Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 4;64(Pt 11):m1357. doi: 10.1107/S1600536808031115

1,3-Dimesitylimidazolidinium tetra­chloridogold(III) dichloro­methane solvate

Tesfamariam K Hagos a, Stefan D Nogai a, Liliana Dobrzańska a,*, Stephanie Cronje a
PMCID: PMC2959617  PMID: 21580818

Abstract

The title ionic compound, (C21H27N2)[AuCl4]·CH2Cl2, was obtained from the reaction of 1,3-dimesitylimidazolidinium chloride with t-BuOK and a solution of AuCl3 in tetra­hydro­furan. In the crystal structure, numerous weak C—H⋯Cl hydrogen bonds form double layers parallel to (100), which are further stabilized by π–π inter­actions between mesitylene rings [centroid–centroid distance = 4.308 (4) Å], resulting in the formation of a three-dimensional supra­molecular assembly.

Related literature

For related literature, see: Arduengo et al. (1995); da Costa et al. (2007); Adé et al. (2004); Asaji et al. (2004); Makotchenko et al. (2006); Brammer et al. (2001).graphic file with name e-64-m1357-scheme1.jpg

Experimental

Crystal data

  • (C21H27N2)[AuCl4]·CH2Cl2

  • M r = 731.14

  • Monoclinic, Inline graphic

  • a = 19.590 (3) Å

  • b = 8.9986 (13) Å

  • c = 15.306 (2) Å

  • β = 96.601 (2)°

  • V = 2680.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.10 mm−1

  • T = 100 (2) K

  • 0.30 × 0.25 × 0.10 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T min = 0.146, T max = 0.546

  • 15546 measured reflections

  • 6083 independent reflections

  • 4516 reflections with I > 2σ(I)

  • R int = 0.094

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.086

  • S = 0.91

  • 6083 reflections

  • 286 parameters

  • H-atom parameters constrained

  • Δρmax = 2.12 e Å−3

  • Δρmin = −2.24 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: X-SEED.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031115/hk2528sup1.cif

e-64-m1357-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031115/hk2528Isup2.hkl

e-64-m1357-Isup2.hkl (297.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °) (with cut-off parameters as in Brammer et al., 2001).

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cl1i 0.95 2.78 3.706 (6) 164
C12—H12C⋯Cl4ii 0.98 2.87 3.724 (6) 147
C15—H15⋯Cl3ii 0.95 2.87 3.740 (7) 152
C15—H15⋯Cl4ii 0.95 2.88 3.368 (6) 113
C17—H17A⋯Cl4 0.99 3.05 3.794 (6) 133
C17—H17B⋯Cl2iii 0.99 2.95 3.736 (6) 137
C17—H17B⋯Cl3iii 0.99 2.96 3.882 (6) 155
C18—H18B⋯Cl1 0.99 2.78 3.511 (6) 131
C25—H25A⋯Cl4ii 0.98 2.89 3.832 (6) 162
C25—H25B⋯Cl29iv 0.98 2.88 3.742 (7) 148
C25—H25C⋯Cl2iii 0.98 2.97 3.901 (6) 160
C25—H25C⋯Cl3iii 0.98 3.03 3.691 (6) 126
C26—H26B⋯Cl4 0.98 2.90 3.829 (7) 158
C27—H27C⋯Cl30v 0.98 3.04 3.838 (8) 140
C28—H28A⋯Cl3 0.99 2.63 3.486 (7) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors thank the National Research Foundation of South Africa and the University of Stellenbosch for financial support.

supplementary crystallographic information

Comment

During the course of ongoing studies on imine compounds of gold(III), we have isolated the title ionic compound, (I). The asymmetric unit (Fig. 1) consists of 1,3-dimesitylimidazolidinium cation, tetrachloro-gold(III) anion, and a dichloromethane molecule. To the best of our knowledge, there have been only two reports on crystal structures containing the title carbenium ion, presenting the structure of the 1,3-dimesitylimidazolidinium chloride acetonitrile solvate, (II), (Arduengo et al., 1995) and the imidazolidinium salt of a ruthenium(III) complex, (III) (da Costa et al., 2007), respectively. The structural parameters associated with the carbenium ion are similar to the reported ones. The only difference is the orientation of one of the mesitylene rings (C19-C24), which is almost perpendicular with respect to the plane of the imidazolidinium ring. The dihedral angle between those two planes is 89.5 (3)°, whereas in previous reports both the mesitylene rings were more or less twisted with respect to the plane of the imidazolidinium ring [66.0 (3)° and 75.1 (3)°] for (II) and 82.0 (3)° for (III). This corresponds with the orientation of the other mesitylene ring (C5-C10) [72.1 (3)°] described here.

The anionic part displays a typical square-planar geometry around Au and the Au-Cl distances compare well with previously reported values (Adé et al., 2004; Asaji et al., 2004; Makotchenko et al., 2006). All Cl atoms participate in the formation of weak C-H···Cl hydrogen bonds (Table 1) forming double layers in the bc plane [individual layers are linked by C27-H27C···Cl30 bonds with C···Cl distance of 3.838 (8) Å] which are further extended in the third dimension by face-to-face π-π interactions between mesitylene rings (C5-C10) of neighbouring double layers [symmetry code: 2 - x, -y, 1 - z] with centroid-centroid distance of 4.308 (4) Å (Fig. 2).

Experimental

For the preparation of the title compound, 1,3-dimesitylimidazolidinium chloride (0.04 g, 1.2 mmol) in THF (20 ml) was treated with t-BuOK (0.13 g, 1.2 mmol) at room temperature, and then filtered through Celite into a solution of AuCl3 (0.35 g, 1.2 mmol) in THF (20 ml). The solvent was removed under reduced pressure. Orange crystals suitable for single crystal X-ray analysis were obtained from a dichloromethane solution layered with hexane at 253 K.

Refinement

H atoms were positioned geometrically, with C-H = 0.95, 0.99 and 0.98 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Space-filling representation of double layers (yellow-red) extended in the third dimension by π-π interactions (shown in blue).

Crystal data

(C21H27N2)[AuCl4]·CH2Cl2 F(000) = 1424
Mr = 731.14 Dx = 1.812 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3906 reflections
a = 19.590 (3) Å θ = 2.5–27.6°
b = 8.9986 (13) Å µ = 6.10 mm1
c = 15.306 (2) Å T = 100 K
β = 96.601 (2)° Plate, orange
V = 2680.4 (7) Å3 0.30 × 0.25 × 0.10 mm
Z = 4

Data collection

Bruker APEX CCD area-detector diffractometer 6083 independent reflections
Radiation source: fine-focus sealed tube 4516 reflections with I > 2σ(I)
graphite Rint = 0.094
ω scans θmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) h = −21→25
Tmin = 0.146, Tmax = 0.546 k = −9→11
15546 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087 H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0211P)2] where P = (Fo2 + 2Fc2)/3
6083 reflections (Δ/σ)max = 0.002
286 parameters Δρmax = 2.12 e Å3
0 restraints Δρmin = −2.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Au1 0.816928 (12) 0.61599 (3) 0.706473 (15) 0.01554 (8)
Cl1 0.90506 (8) 0.57587 (17) 0.62476 (10) 0.0221 (4)
Cl2 0.86227 (8) 0.84160 (17) 0.74770 (10) 0.0229 (4)
Cl3 0.72796 (8) 0.65262 (18) 0.78862 (11) 0.0240 (4)
Cl4 0.76938 (8) 0.39359 (17) 0.65952 (10) 0.0220 (3)
C5 0.8618 (3) 0.1217 (7) 0.3991 (4) 0.0168 (13)
C6 0.9177 (3) 0.1185 (7) 0.3509 (4) 0.0184 (13)
C7 0.9615 (3) −0.0040 (7) 0.3640 (4) 0.0179 (14)
H7 0.9997 −0.0101 0.3311 0.022*
C8 0.9517 (3) −0.1156 (7) 0.4218 (4) 0.0223 (14)
C9 0.8956 (3) −0.1060 (7) 0.4701 (4) 0.0234 (15)
H9 0.8881 −0.1829 0.5106 0.028*
C10 0.8503 (3) 0.0132 (7) 0.4605 (4) 0.0222 (15)
C11 0.7906 (3) 0.0228 (8) 0.5168 (4) 0.0259 (16)
H11C 0.7899 0.1217 0.5434 0.039*
H11A 0.7965 −0.0526 0.5632 0.039*
H11B 0.7471 0.0055 0.4796 0.039*
C12 0.9314 (3) 0.2390 (7) 0.2867 (4) 0.0228 (15)
H12C 0.8938 0.2418 0.2386 0.034*
H12A 0.9747 0.2184 0.2628 0.034*
H12B 0.9345 0.3352 0.3169 0.034*
C13 0.9994 (4) −0.2463 (8) 0.4345 (4) 0.0299 (17)
H13B 0.9829 −0.3258 0.3937 0.045*
H13C 1.0010 −0.2824 0.4952 0.045*
H13A 1.0456 −0.2161 0.4231 0.045*
N14 0.8162 (3) 0.2491 (6) 0.3895 (3) 0.0171 (12)
C15 0.7516 (3) 0.2431 (7) 0.3605 (4) 0.0161 (13)
H15 0.7305 0.1576 0.3327 0.019*
N16 0.7176 (3) 0.3665 (5) 0.3729 (3) 0.0168 (11)
C17 0.7660 (3) 0.4782 (7) 0.4162 (4) 0.0170 (14)
H17A 0.7505 0.5136 0.4719 0.020*
H17B 0.7707 0.5644 0.3772 0.020*
C18 0.8333 (3) 0.3929 (7) 0.4333 (4) 0.0210 (14)
H18A 0.8707 0.4441 0.4069 0.025*
H18B 0.8471 0.3795 0.4971 0.025*
C19 0.6464 (3) 0.4010 (7) 0.3447 (4) 0.0165 (13)
C20 0.5985 (3) 0.3755 (7) 0.4036 (4) 0.0207 (14)
C21 0.5323 (3) 0.4244 (7) 0.3781 (4) 0.0191 (14)
H21 0.4983 0.4097 0.4168 0.023*
C22 0.5134 (3) 0.4949 (7) 0.2971 (4) 0.0209 (15)
C23 0.5620 (3) 0.5118 (7) 0.2400 (4) 0.0210 (15)
H23 0.5492 0.5574 0.1845 0.025*
C24 0.6297 (3) 0.4639 (7) 0.2613 (4) 0.0202 (15)
C25 0.6811 (3) 0.4777 (7) 0.1960 (4) 0.0230 (15)
H25C 0.7222 0.5291 0.2236 0.034*
H25B 0.6609 0.5347 0.1449 0.034*
H25A 0.6938 0.3785 0.1771 0.034*
C26 0.6168 (4) 0.2988 (8) 0.4893 (4) 0.0303 (17)
H26C 0.5780 0.3048 0.5243 0.045*
H26B 0.6571 0.3467 0.5212 0.045*
H26A 0.6272 0.1942 0.4787 0.045*
C27 0.4414 (3) 0.5523 (9) 0.2740 (5) 0.0317 (18)
H27C 0.4317 0.5619 0.2100 0.048*
H27A 0.4369 0.6496 0.3015 0.048*
H27B 0.4087 0.4826 0.2955 0.048*
C28 0.6210 (4) 0.7360 (8) 0.9489 (4) 0.0303 (17)
H28B 0.6054 0.8168 0.9075 0.036*
H28A 0.6592 0.6833 0.9251 0.036*
Cl29 0.65120 (9) 0.8137 (2) 1.05262 (12) 0.0335 (4)
Cl30 0.55384 (12) 0.6129 (3) 0.95642 (15) 0.0580 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Au1 0.01694 (12) 0.01813 (12) 0.01117 (12) −0.00007 (12) 0.00005 (8) 0.00093 (11)
Cl1 0.0243 (8) 0.0229 (8) 0.0202 (8) −0.0012 (7) 0.0073 (7) −0.0006 (6)
Cl2 0.0252 (9) 0.0197 (8) 0.0236 (9) −0.0021 (7) 0.0019 (7) −0.0038 (6)
Cl3 0.0232 (8) 0.0241 (9) 0.0263 (9) 0.0015 (7) 0.0089 (7) 0.0007 (7)
Cl4 0.0268 (8) 0.0220 (8) 0.0167 (8) −0.0060 (7) 0.0004 (6) −0.0012 (7)
C5 0.019 (3) 0.019 (3) 0.010 (3) −0.002 (3) −0.004 (2) −0.002 (3)
C6 0.014 (3) 0.027 (4) 0.014 (3) −0.002 (3) −0.002 (2) −0.008 (3)
C7 0.011 (3) 0.028 (4) 0.015 (3) 0.004 (3) 0.002 (3) −0.009 (3)
C8 0.032 (4) 0.024 (3) 0.010 (3) 0.007 (3) −0.003 (3) −0.004 (3)
C9 0.029 (4) 0.024 (4) 0.017 (3) −0.003 (3) 0.001 (3) −0.001 (3)
C10 0.024 (4) 0.027 (4) 0.015 (4) 0.000 (3) −0.004 (3) 0.001 (3)
C11 0.027 (4) 0.031 (4) 0.020 (4) 0.006 (3) 0.006 (3) 0.007 (3)
C12 0.015 (3) 0.027 (4) 0.027 (4) 0.001 (3) 0.005 (3) 0.002 (3)
C13 0.036 (4) 0.039 (4) 0.014 (4) 0.013 (4) −0.003 (3) −0.003 (3)
N14 0.014 (3) 0.025 (3) 0.012 (3) 0.001 (2) 0.000 (2) −0.002 (2)
C15 0.021 (3) 0.019 (3) 0.008 (3) −0.005 (3) 0.002 (3) 0.006 (2)
N16 0.017 (3) 0.015 (3) 0.018 (3) 0.000 (2) 0.002 (2) −0.004 (2)
C17 0.015 (3) 0.017 (3) 0.017 (3) −0.002 (3) −0.004 (3) −0.003 (3)
C18 0.013 (3) 0.025 (4) 0.025 (3) −0.007 (3) 0.002 (3) −0.006 (3)
C19 0.018 (3) 0.014 (3) 0.017 (3) 0.003 (3) 0.001 (3) 0.001 (3)
C20 0.025 (3) 0.019 (3) 0.018 (3) −0.003 (3) 0.003 (3) −0.004 (3)
C21 0.017 (3) 0.024 (4) 0.017 (3) −0.006 (3) 0.004 (3) 0.000 (3)
C22 0.011 (3) 0.025 (4) 0.026 (4) −0.002 (3) 0.000 (3) −0.001 (3)
C23 0.022 (4) 0.023 (4) 0.018 (4) 0.008 (3) −0.002 (3) 0.000 (3)
C24 0.021 (4) 0.020 (3) 0.019 (4) −0.004 (3) 0.001 (3) −0.004 (3)
C25 0.026 (4) 0.028 (4) 0.016 (4) 0.003 (3) 0.006 (3) −0.001 (3)
C26 0.030 (4) 0.035 (4) 0.026 (4) −0.006 (3) 0.002 (3) 0.004 (3)
C27 0.020 (4) 0.049 (5) 0.026 (4) 0.006 (4) 0.005 (3) 0.006 (4)
C28 0.039 (4) 0.032 (4) 0.020 (4) 0.004 (4) 0.005 (3) 0.004 (3)
Cl29 0.0332 (10) 0.0352 (10) 0.0312 (10) −0.0055 (9) 0.0001 (8) 0.0011 (8)
Cl30 0.0640 (15) 0.0613 (15) 0.0492 (13) −0.0310 (13) 0.0087 (11) −0.0151 (12)

Geometric parameters (Å, °)

Au1—Cl1 2.2742 (16) N16—C17 1.484 (7)
Au1—Cl2 2.2759 (16) C17—C18 1.523 (8)
Au1—Cl3 2.2872 (16) C17—H17A 0.9900
Au1—Cl4 2.2881 (16) C17—H17B 0.9900
C5—C6 1.390 (8) C18—H18A 0.9900
C5—C10 1.391 (8) C18—H18B 0.9900
C5—N14 1.449 (8) C19—C20 1.392 (9)
C6—C7 1.397 (8) C19—C24 1.401 (8)
C6—C12 1.508 (8) C20—C21 1.383 (9)
C7—C8 1.367 (9) C20—C26 1.489 (9)
C7—H7 0.9500 C21—C22 1.404 (9)
C8—C9 1.397 (9) C21—H21 0.9500
C8—C13 1.501 (9) C22—C23 1.373 (9)
C9—C10 1.389 (9) C22—C27 1.505 (8)
C9—H9 0.9500 C23—C24 1.397 (8)
C10—C11 1.533 (9) C23—H23 0.9500
C11—H11C 0.9800 C24—C25 1.503 (9)
C11—H11A 0.9800 C25—H25C 0.9800
C11—H11B 0.9800 C25—H25B 0.9800
C12—H12C 0.9800 C25—H25A 0.9800
C12—H12A 0.9800 C26—H26C 0.9800
C12—H12B 0.9800 C26—H26B 0.9800
C13—H13B 0.9800 C26—H26A 0.9800
C13—H13C 0.9800 C27—H27C 0.9800
C13—H13A 0.9800 C27—H27A 0.9800
N14—C15 1.294 (7) C27—H27B 0.9800
N14—C18 1.478 (8) C28—Cl30 1.734 (7)
C15—N16 1.320 (8) C28—Cl29 1.773 (7)
C15—H15 0.9500 C28—H28B 0.9900
N16—C19 1.446 (7) C28—H28A 0.9900
Cl1—Au1—Cl2 89.85 (6) C18—C17—H17A 111.1
Cl1—Au1—Cl3 179.15 (6) N16—C17—H17B 111.1
Cl2—Au1—Cl3 90.96 (6) C18—C17—H17B 111.1
Cl1—Au1—Cl4 89.76 (6) H17A—C17—H17B 109.1
Cl2—Au1—Cl4 177.57 (6) N14—C18—C17 102.5 (4)
Cl3—Au1—Cl4 89.44 (6) N14—C18—H18A 111.3
C6—C5—C10 122.8 (6) C17—C18—H18A 111.3
C6—C5—N14 118.4 (5) N14—C18—H18B 111.3
C10—C5—N14 118.6 (6) C17—C18—H18B 111.3
C5—C6—C7 116.7 (6) H18A—C18—H18B 109.2
C5—C6—C12 122.7 (6) C20—C19—C24 123.6 (6)
C7—C6—C12 120.6 (6) C20—C19—N16 118.1 (5)
C8—C7—C6 122.9 (6) C24—C19—N16 118.3 (5)
C8—C7—H7 118.6 C21—C20—C19 116.4 (6)
C6—C7—H7 118.6 C21—C20—C26 121.3 (6)
C7—C8—C9 118.4 (6) C19—C20—C26 122.4 (6)
C7—C8—C13 121.9 (6) C20—C21—C22 122.5 (6)
C9—C8—C13 119.7 (6) C20—C21—H21 118.7
C10—C9—C8 121.5 (6) C22—C21—H21 118.7
C10—C9—H9 119.2 C23—C22—C21 118.7 (6)
C8—C9—H9 119.2 C23—C22—C27 120.8 (6)
C9—C10—C5 117.7 (6) C21—C22—C27 120.5 (6)
C9—C10—C11 120.2 (6) C22—C23—C24 121.8 (6)
C5—C10—C11 122.2 (6) C22—C23—H23 119.1
C10—C11—H11C 109.5 C24—C23—H23 119.1
C10—C11—H11A 109.5 C23—C24—C19 116.9 (6)
H11C—C11—H11A 109.5 C23—C24—C25 120.7 (6)
C10—C11—H11B 109.5 C19—C24—C25 122.4 (6)
H11C—C11—H11B 109.5 C24—C25—H25C 109.5
H11A—C11—H11B 109.5 C24—C25—H25B 109.5
C6—C12—H12C 109.5 H25C—C25—H25B 109.5
C6—C12—H12A 109.5 C24—C25—H25A 109.5
H12C—C12—H12A 109.5 H25C—C25—H25A 109.5
C6—C12—H12B 109.5 H25B—C25—H25A 109.5
H12C—C12—H12B 109.5 C20—C26—H26C 109.5
H12A—C12—H12B 109.5 C20—C26—H26B 109.5
C8—C13—H13B 109.5 H26C—C26—H26B 109.5
C8—C13—H13C 109.5 C20—C26—H26A 109.5
H13B—C13—H13C 109.5 H26C—C26—H26A 109.5
C8—C13—H13A 109.5 H26B—C26—H26A 109.5
H13B—C13—H13A 109.5 C22—C27—H27C 109.5
H13C—C13—H13A 109.5 C22—C27—H27A 109.5
C15—N14—C5 124.6 (5) H27C—C27—H27A 109.5
C15—N14—C18 110.7 (5) C22—C27—H27B 109.5
C5—N14—C18 122.8 (5) H27C—C27—H27B 109.5
N14—C15—N16 113.9 (6) H27A—C27—H27B 109.5
N14—C15—H15 123.0 Cl30—C28—Cl29 111.7 (4)
N16—C15—H15 123.0 Cl30—C28—H28B 109.3
C15—N16—C19 128.6 (5) Cl29—C28—H28B 109.3
C15—N16—C17 109.1 (5) Cl30—C28—H28A 109.3
C19—N16—C17 122.2 (5) Cl29—C28—H28A 109.3
N16—C17—C18 103.4 (5) H28B—C28—H28A 107.9
N16—C17—H17A 111.1
C10—C5—C6—C7 2.7 (9) C19—N16—C17—C18 −180.0 (5)
N14—C5—C6—C7 178.1 (5) C15—N14—C18—C17 −5.3 (7)
C10—C5—C6—C12 −177.8 (6) C5—N14—C18—C17 −170.6 (5)
N14—C5—C6—C12 −2.4 (8) N16—C17—C18—N14 5.5 (6)
C5—C6—C7—C8 −1.1 (9) C15—N16—C19—C20 94.1 (8)
C12—C6—C7—C8 179.4 (6) C17—N16—C19—C20 −91.1 (7)
C6—C7—C8—C9 −0.2 (9) C15—N16—C19—C24 −88.5 (8)
C6—C7—C8—C13 179.9 (6) C17—N16—C19—C24 86.3 (7)
C7—C8—C9—C10 −0.1 (9) C24—C19—C20—C21 −3.9 (9)
C13—C8—C9—C10 179.9 (6) N16—C19—C20—C21 173.3 (5)
C8—C9—C10—C5 1.6 (9) C24—C19—C20—C26 175.6 (6)
C8—C9—C10—C11 −177.9 (6) N16—C19—C20—C26 −7.2 (9)
C6—C5—C10—C9 −3.0 (9) C19—C20—C21—C22 0.6 (9)
N14—C5—C10—C9 −178.4 (5) C26—C20—C21—C22 −178.9 (6)
C6—C5—C10—C11 176.6 (6) C20—C21—C22—C23 2.0 (10)
N14—C5—C10—C11 1.1 (9) C20—C21—C22—C27 −177.2 (6)
C6—C5—N14—C15 118.6 (7) C21—C22—C23—C24 −1.4 (10)
C10—C5—N14—C15 −65.8 (8) C27—C22—C23—C24 177.8 (6)
C6—C5—N14—C18 −78.2 (7) C22—C23—C24—C19 −1.6 (9)
C10—C5—N14—C18 97.4 (7) C22—C23—C24—C25 177.3 (6)
C5—N14—C15—N16 167.8 (5) C20—C19—C24—C23 4.5 (9)
C18—N14—C15—N16 2.9 (7) N16—C19—C24—C23 −172.8 (5)
N14—C15—N16—C19 176.4 (6) C20—C19—C24—C25 −174.5 (6)
N14—C15—N16—C17 1.0 (7) N16—C19—C24—C25 8.3 (9)
C15—N16—C17—C18 −4.3 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9···Cl1i 0.95 2.78 3.706 (6) 164
C12—H12C···Cl4ii 0.98 2.87 3.724 (6) 147
C15—H15···Cl3ii 0.95 2.87 3.740 (7) 152
C15—H15···Cl4ii 0.95 2.88 3.368 (6) 113
C17—H17A···Cl4 0.99 3.05 3.794 (6) 133
C17—H17B···Cl2iii 0.99 2.95 3.736 (6) 137
C17—H17B···Cl3iii 0.99 2.96 3.882 (6) 155
C18—H18B···Cl1 0.99 2.78 3.511 (6) 131
C25—H25A···Cl4ii 0.98 2.89 3.832 (6) 162
C25—H25B···Cl29iv 0.98 2.88 3.742 (7) 148
C25—H25C···Cl2iii 0.98 2.97 3.901 (6) 160
C25—H25C···Cl3iii 0.98 3.03 3.691 (6) 126
C26—H26B···Cl4 0.98 2.90 3.829 (7) 158
C27—H27C···Cl30v 0.98 3.04 3.838 (8) 140
C28—H28A···Cl3 0.99 2.63 3.486 (7) 145

Symmetry codes: (i) x, y−1, z; (ii) x, −y+1/2, z−1/2; (iii) x, −y+3/2, z−1/2; (iv) x, y, z−1; (v) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2528).

References

  1. Adé, A., Cerrada, E., Contel, M., Laguna, M., Merino, P. & Tejero, T. (2004). J. Organomet. Chem.689, 1788–1795.
  2. Arduengo, A. J. III, Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc.117, 11027–11028.
  3. Asaji, T., Akiyama, E., Tajima, F., Eda, K., Hashimoto, M. & Furukawa, Y. (2004). Polyhedron, 23, 1605–1611.
  4. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  5. Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des.1, 277–290.
  6. Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Bruker (2002). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Costa, R. C. da, Hampel, F. & Gladysz, J. A. (2007). Polyhedron, 26, 581–588.
  9. Makotchenko, E. V., Baidina, I. A. & Naumov, D. Yu. (2006). J. Struct. Chem.47, 499–503.
  10. Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031115/hk2528sup1.cif

e-64-m1357-sup1.cif (23.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031115/hk2528Isup2.hkl

e-64-m1357-Isup2.hkl (297.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES