Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 25;64(Pt 11):m1465. doi: 10.1107/S1600536808034284

rac-Carbon­yl{1-[(diphenyl­phosphino)meth­yl]ethanethiol­ato}(triphenyl­phosphine)rhodium(I)

Simón Hernández-Ortega a,*, David Morales-Morales a,*
PMCID: PMC2959607  PMID: 21580902

Abstract

The title compound, [Rh(C15H16PS)(C18H15P)(CO)], was synthesized from the reaction of the ligand rac-[Ph2PCH2CH(CH3)SH] with trans-[Rh(F)(CO)(PPh3)2] in a 1:1 molar ratio in toluene. The Rh atom is four-coordinated in a distorted square-planar geometry with the P—S ligand [Ph2PCH2CH(CH3)S] acting as a chelate and the PPh3 and disordered CO [site occupation factors of 0.61 (5) and 0.39 (5)] ligands completing the coordination.

Related literature

For general background, see: Au-Yeung & Chan (2004); Braunstein & Naud (2001); Dilworth & Weatley (2000); Dilworth et al. (2000); Fierro-Arias et al. (2008); Gómez-Benítez et al. (2007); Morales-Morales et al. (2002); Xie & Zhou (2008). For related structures, see: Lee et al. (2002).graphic file with name e-64-m1465-scheme1.jpg

Experimental

Crystal data

  • [Rh(C15H16PS)(C18H15P)(CO)]

  • M r = 652.50

  • Orthorhombic, Inline graphic

  • a = 10.3142 (7) Å

  • b = 16.865 (1) Å

  • c = 34.984 (2) Å

  • V = 6085.5 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 298 (2) K

  • 0.26 × 0.23 × 0.03 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.827, T max = 0.978

  • 48521 measured reflections

  • 5573 independent reflections

  • 4152 reflections with I > 2σ(I)

  • R int = 0.095

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.108

  • S = 1.06

  • 5573 reflections

  • 372 parameters

  • 45 restraints

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.49 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808034284/dn2386sup1.cif

e-64-m1465-sup1.cif (23KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034284/dn2386Isup2.hkl

e-64-m1465-Isup2.hkl (273KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support of this research by CONACYT (F58692) and PAPIIT (IN227008) is gratefully acknowledged.

supplementary crystallographic information

Comment

In recent years, attention has increasingly been paid to the coordination chemistry of polydentate ligands incorporating both thiolate and tertiary phosphine donor ligands, as their combination is likely to confer unusual structures and reactivities on their metal complexes [Dilworth, et al. 2000, Morales-Morales, et al., 2002]. In the specific case of compounds with platinum group metals these may be suitable species for catalytic screening. Addiconally, the presence of these ligands in their transition metal complexes may render interesting behaviors in solution as these ligands can be capable of full or partial deligation (hemilability), (Dilworth & Weatley, 2000, Braunstein & Naud, 2001) being able to provide important extra coordination sites for incoming substrates during a catalytic process ([Dilworth & Weatley, 2000, Braunstein & Naud, 2001). Moreover, chiral or potentially bidentate ligands have been used extensively to perform asymmetric transformations [Au-Yeung, et al. 2004, & Xie et al., 2008], however the most commonly employed are bidentated phosphines and the use of sulfur containing ligands has been avoided owing to the well known propensity of platinum group metals to sulfur poisoning.

Thus, owing to our continuous interest in the synthesis of transition metal complexes bearing P—S hybrid ligands [Morales-Morales, et al., 2002, Gómez-Benítez, et al., 2007, Fierro-Arias, et al. 2008] we would like to report the crystal structure of the rhodium(I) complex [Rh(Ph2PCH2CH(CH3)S)(PPh3)(CO)] (I).

The rhodium atom is four-coordinated in a distorted square planar geometry with the P—S ligand [Ph2PCH2CH(CH3)S] acting as a chelate and the PPh3 and CO ligands completing the coordination sphere (Fig. 1). Similar geometry has been found in a previously reported rhodium complex (Lee et al., 2002). The phenyl ring on the P atoms are essentially planar, these phenyl rings are rotated around the P—C bond, forming the dihedral angles with the coordination plane P1-C34-P2-S1 (Table 1).

Experimental

Synthesis of [Rh(Ph2PCH2CH(CH3)S)(PPh3)(CO)] (1). To a solution of trans-[Rh(F)(CO)(PPh3)2] (100 mg, 12 mmol) in toluene (25 ml) 1 equivalent of the ligand rac-[Ph2PCH2CH(CH3)SH] in toluene (10 ml) was added under stirring. The resulting mixture was allowed to stir overnight. After this time, the solvent was taken off under vacuum and the residue recrystallized from a double layer solvent system CH2Cl2/MeOH to afford complex 1 as a microcrystalline yellow powder. Yield 87%. 1H-NMR (300 MHz, CDCl3), (7.00–8.00 (m, Ph, 25H), 2.90–3.20 (m, CH2, 2H), 2.40–2.70 (m, CH, 1H), 1.30–1.50 (d, CH3, 3H); 31P-NMR (121 MHz, CDCl3), (68.21 (dd), 59.86 (dd) 1JRh-P= 133.4 Hz, 2JP-P = 304.2 Hz. Elem. Anal. Calculated for [C34H31OP2RhS] Calc. %: C: 62.49, H: 4.94. Found %: C: 62.50, H: 4.90. MS-FAB+ [M+] = 653 m/z.

Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.98 Å (methyne), 0.97 Å (methylene), 0.96Å (methyl) and 0.93Å (aromatic) with Uiso(H)= 1.2Ueq(aroatic, methylene, methine) or Uiso(H) = 1.5Ueq(methyl).

The CO is disordered and was refined anisotropically in two major contributors (61/39% for C34,O1/C34A,O1A, respectively)

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. Disordered atom and hydrogen atoms were omitted for clarity.

Crystal data

[Rh(C15H16PS)(C18H15P)(CO)] F(000) = 2672
Mr = 652.50 Dx = 1.424 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 7386 reflections
a = 10.3142 (7) Å θ = 2.3–31.0°
b = 16.865 (1) Å µ = 0.76 mm1
c = 34.984 (2) Å T = 298 K
V = 6085.5 (6) Å3 Prism, yellow
Z = 8 0.26 × 0.23 × 0.03 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer 5573 independent reflections
Radiation source: fine-focus sealed tube 4152 reflections with I > 2σ(I)
graphite Rint = 0.095
Detector resolution: 0.83 pixels mm-1 θmax = 25.4°, θmin = 2.3°
ω scans h = −12→12
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −20→20
Tmin = 0.827, Tmax = 0.978 l = −42→42
48521 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0403P)2 + 6.156P] where P = (Fo2 + 2Fc2)/3
5573 reflections (Δ/σ)max = 0.001
372 parameters Δρmax = 0.65 e Å3
45 restraints Δρmin = −0.49 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Rh1 0.32255 (3) 0.37305 (2) 0.105932 (9) 0.03228 (11)
C34 0.1592 (15) 0.377 (2) 0.0860 (10) 0.047 (4) 0.61 (5)
O1 0.0553 (7) 0.3812 (17) 0.0750 (4) 0.067 (4) 0.61 (5)
C34A 0.154 (2) 0.363 (3) 0.0902 (18) 0.050 (5) 0.39 (5)
O1A 0.0544 (11) 0.344 (2) 0.0794 (8) 0.068 (5) 0.39 (5)
S1 0.53111 (12) 0.35920 (9) 0.13006 (4) 0.0596 (4)
P1 0.40804 (11) 0.32103 (6) 0.05089 (3) 0.0316 (3)
P2 0.26119 (11) 0.43243 (7) 0.16325 (3) 0.0357 (3)
C1 0.3715 (4) 0.2171 (2) 0.04190 (12) 0.0331 (9)
C2 0.3274 (5) 0.1695 (3) 0.07131 (13) 0.0519 (13)
H2 0.3099 0.1913 0.0952 0.062*
C3 0.3096 (6) 0.0894 (3) 0.06497 (15) 0.0610 (15)
H3 0.2819 0.0573 0.0850 0.073*
C4 0.3320 (5) 0.0561 (3) 0.02980 (15) 0.0555 (14)
H4 0.3186 0.0021 0.0260 0.067*
C5 0.3742 (5) 0.1030 (3) 0.00031 (14) 0.0481 (12)
H5 0.3891 0.0810 −0.0237 0.058*
C6 0.3945 (4) 0.1826 (3) 0.00618 (12) 0.0398 (10)
H6 0.4239 0.2140 −0.0139 0.048*
C7 0.3736 (4) 0.3667 (2) 0.00480 (11) 0.0340 (10)
C8 0.2469 (5) 0.3649 (3) −0.00953 (13) 0.0435 (11)
H8 0.1823 0.3391 0.0042 0.052*
C9 0.2169 (6) 0.4009 (3) −0.04367 (14) 0.0540 (13)
H9 0.1326 0.3987 −0.0530 0.065*
C10 0.3106 (7) 0.4400 (3) −0.06404 (15) 0.0661 (16)
H10 0.2893 0.4650 −0.0869 0.079*
C11 0.4348 (7) 0.4422 (3) −0.05088 (15) 0.0677 (17)
H11 0.4983 0.4682 −0.0650 0.081*
C12 0.4671 (5) 0.4061 (3) −0.01658 (14) 0.0542 (13)
H12 0.5521 0.4082 −0.0078 0.065*
C13 0.5832 (4) 0.3222 (3) 0.05573 (12) 0.0400 (11)
H13A 0.6223 0.2877 0.0368 0.048*
H13B 0.6159 0.3755 0.0519 0.048*
C14 0.6172 (5) 0.2934 (3) 0.09580 (13) 0.0489 (12)
H14 0.5864 0.2389 0.0991 0.059*
C15 0.7617 (5) 0.2968 (4) 0.10406 (16) 0.0695 (17)
H15A 0.8064 0.2603 0.0876 0.104*
H15B 0.7770 0.2827 0.1303 0.104*
H15C 0.7930 0.3496 0.0995 0.104*
C16 0.2358 (5) 0.3652 (3) 0.20339 (13) 0.0448 (12)
C17 0.2788 (5) 0.2880 (3) 0.20110 (15) 0.0578 (14)
H17 0.3237 0.2708 0.1796 0.069*
C18 0.2550 (7) 0.2360 (4) 0.23093 (17) 0.0781 (19)
H18 0.2830 0.1837 0.2293 0.094*
C19 0.1906 (6) 0.2614 (4) 0.26265 (18) 0.081 (2)
H19 0.1741 0.2260 0.2824 0.098*
C20 0.1502 (6) 0.3382 (5) 0.26568 (16) 0.080 (2)
H20 0.1097 0.3556 0.2879 0.096*
C21 0.1692 (6) 0.3896 (4) 0.23600 (15) 0.0683 (17)
H21 0.1376 0.4411 0.2376 0.082*
C22 0.3760 (4) 0.5072 (3) 0.17966 (13) 0.0432 (11)
C23 0.4103 (6) 0.5192 (3) 0.21715 (15) 0.0634 (15)
H23 0.3800 0.4849 0.2359 0.076*
C24 0.4899 (7) 0.5821 (4) 0.2272 (2) 0.086 (2)
H24 0.5136 0.5894 0.2526 0.103*
C25 0.5334 (6) 0.6333 (4) 0.2000 (2) 0.086 (2)
H25 0.5826 0.6771 0.2070 0.103*
C26 0.5047 (6) 0.6204 (4) 0.1623 (2) 0.0798 (19)
H26 0.5375 0.6539 0.1436 0.096*
C27 0.4273 (5) 0.5577 (3) 0.15254 (15) 0.0602 (15)
H27 0.4087 0.5489 0.1269 0.072*
C28 0.1079 (4) 0.4881 (3) 0.16297 (12) 0.0382 (10)
C29 0.1033 (5) 0.5697 (3) 0.16278 (13) 0.0495 (12)
H29 0.1800 0.5986 0.1636 0.059*
C30 −0.0137 (6) 0.6091 (3) 0.16137 (16) 0.0634 (15)
H30 −0.0152 0.6643 0.1610 0.076*
C31 −0.1269 (6) 0.5679 (4) 0.16049 (16) 0.0706 (17)
H31 −0.2052 0.5952 0.1594 0.085*
C32 −0.1268 (5) 0.4868 (4) 0.16114 (17) 0.0691 (16)
H32 −0.2043 0.4586 0.1609 0.083*
C33 −0.0086 (5) 0.4475 (3) 0.16212 (15) 0.0576 (14)
H33 −0.0077 0.3924 0.1622 0.069*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rh1 0.03252 (19) 0.0389 (2) 0.02540 (18) 0.00223 (16) 0.00101 (15) −0.00288 (15)
C34 0.042 (4) 0.076 (10) 0.021 (7) 0.001 (5) 0.000 (4) −0.009 (6)
O1 0.044 (3) 0.106 (11) 0.052 (4) −0.004 (4) −0.013 (3) 0.006 (6)
C34A 0.042 (4) 0.079 (12) 0.028 (10) −0.011 (6) 0.004 (5) −0.019 (9)
O1A 0.048 (4) 0.097 (12) 0.057 (8) −0.022 (6) −0.009 (5) −0.013 (9)
S1 0.0400 (7) 0.1022 (12) 0.0366 (7) 0.0153 (7) −0.0063 (6) −0.0186 (7)
P1 0.0355 (6) 0.0331 (6) 0.0261 (6) −0.0007 (5) 0.0030 (5) −0.0019 (5)
P2 0.0355 (6) 0.0446 (7) 0.0270 (6) 0.0050 (5) 0.0021 (5) −0.0037 (5)
C1 0.034 (2) 0.033 (2) 0.032 (2) 0.0000 (19) 0.0003 (19) −0.0014 (18)
C2 0.077 (4) 0.044 (3) 0.034 (3) −0.005 (3) 0.009 (3) −0.003 (2)
C3 0.090 (4) 0.039 (3) 0.053 (3) −0.019 (3) 0.007 (3) 0.007 (2)
C4 0.066 (3) 0.036 (3) 0.064 (3) −0.008 (3) −0.014 (3) −0.007 (2)
C5 0.062 (3) 0.038 (3) 0.044 (3) −0.001 (2) −0.001 (2) −0.008 (2)
C6 0.044 (3) 0.036 (2) 0.039 (2) 0.001 (2) 0.007 (2) −0.001 (2)
C7 0.047 (2) 0.028 (2) 0.028 (2) 0.003 (2) 0.0034 (19) −0.0047 (18)
C8 0.055 (3) 0.041 (3) 0.035 (3) −0.002 (2) −0.001 (2) −0.006 (2)
C9 0.072 (4) 0.050 (3) 0.039 (3) 0.011 (3) −0.012 (3) −0.005 (2)
C10 0.100 (5) 0.061 (4) 0.038 (3) 0.005 (4) −0.011 (3) 0.006 (3)
C11 0.100 (5) 0.061 (4) 0.041 (3) −0.015 (3) 0.017 (3) 0.012 (3)
C12 0.060 (3) 0.060 (3) 0.043 (3) −0.013 (3) 0.002 (3) 0.009 (2)
C13 0.035 (2) 0.047 (3) 0.038 (3) 0.004 (2) 0.006 (2) −0.008 (2)
C14 0.044 (3) 0.061 (3) 0.042 (3) 0.001 (3) 0.004 (2) −0.007 (2)
C15 0.050 (3) 0.088 (4) 0.070 (4) 0.012 (3) −0.004 (3) −0.017 (3)
C16 0.045 (3) 0.056 (3) 0.034 (2) 0.008 (2) 0.006 (2) 0.003 (2)
C17 0.065 (4) 0.065 (4) 0.044 (3) 0.010 (3) 0.006 (3) 0.005 (3)
C18 0.105 (5) 0.070 (4) 0.059 (4) 0.016 (4) 0.010 (4) 0.024 (3)
C19 0.082 (5) 0.103 (5) 0.059 (4) −0.001 (4) 0.007 (3) 0.039 (4)
C20 0.083 (5) 0.112 (6) 0.046 (3) 0.017 (4) 0.022 (3) 0.017 (3)
C21 0.082 (4) 0.080 (4) 0.042 (3) 0.016 (3) 0.021 (3) 0.006 (3)
C22 0.034 (2) 0.054 (3) 0.041 (3) 0.005 (2) −0.004 (2) −0.011 (2)
C23 0.074 (4) 0.070 (4) 0.046 (3) 0.007 (3) −0.013 (3) −0.011 (3)
C24 0.092 (5) 0.100 (5) 0.066 (4) −0.009 (4) −0.029 (4) −0.027 (4)
C25 0.070 (4) 0.094 (5) 0.094 (5) −0.024 (4) −0.007 (4) −0.040 (4)
C26 0.065 (4) 0.088 (5) 0.086 (5) −0.025 (4) 0.017 (4) −0.017 (4)
C27 0.056 (3) 0.079 (4) 0.046 (3) −0.024 (3) 0.003 (3) −0.014 (3)
C28 0.038 (3) 0.049 (3) 0.027 (2) 0.009 (2) −0.001 (2) −0.007 (2)
C29 0.050 (3) 0.058 (3) 0.041 (3) 0.011 (3) 0.006 (2) −0.001 (2)
C30 0.076 (4) 0.055 (3) 0.059 (3) 0.024 (3) −0.004 (3) −0.008 (3)
C31 0.053 (4) 0.095 (5) 0.064 (4) 0.031 (4) −0.004 (3) −0.022 (3)
C32 0.041 (3) 0.093 (5) 0.073 (4) −0.001 (3) −0.006 (3) −0.017 (4)
C33 0.043 (3) 0.064 (4) 0.066 (4) 0.001 (3) 0.003 (3) −0.012 (3)

Geometric parameters (Å, °)

Rh1—C34 1.824 (7) C14—C15 1.519 (7)
Rh1—C34A 1.827 (8) C14—H14 0.9800
Rh1—P1 2.2922 (11) C15—H15A 0.9600
Rh1—S1 2.3225 (13) C15—H15B 0.9600
Rh1—P2 2.3289 (11) C15—H15C 0.9600
C34—O1 1.141 (8) C16—C17 1.378 (7)
C34A—O1A 1.145 (11) C16—C21 1.394 (7)
S1—C14 1.859 (5) C17—C18 1.385 (7)
P1—C13 1.815 (4) C17—H17 0.9300
P1—C1 1.820 (4) C18—C19 1.362 (8)
P1—C7 1.822 (4) C18—H18 0.9300
P2—C22 1.822 (5) C19—C20 1.365 (9)
P2—C16 1.824 (5) C19—H19 0.9300
P2—C28 1.840 (4) C20—C21 1.367 (8)
C1—C2 1.382 (6) C20—H20 0.9300
C1—C6 1.399 (6) C21—H21 0.9300
C2—C3 1.382 (7) C22—C23 1.374 (7)
C2—H2 0.9300 C22—C27 1.381 (7)
C3—C4 1.372 (7) C23—C24 1.387 (8)
C3—H3 0.9300 C23—H23 0.9300
C4—C5 1.371 (7) C24—C25 1.362 (9)
C4—H4 0.9300 C24—H24 0.9300
C5—C6 1.374 (6) C25—C26 1.367 (9)
C5—H5 0.9300 C25—H25 0.9300
C6—H6 0.9300 C26—C27 1.368 (7)
C7—C12 1.390 (6) C26—H26 0.9300
C7—C8 1.399 (6) C27—H27 0.9300
C8—C9 1.375 (7) C28—C29 1.376 (6)
C8—H8 0.9300 C28—C33 1.383 (7)
C9—C10 1.369 (8) C29—C30 1.379 (7)
C9—H9 0.9300 C29—H29 0.9300
C10—C11 1.362 (8) C30—C31 1.359 (8)
C10—H10 0.9300 C30—H30 0.9300
C11—C12 1.386 (7) C31—C32 1.368 (8)
C11—H11 0.9300 C31—H31 0.9300
C12—H12 0.9300 C32—C33 1.388 (7)
C13—C14 1.524 (6) C32—H32 0.9300
C13—H13A 0.9700 C33—H33 0.9300
C13—H13B 0.9700
C34—Rh1—P1 92.7 (13) C15—C14—C13 112.9 (4)
C34A—Rh1—P1 94 (2) C15—C14—S1 108.9 (3)
C34—Rh1—S1 176.0 (12) C13—C14—S1 107.0 (3)
C34A—Rh1—S1 168.4 (17) C15—C14—H14 109.3
P1—Rh1—S1 84.87 (4) C13—C14—H14 109.3
C34—Rh1—P2 93.6 (13) S1—C14—H14 109.3
C34A—Rh1—P2 92 (2) C14—C15—H15A 109.5
P1—Rh1—P2 172.88 (4) C14—C15—H15B 109.5
S1—Rh1—P2 88.97 (4) H15A—C15—H15B 109.5
O1—C34—Rh1 177 (3) C14—C15—H15C 109.5
O1A—C34A—Rh1 168 (5) H15A—C15—H15C 109.5
C14—S1—Rh1 105.56 (16) H15B—C15—H15C 109.5
C13—P1—C1 103.5 (2) C17—C16—C21 119.0 (5)
C13—P1—C7 105.8 (2) C17—C16—P2 119.8 (4)
C1—P1—C7 102.34 (19) C21—C16—P2 121.2 (4)
C13—P1—Rh1 107.49 (14) C16—C17—C18 119.8 (5)
C1—P1—Rh1 115.72 (14) C16—C17—H17 120.1
C7—P1—Rh1 120.42 (14) C18—C17—H17 120.1
C22—P2—C16 106.3 (2) C19—C18—C17 120.1 (6)
C22—P2—C28 102.0 (2) C19—C18—H18 120.0
C16—P2—C28 101.4 (2) C17—C18—H18 120.0
C22—P2—Rh1 113.09 (16) C18—C19—C20 120.7 (6)
C16—P2—Rh1 115.75 (16) C18—C19—H19 119.6
C28—P2—Rh1 116.67 (14) C20—C19—H19 119.6
C2—C1—C6 118.6 (4) C19—C20—C21 119.9 (6)
C2—C1—P1 119.9 (3) C19—C20—H20 120.0
C6—C1—P1 121.3 (3) C21—C20—H20 120.0
C1—C2—C3 119.5 (4) C20—C21—C16 120.4 (6)
C1—C2—H2 120.3 C20—C21—H21 119.8
C3—C2—H2 120.3 C16—C21—H21 119.8
C4—C3—C2 121.5 (5) C23—C22—C27 117.8 (5)
C4—C3—H3 119.3 C23—C22—P2 124.8 (4)
C2—C3—H3 119.3 C27—C22—P2 117.3 (4)
C5—C4—C3 119.4 (5) C22—C23—C24 120.5 (6)
C5—C4—H4 120.3 C22—C23—H23 119.8
C3—C4—H4 120.3 C24—C23—H23 119.8
C4—C5—C6 120.0 (5) C25—C24—C23 120.2 (6)
C4—C5—H5 120.0 C25—C24—H24 119.9
C6—C5—H5 120.0 C23—C24—H24 119.9
C5—C6—C1 121.0 (4) C24—C25—C26 120.1 (6)
C5—C6—H6 119.5 C24—C25—H25 119.9
C1—C6—H6 119.5 C26—C25—H25 119.9
C12—C7—C8 117.7 (4) C25—C26—C27 119.4 (6)
C12—C7—P1 122.9 (4) C25—C26—H26 120.3
C8—C7—P1 119.4 (3) C27—C26—H26 120.3
C9—C8—C7 120.8 (5) C26—C27—C22 121.9 (5)
C9—C8—H8 119.6 C26—C27—H27 119.1
C7—C8—H8 119.6 C22—C27—H27 119.1
C10—C9—C8 120.4 (5) C29—C28—C33 117.7 (4)
C10—C9—H9 119.8 C29—C28—P2 122.7 (4)
C8—C9—H9 119.8 C33—C28—P2 119.6 (4)
C11—C10—C9 120.1 (5) C28—C29—C30 120.8 (5)
C11—C10—H10 120.0 C28—C29—H29 119.6
C9—C10—H10 120.0 C30—C29—H29 119.6
C10—C11—C12 120.4 (5) C31—C30—C29 120.4 (5)
C10—C11—H11 119.8 C31—C30—H30 119.8
C12—C11—H11 119.8 C29—C30—H30 119.8
C11—C12—C7 120.6 (5) C30—C31—C32 120.7 (5)
C11—C12—H12 119.7 C30—C31—H31 119.7
C7—C12—H12 119.7 C32—C31—H31 119.7
C14—C13—P1 108.1 (3) C31—C32—C33 118.6 (6)
C14—C13—H13A 110.1 C31—C32—H32 120.7
P1—C13—H13A 110.1 C33—C32—H32 120.7
C14—C13—H13B 110.1 C28—C33—C32 121.8 (5)
P1—C13—H13B 110.1 C28—C33—H33 119.1
H13A—C13—H13B 108.4 C32—C33—H33 119.1

Table 1 Dihedral angle of phenyl rings with the coordination center (P1-S1-P2-C34) (Å).

Plane angle
C1-C6 85.4 (1)
C7-C12 56.29 (9)
C16-C21 74.2 (2)
C22-C27 70.4 (1)
C28-C33 68.9 (1)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2386).

References

  1. Au-Yeung, T. T. L. & Chan, A. S. C. (2004). Coord. Chem. Rev.248, 2151–2164.
  2. Braunstein, P. & Naud, F. (2001). Angew. Chem. Int. Ed. Engl.40, 680–699. [DOI] [PubMed]
  3. Bruker (1999). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  5. Dilworth, J. R., Morales, D. & Zheng, Y. (2000). J. Chem. Soc. Dalton Trans. pp. 3007–3015.
  6. Dilworth, J. R. & Weatley, N. (2000). Coord. Chem. Rev.199, 89–158.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Fierro-Arias, J., Morales-Morales, D. & Hernández-Ortega, S. (2008). Acta Cryst. E64, m1196. [DOI] [PMC free article] [PubMed]
  9. Gómez-Benítez, V., Hernández-Ortega, S., Toscano, R. A. & Morales-Morales, D. (2007). Inorg. Chim. Acta, 360, 2128–2138.
  10. Lee, H.-S., Bae, J.-Y., Kim, D.-H., Kim, H. S., Kim, S.-J., Cho, S., Ko, J. & Kang, S. O. (2002). Organometallics, 21, 210–219.
  11. Morales-Morales, D. S., Rodríguez-Morales, S., Dilworth, J. R., Sousa-Pedrares, A. & Zheng, Y. (2002). Inorg. Chim. Acta, 332, 101–107.
  12. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Xie, J. H. & Zhou, Q. L. (2008). Acc. Chem. Res.41, 581–593. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808034284/dn2386sup1.cif

e-64-m1465-sup1.cif (23KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034284/dn2386Isup2.hkl

e-64-m1465-Isup2.hkl (273KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES