3) 0.0177 (6)
N4 0.4951 (3) 0.05365 (10) 0.2608 (3) 0.0164 (6)
C1 0.2187 (4) 0.00137 (13) −0.0122 (4) 0.0214 (7)
H1 0.2688 −0.0198 0.0531 0.026*
C2 0.1266 (4) −0.02194 (14) −0.1130 (4) 0.0252 (8)
H2 0.1149 −0.0581 −0.1155 0.030*
C3 0.0525 (4) 0.00934 (14) −0.2097 (4) 0.0278 (8)
H3 −0.0091 −0.0055 −0.2791 0.033*
C4 0.0702 (4) 0.06320 (14) −0.2027 (4) 0.0251 (8)
H4 0.0187 0.0848 −0.2659 0.030*
C5 0.1647 (4) 0.08421 (14) −0.1013 (4) 0.0184 (7)
C6 0.1917 (4) 0.14160 (13) −0.0857 (4) 0.0192 (7)
C7 0.1385 (4) 0.17828 (14) −0.1956 (4) 0.0261 (8)
H7A 0.1495 0.2136 −0.1630 0.039*
H7B 0.0376 0.1714 −0.2219 0.039*
H7C 0.1939 0.1736 −0.2731 0.039*
C8 0.3222 (4) 0.20639 (12) 0.0623 (4) 0.0214 (7)
H8A 0.2428 0.2314 0.0514 0.026*
H8B 0.3961 0.2169 0.0032 0.026*
C9 0.3872 (4) 0.20533 (12) 0.2131 (4) 0.0212 (7)
H9A 0.4619 0.2319 0.2281 0.025*
H9B 0.3117 0.2123 0.2736 0.025*
C10 0.5278 (4) 0.14069 (13) 0.3512 (4) 0.0197 (7)
C11 0.5756 (4) 0.17735 (13) 0.4637 (4) 0.0258 (8)
H11A 0.5662 0.2127 0.4311 0.039*
H11B 0.6755 0.1705 0.4944 0.039*
H11C 0.5161 0.1725 0.5382 0.039*
C12 0.5645 (3) 0.08382 (13) 0.3585 (3) 0.0177 (7)
C13 0.6640 (4) 0.06293 (14) 0.4569 (4) 0.0231 (8)
H13 0.7115 0.0843 0.5233 0.028*
C14 0.6917 (4) 0.00970 (14) 0.4551 (4) 0.0240 (8)
H14 0.7586 −0.0050 0.5205 0.029*
C15 0.6207 (3) −0.02138 (14) 0.3572 (4) 0.0228 (8)
H15 0.6378 −0.0572 0.3550 0.027*
C16 0.5222 (3) 0.00235 (13) 0.2610 (3) 0.0192 (7)
H16 0.4733 −0.0184 0.1940 0.023*
C17 0.7467 (4) 0.17719 (14) −0.0524 (4) 0.0258 (8)
C18 −0.0166 (4) 0.16582 (14) 0.3522 (4) 0.0298 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0212 (17) 0.0175 (14) 0.0241 (18) −0.0001 (12) 0.0006 (13) 0.0005 (12)
C2 0.0260 (18) 0.0214 (16) 0.0240 (19) 0.0052 (13) 0.0029 (15) 0.0050 (13)
C3 0.0282 (19) 0.0299 (18) 0.0200 (18) 0.0050 (14) −0.0055 (15) 0.0042 (14)
C4 0.0235 (17) 0.0281 (17) 0.0171 (17) 0.0001 (13) 0.0009 (13) −0.0007 (13)
C5 0.0176 (15) 0.0211 (15) 0.0154 (16) −0.0013 (12) 0.0071 (12) −0.0016 (12)
C6 0.0156 (15) 0.0198 (14) 0.0195 (17) −0.0030 (11) 0.0057 (13) −0.0021 (12)
C7 0.0258 (18) 0.0248 (16) 0.0249 (19) −0.0026 (13) −0.0012 (14) −0.0059 (14)
C8 0.0268 (17) 0.0133 (14) 0.0228 (18) −0.0011 (12) 0.0066 (14) −0.0020 (12)
C9 0.0260 (17) 0.0154 (14) 0.0215 (17) 0.0012 (12) 0.0065 (14) 0.0028 (12)
C10 0.0176 (15) 0.0203 (15) 0.0183 (17) 0.0041 (12) 0.0056 (13) 0.0032 (12)
C11 0.0283 (18) 0.0226 (16) 0.0243 (18) 0.0036 (13) 0.0018 (15) 0.0098 (13)
C12 0.0154 (15) 0.0214 (15) 0.0152 (16) 0.0029 (11) 0.0043 (12) 0.0026 (12)
C13 0.0182 (16) 0.0294 (17) 0.0184 (17) 0.0028 (13) 0.0014 (13) 0.0028 (13)
C14 0.0168 (16) 0.0322 (18) 0.0208 (18) −0.0048 (13) −0.0013 (13) −0.0027 (14)
C15 0.0178 (16) 0.0239 (16) 0.0255 (19) −0.0032 (12) 0.0050 (14) −0.0031 (13)
C16 0.0187 (16) 0.0192 (14) 0.0197 (17) 0.0005 (12) 0.0022 (13) 0.0009 (12)
C17 0.0249 (18) 0.0209 (15) 0.0288 (19) −0.0019 (13) 0.0041 (15) 0.0001 (13)
C18 0.0267 (19) 0.0265 (17) 0.032 (2) 0.0015 (14) 0.0002 (16) 0.0033 (15)
N1 0.0178 (13) 0.0165 (12) 0.0148 (13) 0.0004 (10) 0.0011 (10) 0.0012 (10)
N2 0.0195 (13) 0.0152 (12) 0.0180 (14) −0.0027 (10) 0.0041 (11) −0.0002 (10)
N3 0.0171 (13) 0.0151 (12) 0.0186 (14) 0.0015 (10) 0.0032 (11) 0.0033 (10)
N4 0.0165 (13) 0.0174 (12) 0.0150 (13) 0.0008 (9) 0.0025 (10) 0.0004 (10)
O1 0.0240 (13) 0.0339 (13) 0.0252 (14) −0.0048 (10) −0.0015 (10) −0.0036 (10)
O2 0.0260 (13) 0.0203 (11) 0.0262 (13) −0.0004 (9) 0.0064 (10) −0.0032 (9)
O3 0.0348 (14) 0.0297 (13) 0.0232 (13) −0.0033 (10) 0.0076 (11) 0.0051 (10)
O4 0.0273 (13) 0.0284 (12) 0.0222 (13) 0.0030 (10) 0.0085 (10) 0.0059 (10)
O5 0.0302 (14) 0.0403 (14) 0.0255 (14) −0.0047 (11) 0.0092 (11) −0.0109 (11)
O6 0.0221 (13) 0.0544 (17) 0.0248 (14) 0.0007 (12) −0.0011 (11) 0.0122 (12)
Cu1 0.0197 (2) 0.01299 (18) 0.0159 (2) −0.00029 (14) −0.00132 (15) 0.00080 (14)
S1 0.0213 (4) 0.0193 (4) 0.0172 (4) −0.0013 (3) 0.0030 (3) 0.0007 (3)
S2 0.0184 (4) 0.0262 (4) 0.0175 (4) −0.0022 (3) 0.0029 (3) −0.0002 (3)
F1 0.0366 (12) 0.0300 (11) 0.0326 (12) −0.0027 (9) 0.0002 (10) 0.0123 (9)
F2 0.0227 (11) 0.0352 (11) 0.0414 (13) −0.0044 (8) −0.0026 (10) 0.0015 (10)
F3 0.0382 (13) 0.0278 (11) 0.0511 (15) 0.0085 (9) 0.0084 (11) −0.0106 (10)
F4 0.0203 (10) 0.0385 (12) 0.0369 (13) 0.0027 (8) −0.0053 (9) −0.0064 (9)
F5 0.0430 (14) 0.0500 (14) 0.0597 (17) −0.0172 (11) −0.0004 (13) 0.0275 (13)
F6 0.0374 (13) 0.0294 (11) 0.0646 (17) 0.0069 (10) −0.0061 (12) −0.0200 (11)

Geometric parameters (Å, °)

Cu1—N3 1.941 (3) C2—C3 1.376 (5)
Cu1—N2 1.949 (3) C2—H2 0.9300
Cu1—N1 2.011 (3) C3—C4 1.387 (5)
Cu1—N4 2.016 (3) C3—H3 0.9300
Cu1—O4 2.474 (3) C4—C5 1.375 (5)
Cu1—O2 2.564 (3) C4—H4 0.9300
S1—O3 1.442 (3) C5—C6 1.494 (5)
S1—O1 1.442 (3) C6—C7 1.481 (5)
S1—O2 1.453 (3) C7—H7A 0.9603
S1—C17 1.826 (4) C7—H7B 0.9603
S2—O6 1.441 (3) C7—H7C 0.9603
S2—O5 1.442 (3) C8—C9 1.549 (5)
S2—O4 1.444 (3) C8—H8A 0.9700
S2—C18 1.828 (4) C8—H8B 0.9700
F1—C17 1.328 (4) C9—H9A 0.9700
F2—C17 1.340 (4) C9—H9B 0.9700
F3—C17 1.339 (4) C10—C12 1.492 (4)
F4—C18 1.337 (4) C10—C11 1.486 (5)
F5—C18 1.322 (4) C11—H11A 0.9608
F6—C18 1.337 (4) C11—H11B 0.9608
N1—C1 1.342 (4) C11—H11C 0.9608
N1—C5 1.367 (4) C12—C13 1.381 (5)
N2—C6 1.287 (4) C13—C14 1.385 (5)
N2—C8 1.466 (4) C13—H13 0.9300
N3—C10 1.288 (4) C14—C15 1.369 (5)
N3—C9 1.465 (4) C14—H14 0.9300
N4—C16 1.335 (4) C15—C16 1.392 (5)
N4—C12 1.349 (4) C15—H15 0.9300
C1—C2 1.383 (5) C16—H16 0.9300
C1—H1 0.9300
N3—Cu1—N2 83.11 (12) N2—C6—C5 113.5 (3)
N3—Cu1—N1 164.79 (11) C7—C6—C5 120.4 (3)
N2—Cu1—N1 81.96 (11) C6—C7—H7A 109.5
N3—Cu1—N4 81.59 (11) C6—C7—H7B 109.5
N2—Cu1—N4 164.06 (11) H7A—C7—H7B 109.4
N1—Cu1—N4 113.52 (12) C6—C7—H7C 109.5
N3—Cu1—O4 90.25 (10) H7A—C7—H7C 109.4
N2—Cu1—O4 90.19 (10) H7B—C7—H7C 109.4
N1—Cu1—O4 86.96 (10) N2—C8—C9 108.4 (2)
N4—Cu1—O4 94.30 (10) N2—C8—H8A 110.1
N3—Cu1—O2 90.61 (10) C9—C8—H8A 110.0
N2—Cu1—O2 88.21 (10) N2—C8—H8B 110.0
N1—Cu1—O2 91.76 (10) C9—C8—H8B 110.0
N4—Cu1—O2 87.53 (9) H8A—C8—H8B 108.4
O4—Cu1—O2 178.07 (8) N3—C9—C8 107.9 (2)
O3—S1—O1 115.72 (17) N3—C9—H9A 110.1
O3—S1—O2 114.34 (16) C8—C9—H9A 110.1
O1—S1—O2 114.89 (15) N3—C9—H9B 110.2
O3—S1—C17 103.46 (16) C8—C9—H9B 110.1
O1—S1—C17 102.90 (17) H9A—C9—H9B 108.4
O2—S1—C17 103.10 (17) N3—C10—C12 113.1 (3)
O6—S2—O5 115.54 (17) N3—C10—C11 125.1 (3)
O6—S2—O4 114.61 (15) C12—C10—C11 121.8 (3)
O5—S2—O4 114.34 (16) C10—C11—H11A 109.6
O6—S2—C18 103.29 (17) C10—C11—H11B 109.5
O5—S2—C18 102.91 (16) H11A—C11—H11B 109.4
O4—S2—C18 103.87 (17) C10—C11—H11C 109.5
S1—O2—Cu1 138.17 (14) H11A—C11—H11C 109.4
S2—O4—Cu1 138.10 (15) H11B—C11—H11C 109.4
C1—N1—C5 118.5 (3) N4—C12—C13 121.5 (3)
C1—N1—Cu1 130.3 (2) N4—C12—C10 115.5 (3)
C5—N1—Cu1 111.2 (2) C13—C12—C10 123.0 (3)
C6—N2—C8 125.5 (3) C12—C13—C14 118.9 (3)
C6—N2—Cu1 117.1 (2) C12—C13—H13 120.6
C8—N2—Cu1 115.6 (2) C14—C13—H13 120.6
C10—N3—C9 124.5 (3) C15—C14—C13 120.1 (3)
C10—N3—Cu1 117.1 (2) C15—C14—H14 119.9
C9—N3—Cu1 115.8 (2) C13—C14—H14 120.0
C16—N4—C12 118.9 (3) C14—C15—C16 117.9 (3)
C16—N4—Cu1 129.8 (2) C14—C15—H15 121.1
C12—N4—Cu1 111.3 (2) C16—C15—H15 121.0
N1—C1—C2 122.4 (3) N4—C16—C15 122.7 (3)
N1—C1—H1 118.8 N4—C16—H16 118.7
C2—C1—H1 118.8 C15—C16—H16 118.6
C3—C2—C1 118.8 (3) F1—C17—F2 108.2 (3)
C3—C2—H2 120.7 F1—C17—F3 108.1 (3)
C1—C2—H2 120.6 F2—C17—F3 106.8 (3)
C2—C3—C4 119.5 (3) F1—C17—S1 112.0 (2)
C2—C3—H3 120.3 F2—C17—S1 111.3 (2)
C4—C3—H3 120.2 F3—C17—S1 110.2 (3)
C5—C4—C3 119.2 (3) F5—C18—F4 108.1 (3)
C5—C4—H4 120.4 F5—C18—F6 107.9 (3)
C3—C4—H4 120.5 F4—C18—F6 107.1 (3)
N1—C5—C4 121.5 (3) F5—C18—S2 110.8 (3)
N1—C5—C6 115.3 (3) F4—C18—S2 111.3 (2)
C4—C5—C6 123.2 (3) F6—C18—S2 111.5 (3)
N2—C6—C7 126.0 (3)
O3—S1—O2—Cu1 −150.8 (2) C2—C3—C4—C5 1.7 (6)
O1—S1—O2—Cu1 −13.5 (3) C1—N1—C5—C4 0.8 (5)
C17—S1—O2—Cu1 97.6 (2) Cu1—N1—C5—C4 −178.2 (3)
N3—Cu1—O2—S1 −77.9 (2) C1—N1—C5—C6 179.5 (3)
N2—Cu1—O2—S1 5.2 (2) Cu1—N1—C5—C6 0.5 (3)
N1—Cu1—O2—S1 87.1 (2) C3—C4—C5—N1 −1.7 (5)
N4—Cu1—O2—S1 −159.4 (2) C3—C4—C5—C6 179.7 (3)
O6—S2—O4—Cu1 −5.8 (3) C8—N2—C6—C7 −1.7 (6)
O5—S2—O4—Cu1 −142.5 (2) Cu1—N2—C6—C7 −165.8 (3)
C18—S2—O4—Cu1 106.1 (2) C8—N2—C6—C5 174.8 (3)
N3—Cu1—O4—S2 −10.5 (2) Cu1—N2—C6—C5 10.7 (4)
N2—Cu1—O4—S2 −93.6 (2) N1—C5—C6—N2 −7.2 (4)
N1—Cu1—O4—S2 −175.5 (2) C4—C5—C6—N2 171.5 (3)
N4—Cu1—O4—S2 71.1 (2) N1—C5—C6—C7 169.5 (3)
N3—Cu1—N1—C1 −164.2 (4) C4—C5—C6—C7 −11.8 (5)
N2—Cu1—N1—C1 −175.1 (3) C6—N2—C8—C9 170.5 (3)
N4—Cu1—N1—C1 8.9 (3) Cu1—N2—C8—C9 −25.1 (3)
O4—Cu1—N1—C1 −84.5 (3) C10—N3—C9—C8 171.4 (3)
O2—Cu1—N1—C1 97.0 (3) Cu1—N3—C9—C8 −27.3 (3)
N3—Cu1—N1—C5 14.7 (6) N2—C8—C9—N3 32.2 (4)
N2—Cu1—N1—C5 3.8 (2) C9—N3—C10—C12 174.1 (3)
N4—Cu1—N1—C5 −172.2 (2) Cu1—N3—C10—C12 13.1 (4)
O4—Cu1—N1—C5 94.4 (2) C9—N3—C10—C11 −4.3 (5)
O2—Cu1—N1—C5 −84.2 (2) Cu1—N3—C10—C11 −165.4 (3)
N3—Cu1—N2—C6 174.5 (3) C16—N4—C12—C13 1.0 (5)
N1—Cu1—N2—C6 −8.4 (3) Cu1—N4—C12—C13 −178.4 (2)
N4—Cu1—N2—C6 158.2 (4) C16—N4—C12—C10 −179.9 (3)
O4—Cu1—N2—C6 −95.3 (3) Cu1—N4—C12—C10 0.8 (3)
O2—Cu1—N2—C6 83.6 (3) N3—C10—C12—N4 −8.9 (4)
N3—Cu1—N2—C8 8.7 (2) C11—C10—C12—N4 169.6 (3)
N1—Cu1—N2—C8 −174.2 (2) N3—C10—C12—C13 170.2 (3)
N4—Cu1—N2—C8 −7.6 (6) C11—C10—C12—C13 −11.2 (5)
O4—Cu1—N2—C8 98.9 (2) N4—C12—C13—C14 −0.5 (5)
O2—Cu1—N2—C8 −82.1 (2) C10—C12—C13—C14 −179.6 (3)
N2—Cu1—N3—C10 174.2 (3) C12—C13—C14—C15 −0.2 (5)
N1—Cu1—N3—C10 163.4 (4) C13—C14—C15—C16 0.4 (5)
N4—Cu1—N3—C10 −10.2 (3) C12—N4—C16—C15 −0.8 (5)
O4—Cu1—N3—C10 84.1 (3) Cu1—N4—C16—C15 178.4 (2)
O2—Cu1—N3—C10 −97.6 (3) C14—C15—C16—N4 0.1 (5)
N2—Cu1—N3—C9 11.5 (2) O3—S1—C17—F1 −173.3 (2)
N1—Cu1—N3—C9 0.6 (6) O1—S1—C17—F1 65.9 (3)
N4—Cu1—N3—C9 −173.0 (2) O2—S1—C17—F1 −53.9 (3)
O4—Cu1—N3—C9 −78.6 (2) O3—S1—C17—F2 −52.0 (3)
O2—Cu1—N3—C9 99.6 (2) O1—S1—C17—F2 −172.8 (3)
N3—Cu1—N4—C16 −174.7 (3) O2—S1—C17—F2 67.4 (3)
N2—Cu1—N4—C16 −158.3 (4) O3—S1—C17—F3 66.3 (3)
N1—Cu1—N4—C16 7.1 (3) O1—S1—C17—F3 −54.5 (3)
O4—Cu1—N4—C16 95.7 (3) O2—S1—C17—F3 −174.3 (2)
O2—Cu1—N4—C16 −83.7 (3) O6—S2—C18—F5 −53.1 (3)
N3—Cu1—N4—C12 4.5 (2) O5—S2—C18—F5 67.5 (3)
N2—Cu1—N4—C12 20.9 (5) O4—S2—C18—F5 −173.1 (3)
N1—Cu1—N4—C12 −173.6 (2) O6—S2—C18—F4 −173.4 (3)
O4—Cu1—N4—C12 −85.1 (2) O5—S2—C18—F4 −52.8 (3)
O2—Cu1—N4—C12 95.5 (2) O4—S2—C18—F4 66.7 (3)
C5—N1—C1—C2 0.1 (5) O6—S2—C18—F6 67.1 (3)
Cu1—N1—C1—C2 178.9 (2) O5—S2—C18—F6 −172.4 (3)
N1—C1—C2—C3 0.0 (5) O4—S2—C18—F6 −52.9 (3)
C1—C2—C3—C4 −0.9 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2203).

References

  1. Bowyer, B. K., Porter, K. A., Rae, A. D., Willis, A. C. & Wild, S. B. (1998). J. Chem. Soc. Chem. Commun.10, 1153–1154.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  3. Fielden, J., Long, D.-L., Evans, C. & Cronin, L. (2006). Eur. J. Inorg. Chem.2006, 3930–3935.
  4. Gourbatsis, S., Hadjiliadis, N., Perlepes, S. P., Garoufis, A. & Butler, I. S. (1998). Transition Met. Chem.23, 599–604.
  5. Gourbatsis, S., Perlepes, S. P., Butler, I. S. & Hadjiliadis, N. (1999). Polyhedron, 18, 2369–2375.
  6. Hamblin, J., Jackson, A., Alcock, N. W. & Hannon, M. J. (2002). Dalton Trans. pp. 1635–1641.
  7. Hanack, M., Deger, S. & Lange, A. (1988). Coord. Chem. Rev.83, 115–136.
  8. Haynes, J. S., Rettig, S. J., Sams, J. R., Trotter, J. & Thompson, R. C. (1988). Inorg. Chem.27, 1237–1241.
  9. Luo, Q., Lu, Q., Dai, A. & Huang, L. (1993). Inorg. Biochem.51, 655–662.
  10. Marks, T. J. (1990). Angew. Chem. Int. Ed. Engl.29, 857–879.
  11. Menteş, A., Sezek, S., Hanhan, M. E. & Büyükgüngör, O. (2007). Turk. J. Chem.31, 667–676.
  12. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  13. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter, Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  14. Şengül, A. & Büyükgüngör, O. (2005). Acta Cryst. C61, m119–m121. [DOI] [PubMed]
  15. Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  18. Szklarzewicz, J. & Samotus, A. (2002). Transition Met. Chem.27, 769–775.
  19. Westrip, S. P. (2008). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808033151/bg2203sup1.cif

e-64-m1435-sup1.cif (24.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033151/bg2203Isup2.hkl

e-64-m1435-Isup2.hkl (243.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES