Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 25;64(Pt 11):o2184–o2185. doi: 10.1107/S1600536808034326

(E)-3,4-Dihydroxy­benzaldehyde 4-methyl­thio­semicarbazone

Yang Farina a,*, Jim Simpson b
PMCID: PMC2959612  PMID: 21581043

Abstract

The title compound, C9H11N3O2S, adopts an E configuration with respect to the C=N bond. The mol­ecule is approximately planar, with an r.m.s. deviation from the mean plane through all 15 non-H atoms of 0.152 Å; the dihedral angle between the benzene ring plane and the least-squares plane through the thio­semicarbazone unit is 12.48 (7)°. A weak intra­molecular N—H⋯N inter­action contributes to the planarity of the semicarbazone unit. Centrosymmetric pairs of O—H⋯O and N—H⋯S hydrogen bonds form chains along c, generating R 2 2(10) and R 2 2(8) ring motifs, respectively. In the crystal structure, these chains are further linked by inter­molecular O—H⋯S and C—H⋯O inter­actions, forming stacks down the c axis.

Related literature

For the biological activity of thio­semicarbazones, see: de Sousa et al. (2007). For related structures, see: Kayed et al. (2008); Tan et al. (2008a ,b ). For hydrogen-bonding patterns, see: Bernstein et al. (1995). For reference structural data, see: Allen et al. (1987).graphic file with name e-64-o2184-scheme1.jpg

Experimental

Crystal data

  • C9H11N3O2S

  • M r = 225.27

  • Monoclinic, Inline graphic

  • a = 6.8502 (9) Å

  • b = 14.911 (2) Å

  • c = 10.6299 (13) Å

  • β = 107.894 (6)°

  • V = 1033.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 92 (2) K

  • 0.23 × 0.15 × 0.13 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006) T min = 0.799, T max = 0.962

  • 17952 measured reflections

  • 3696 independent reflections

  • 2974 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.112

  • S = 1.07

  • 3696 reflections

  • 149 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808034326/pv2112sup1.cif

e-64-o2184-sup1.cif (15KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034326/pv2112Isup2.hkl

e-64-o2184-Isup2.hkl (181.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯N1 0.879 (9) 2.220 (18) 2.6282 (17) 108.0 (14)
O3—H3⋯O4i 0.837 (9) 2.070 (14) 2.8071 (14) 146.5 (19)
O4—H4⋯S1ii 0.836 (9) 2.369 (10) 3.1899 (11) 167.1 (19)
N2—H2N⋯S1iii 0.876 (9) 2.785 (12) 3.5766 (13) 150.9 (15)
C9—H9A⋯O4iv 0.98 2.56 3.435 (2) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We thank the Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for supporting this research through grants UKM-ST-01-FRGS0022–2006 and UKM-GUP-NBT-08–27-112 and Mr M. A. I. Yim for preparing the title compound. We also thank the University of Otago for purchase of the diffractometer.

supplementary crystallographic information

Comment

Thiosemicarbazones are a class of compounds that have been extensively investigated because of their biological activity (de Sousa et al., 2007). As a continuation of our work on thiosemicarbazone compounds as potential ligands in transition metal chemistry (Kayed et al., 2008; Tan et al., 2008a,b) we report here the structure of the title compound, (I).

The molecule of (I) (Fig. 1) is approximately planar with a dihedral angle of 12.48 (7)° between the phenyl ring plane and the least squares plane through the C7/N1/N2/C8/S2/N3 thiosemicarbazone moiety. The planarity of this section of the molecule is aided by a weak intramolecular N3—H3N···N1 interaction. The molecule adopts an E configuration with respect to the C═N bond and bond distances are normal (Allen et al., 1987).

Pairs of O3—H3···O4 hydrogen bonds generate a centrosymmetric R22(10) ring motif (Bernstein et al., 1995) and, together with the R22(8) ring generated by N2—H2N···S1 interactions, form an unusual molecular trimer. The crystal structure is further stabilized by O4—H4···S1 and C9—H9A···O4 contacts, Table 1, Fig. 2.

Experimental

A 1:1 mixture of 3,4-dihydroxybenzaldehyde and N-methylhydrazinecarbothioamide was heated under reflux in ethanol for 2 hours. The solid product which separated upon cooling was filtered and recrystallised from methanol to afford colourless blocks of (I) in 54% yield (m.p. 418-419 K).

Refinement

The H atoms bound to N and O atoms were located in a difference electron density map and refined freely with Uiso = 1.2Ueq (N) and Uiso = 1.5Ueq (O). All other H-atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso= 1.2Ueq (C) for aryl and 0.98 Å, Uiso = 1.5Ueq (C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. An intramolecular hydrogen bond is drawn as a dashed line.

Fig. 2.

Fig. 2.

Crystal packing of (I) viewed down the c axis with hydrogen bonds drawn as dashed lines. H-atoms not involved in H-bonding have been excluded.

Crystal data

C9H11N3O2S F(000) = 472
Mr = 225.27 Dx = 1.448 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3847 reflections
a = 6.8502 (9) Å θ = 2.4–29.8°
b = 14.911 (2) Å µ = 0.30 mm1
c = 10.6299 (13) Å T = 92 K
β = 107.894 (6)° Plate, colourless
V = 1033.3 (2) Å3 0.23 × 0.15 × 0.13 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 3696 independent reflections
Radiation source: fine-focus sealed tube 2974 reflections with I > 2σ(I)
graphite Rint = 0.044
ω scans θmax = 33.0°, θmin = 3.4°
Absorption correction: multi-scan (SADABS; Bruker, 2006) h = −10→10
Tmin = 0.799, Tmax = 0.962 k = −22→18
17952 measured reflections l = −16→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.5756P] where P = (Fo2 + 2Fc2)/3
3696 reflections (Δ/σ)max < 0.001
149 parameters Δρmax = 0.49 e Å3
4 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2002 (2) 0.06919 (9) −0.01216 (13) 0.0157 (2)
C2 0.2338 (2) 0.00229 (9) −0.09567 (13) 0.0165 (2)
H2 0.3237 −0.0460 −0.0590 0.020*
C3 0.1378 (2) 0.00557 (9) −0.23119 (13) 0.0160 (2)
O3 0.17512 (16) −0.06151 (7) −0.30786 (10) 0.0213 (2)
H3 0.110 (3) −0.0532 (14) −0.3876 (10) 0.032*
C4 0.0039 (2) 0.07616 (9) −0.28381 (13) 0.0166 (2)
O4 −0.09897 (16) 0.07447 (7) −0.41779 (10) 0.0206 (2)
H4 −0.2160 (18) 0.0940 (13) −0.424 (2) 0.031*
C5 −0.0247 (2) 0.14471 (9) −0.20207 (13) 0.0183 (3)
H5 −0.1111 0.1940 −0.2392 0.022*
C6 0.0727 (2) 0.14133 (10) −0.06654 (14) 0.0180 (3)
H6 0.0523 0.1881 −0.0111 0.022*
C7 0.2988 (2) 0.05936 (9) 0.13036 (13) 0.0168 (2)
H7 0.3900 0.0107 0.1623 0.020*
N1 0.26441 (18) 0.11527 (8) 0.21297 (11) 0.0174 (2)
N2 0.36894 (18) 0.09854 (8) 0.34422 (11) 0.0182 (2)
H2N 0.456 (2) 0.0539 (9) 0.3669 (17) 0.022*
C8 0.3229 (2) 0.14654 (9) 0.43924 (13) 0.0163 (2)
S1 0.46023 (5) 0.12889 (2) 0.60055 (3) 0.01943 (10)
N3 0.17327 (18) 0.20621 (8) 0.39921 (12) 0.0188 (2)
H3N 0.107 (3) 0.2075 (12) 0.3142 (10) 0.023*
C9 0.1019 (2) 0.26414 (10) 0.48622 (16) 0.0259 (3)
H9A 0.0204 0.2289 0.5298 0.039*
H9B 0.0171 0.3123 0.4343 0.039*
H9C 0.2202 0.2902 0.5532 0.039*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0148 (5) 0.0165 (6) 0.0166 (5) −0.0009 (5) 0.0061 (4) −0.0004 (5)
C2 0.0158 (6) 0.0143 (6) 0.0202 (6) 0.0002 (5) 0.0067 (5) 0.0006 (5)
C3 0.0160 (6) 0.0148 (6) 0.0182 (6) −0.0020 (5) 0.0067 (5) −0.0019 (5)
O3 0.0239 (5) 0.0197 (5) 0.0194 (5) 0.0032 (4) 0.0055 (4) −0.0040 (4)
C4 0.0149 (5) 0.0199 (6) 0.0153 (5) −0.0006 (5) 0.0052 (4) −0.0007 (5)
O4 0.0190 (5) 0.0258 (5) 0.0164 (4) 0.0032 (4) 0.0044 (4) −0.0027 (4)
C5 0.0189 (6) 0.0172 (6) 0.0184 (6) 0.0031 (5) 0.0052 (5) 0.0000 (5)
C6 0.0172 (6) 0.0188 (6) 0.0182 (6) 0.0013 (5) 0.0058 (5) −0.0009 (5)
C7 0.0157 (6) 0.0158 (6) 0.0187 (6) 0.0002 (5) 0.0050 (5) 0.0016 (5)
N1 0.0163 (5) 0.0198 (6) 0.0152 (5) 0.0012 (4) 0.0037 (4) 0.0011 (4)
N2 0.0200 (5) 0.0181 (6) 0.0160 (5) 0.0049 (4) 0.0050 (4) 0.0005 (4)
C8 0.0165 (6) 0.0141 (6) 0.0193 (6) −0.0018 (5) 0.0072 (5) −0.0010 (5)
S1 0.02201 (17) 0.01991 (18) 0.01649 (16) 0.00247 (12) 0.00609 (12) −0.00049 (12)
N3 0.0184 (5) 0.0162 (5) 0.0214 (5) 0.0019 (4) 0.0056 (4) −0.0010 (4)
C9 0.0277 (7) 0.0185 (7) 0.0348 (8) 0.0044 (6) 0.0148 (6) −0.0034 (6)

Geometric parameters (Å, °)

C1—C6 1.3943 (19) C6—H6 0.9500
C1—C2 1.4006 (18) C7—N1 1.2841 (18)
C1—C7 1.4642 (18) C7—H7 0.9500
C2—C3 1.3886 (18) N1—N2 1.3812 (15)
C2—H2 0.9500 N2—C8 1.3518 (17)
C3—O3 1.3632 (16) N2—H2N 0.876 (9)
C3—C4 1.3952 (19) C8—N3 1.3251 (18)
O3—H3 0.837 (9) C8—S1 1.7038 (14)
C4—O4 1.3815 (16) N3—C9 1.4556 (18)
C4—C5 1.3937 (19) N3—H3N 0.879 (9)
O4—H4 0.836 (9) C9—H9A 0.9800
C5—C6 1.3901 (19) C9—H9B 0.9800
C5—H5 0.9500 C9—H9C 0.9800
C6—C1—C2 119.39 (12) N1—C7—C1 121.28 (12)
C6—C1—C7 122.50 (12) N1—C7—H7 119.4
C2—C1—C7 118.10 (12) C1—C7—H7 119.4
C3—C2—C1 120.98 (12) C7—N1—N2 115.24 (12)
C3—C2—H2 119.5 C8—N2—N1 119.45 (11)
C1—C2—H2 119.5 C8—N2—H2N 119.4 (12)
O3—C3—C2 118.57 (12) N1—N2—H2N 120.9 (12)
O3—C3—C4 122.33 (12) N3—C8—N2 116.78 (12)
C2—C3—C4 119.08 (12) N3—C8—S1 124.08 (11)
C3—O3—H3 111.0 (14) N2—C8—S1 119.13 (10)
O4—C4—C5 122.08 (12) C8—N3—C9 124.91 (13)
O4—C4—C3 117.63 (12) C8—N3—H3N 116.8 (12)
C5—C4—C3 120.28 (12) C9—N3—H3N 118.1 (12)
C4—O4—H4 104.4 (14) N3—C9—H9A 109.5
C6—C5—C4 120.34 (13) N3—C9—H9B 109.5
C6—C5—H5 119.8 H9A—C9—H9B 109.5
C4—C5—H5 119.8 N3—C9—H9C 109.5
C5—C6—C1 119.83 (13) H9A—C9—H9C 109.5
C5—C6—H6 120.1 H9B—C9—H9C 109.5
C1—C6—H6 120.1

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3N···N1 0.88 (1) 2.22 (2) 2.6282 (17) 108 (1)
O3—H3···O4i 0.84 (1) 2.07 (1) 2.8071 (14) 147 (2)
O4—H4···S1ii 0.84 (1) 2.37 (1) 3.1899 (11) 167 (2)
N2—H2N···S1iii 0.88 (1) 2.79 (1) 3.5766 (13) 151 (2)
C9—H9A···O4iv 0.98 2.56 3.435 (2) 148

Symmetry codes: (i) −x, −y, −z−1; (ii) x−1, y, z−1; (iii) −x+1, −y, −z+1; (iv) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2112).

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bruker (2006). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  6. Kayed, S. F., Farina, Y., Baba, I. & Simpson, J. (2008). Acta Cryst. E64, o824–o825. [DOI] [PMC free article] [PubMed]
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sousa, G. F. de, Manso, L. C. C., Lang, E. S., Gatto, C. C. & Mahieu, B. (2007). J. Mol. Struct 826, 185–191.
  10. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  11. Tan, K. W., Farina, Y., Ng, C. H., Maah, M. J. & Ng, S. W. (2008a). Acta Cryst. E64, o1035. [DOI] [PMC free article] [PubMed]
  12. Tan, K. W., Farina, Y., Ng, C. H., Maah, M. J. & Ng, S. W. (2008b). Acta Cryst. E64, o1073. [DOI] [PMC free article] [PubMed]
  13. Westrip, S. P. (2008). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808034326/pv2112sup1.cif

e-64-o2184-sup1.cif (15KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034326/pv2112Isup2.hkl

e-64-o2184-Isup2.hkl (181.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES