Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 4;64(Pt 11):o2063. doi: 10.1107/S1600536808031590

(E)-Methyl N′-(3,4,5-trimethoxy­benzyl­idene)hydrazinecarboxyl­ate

Lu-Ping Lv a, Jian-Wu Xie a, Wen-Bo Yu a, Wei-Wei Li a, Xian-Chao Hu b,*
PMCID: PMC2959621  PMID: 21580929

Abstract

The mol­ecule of the title compound, C12H16N2O5, adopts a trans configuration with respect to the C=N double bond. The dihedral angle between the benzene and hydrazinecarboxylic acid methyl ester planes is 12.55 (7)°. The mol­ecules are linked into a chain along [001] by inter­molecular N—H⋯O hydrogen bonds, and the chains are cross-linked into a two-dimensional zigzag structure by C—H⋯O hydrogen bonds.

Related literature

For general background, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999). For a related structure, see: Shang et al. (2007).graphic file with name e-64-o2063-scheme1.jpg

Experimental

Crystal data

  • C12H16N2O5

  • M r = 268.27

  • Monoclinic, Inline graphic

  • a = 8.554 (3) Å

  • b = 22.705 (7) Å

  • c = 7.813 (2) Å

  • β = 116.15 (1)°

  • V = 1362.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 (2) K

  • 0.27 × 0.25 × 0.24 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.965, T max = 0.968

  • 7173 measured reflections

  • 2394 independent reflections

  • 1671 reflections with I > 2σ(I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.133

  • S = 1.03

  • 2394 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031590/ci2687sup1.cif

e-64-o2063-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031590/ci2687Isup2.hkl

e-64-o2063-Isup2.hkl (115.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.86 2.16 3.000 (2) 166
C2—H2B⋯O2ii 0.96 2.57 3.498 (3) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Hangzhou Vocational and Technical College, China, for financial support.

supplementary crystallographic information

Comment

Benzaldehydehydrazone derivatives have received considerable attention for a long time due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties(Hadjoudis et al., 1987). They are important intermidiates of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many properties (Borg et al., 1999). As a further investigation of this type of derivatives, we report herein the crystal structure of the title compound.

The title molecule (Fig.1) adopts a trans configuration with respect to the C═N bond. The hydrazine carboxylic acid methyl ester group is slightly twisted away from the attached ring. The dihedral angle between the benzene ring and the C10/C11//N1/N2/O4/O5 plane [r.m.s. deviation 0.051 Å] is 12.55 (7)°. The O1-C1 and O3-C3 methoxy groups are coplanar with the benzene ring [C8—C4—O1—C1 = -1.7 (3)° and C7—C6—O3—C3 = -1.9 (3)°] while the O2-C2 group is twisted almost perpendicular to the attached ring [C6—C5—O2—C2 = 91.6 (2)°]. The bond lengths and angles agree with those observed for N'-(4-methoxybenzylidene)methoxyformohydrazide (Shang et al., 2007).

The molecules are linked into a chain along the [001] by intermolecular N–H···O hydrogen bonds (Fig.2 and Table 1). The chains are cross-linked into a two-dimensional zigzag structure by C—H···O hydrogen bonds.

Experimental

3,4,5-Trimethoxybenzaldehyde (1.96g, 0.01mol) and methyl hydrazinecarboxylate (0.9 g, 0.01 mol) were dissolved in stirred methanol (15 ml) and left for 3.2 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 94% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature (m.p. 472-474 K).

Refinement

H atoms were positioned geometrically [N-H = 0.86 Å and C-H = 0.93 or 0.96 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). A rotating group model was used for the methy groups.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.

Fig. 2.

Fig. 2.

Crystal packing of the title compound, viewed approximately down the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

C12H16N2O5 F(000) = 568
Mr = 268.27 Dx = 1.308 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2394 reflections
a = 8.554 (3) Å θ = 1.8–25.0°
b = 22.705 (7) Å µ = 0.10 mm1
c = 7.813 (2) Å T = 273 K
β = 116.15 (1)° Block, colourless
V = 1362.1 (7) Å3 0.27 × 0.25 × 0.24 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2394 independent reflections
Radiation source: fine-focus sealed tube 1671 reflections with I > 2σ(I)
graphite Rint = 0.058
φ and ω scans θmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −10→10
Tmin = 0.965, Tmax = 0.968 k = −27→26
7173 measured reflections l = −9→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0696P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
2394 reflections Δρmax = 0.18 e Å3
177 parameters Δρmin = −0.18 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.012 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C11 0.1250 (2) 0.29913 (8) 0.4985 (2) 0.0442 (5)
C7 0.5205 (3) 0.07771 (8) 0.7843 (3) 0.0522 (5)
H7 0.4723 0.0607 0.6636 0.063*
C10 0.3534 (3) 0.16740 (8) 0.6404 (3) 0.0493 (5)
H10 0.3171 0.1508 0.5201 0.059*
C9 0.4743 (2) 0.13484 (8) 0.8080 (2) 0.0467 (5)
C6 0.6382 (3) 0.04596 (8) 0.9394 (3) 0.0508 (5)
C8 0.5451 (3) 0.16011 (9) 0.9895 (2) 0.0529 (5)
H8 0.5130 0.1980 1.0067 0.063*
C4 0.6637 (3) 0.12845 (9) 1.1436 (3) 0.0526 (5)
C5 0.7116 (2) 0.07116 (8) 1.1194 (3) 0.0499 (5)
C12 −0.0302 (4) 0.37985 (10) 0.3123 (3) 0.0850 (8)
H12A −0.0984 0.3825 0.3820 0.127*
H12B −0.1010 0.3900 0.1813 0.127*
H12C 0.0666 0.4065 0.3662 0.127*
C3 0.6171 (3) −0.03833 (9) 0.7485 (3) 0.0677 (6)
H3A 0.4927 −0.0390 0.7001 0.102*
H3B 0.6600 −0.0779 0.7609 0.102*
H3C 0.6482 −0.0169 0.6620 0.102*
C1 0.7014 (4) 0.20690 (11) 1.3617 (3) 0.0986 (10)
H1A 0.7253 0.2340 1.2818 0.148*
H1B 0.7713 0.2169 1.4931 0.148*
H1C 0.5804 0.2092 1.3335 0.148*
C2 1.0022 (3) 0.04729 (13) 1.3133 (4) 0.0950 (9)
H2A 1.0190 0.0332 1.2067 0.143*
H2B 1.0752 0.0254 1.4253 0.143*
H2C 1.0323 0.0883 1.3335 0.143*
O5 0.03345 (18) 0.32059 (5) 0.32345 (16) 0.0574 (4)
O4 0.1466 (2) 0.32391 (5) 0.64414 (17) 0.0632 (5)
O2 0.82545 (17) 0.03987 (6) 1.27554 (19) 0.0608 (4)
O3 0.6917 (2) −0.01046 (6) 0.9293 (2) 0.0670 (5)
O1 0.7416 (2) 0.14863 (6) 1.32715 (18) 0.0745 (5)
N1 0.29649 (19) 0.21810 (6) 0.65536 (19) 0.0442 (4)
N2 0.1871 (2) 0.24529 (6) 0.4883 (2) 0.0492 (4)
H2 0.1588 0.2285 0.3801 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C11 0.0513 (12) 0.0478 (10) 0.0312 (9) 0.0013 (9) 0.0160 (8) −0.0003 (8)
C7 0.0572 (13) 0.0525 (11) 0.0440 (11) 0.0038 (9) 0.0198 (10) 0.0014 (8)
C10 0.0541 (13) 0.0511 (11) 0.0382 (10) 0.0028 (9) 0.0162 (9) −0.0023 (8)
C9 0.0474 (11) 0.0509 (11) 0.0403 (10) 0.0040 (8) 0.0180 (9) 0.0054 (8)
C6 0.0510 (12) 0.0468 (11) 0.0576 (12) 0.0075 (9) 0.0268 (10) 0.0085 (9)
C8 0.0588 (13) 0.0498 (10) 0.0445 (11) 0.0071 (10) 0.0178 (10) 0.0048 (8)
C4 0.0564 (13) 0.0591 (12) 0.0382 (10) 0.0032 (10) 0.0171 (9) 0.0068 (8)
C5 0.0466 (11) 0.0554 (11) 0.0478 (11) 0.0073 (9) 0.0211 (9) 0.0165 (9)
C12 0.118 (2) 0.0590 (14) 0.0569 (14) 0.0348 (14) 0.0188 (14) 0.0078 (10)
C3 0.0801 (17) 0.0546 (12) 0.0745 (16) 0.0101 (11) 0.0395 (13) 0.0015 (10)
C1 0.134 (3) 0.0820 (17) 0.0484 (13) 0.0263 (17) 0.0111 (15) −0.0086 (11)
C2 0.0506 (16) 0.118 (2) 0.101 (2) 0.0070 (14) 0.0191 (14) 0.0537 (17)
O5 0.0733 (10) 0.0556 (8) 0.0359 (7) 0.0213 (7) 0.0174 (7) 0.0050 (5)
O4 0.0951 (12) 0.0523 (8) 0.0379 (8) 0.0124 (7) 0.0253 (7) −0.0012 (6)
O2 0.0523 (9) 0.0694 (9) 0.0573 (9) 0.0100 (7) 0.0211 (7) 0.0266 (7)
O3 0.0761 (10) 0.0544 (9) 0.0661 (10) 0.0191 (7) 0.0275 (8) 0.0098 (7)
O1 0.0913 (13) 0.0709 (10) 0.0415 (8) 0.0192 (8) 0.0111 (8) 0.0042 (7)
N1 0.0497 (10) 0.0482 (9) 0.0317 (8) 0.0036 (7) 0.0152 (7) 0.0034 (6)
N2 0.0616 (11) 0.0501 (9) 0.0296 (7) 0.0133 (8) 0.0145 (7) 0.0004 (6)

Geometric parameters (Å, °)

C11—O4 1.209 (2) C12—H12A 0.96
C11—O5 1.333 (2) C12—H12B 0.96
C11—N2 1.349 (2) C12—H12C 0.96
C7—C6 1.388 (2) C3—O3 1.417 (2)
C7—C9 1.392 (3) C3—H3A 0.96
C7—H7 0.93 C3—H3B 0.96
C10—N1 1.275 (2) C3—H3C 0.96
C10—C9 1.462 (2) C1—O1 1.422 (3)
C10—H10 0.93 C1—H1A 0.96
C9—C8 1.396 (2) C1—H1B 0.96
C6—O3 1.374 (2) C1—H1C 0.96
C6—C5 1.386 (3) C2—O2 1.417 (3)
C8—C4 1.386 (2) C2—H2A 0.96
C8—H8 0.93 C2—H2B 0.96
C4—O1 1.367 (2) C2—H2C 0.96
C4—C5 1.401 (3) N1—N2 1.3723 (19)
C5—O2 1.376 (2) N2—H2 0.86
C12—O5 1.439 (2)
O4—C11—O5 124.93 (17) H12A—C12—H12C 109.5
O4—C11—N2 125.21 (16) H12B—C12—H12C 109.5
O5—C11—N2 109.85 (14) O3—C3—H3A 109.5
C6—C7—C9 120.45 (17) O3—C3—H3B 109.5
C6—C7—H7 119.8 H3A—C3—H3B 109.5
C9—C7—H7 119.8 O3—C3—H3C 109.5
N1—C10—C9 121.47 (17) H3A—C3—H3C 109.5
N1—C10—H10 119.3 H3B—C3—H3C 109.5
C9—C10—H10 119.3 O1—C1—H1A 109.5
C7—C9—C8 119.77 (17) O1—C1—H1B 109.5
C7—C9—C10 118.81 (16) H1A—C1—H1B 109.5
C8—C9—C10 121.41 (17) O1—C1—H1C 109.5
O3—C6—C5 115.43 (16) H1A—C1—H1C 109.5
O3—C6—C7 124.47 (17) H1B—C1—H1C 109.5
C5—C6—C7 120.11 (17) O2—C2—H2A 109.5
C4—C8—C9 119.57 (18) O2—C2—H2B 109.5
C4—C8—H8 120.2 H2A—C2—H2B 109.5
C9—C8—H8 120.2 O2—C2—H2C 109.5
O1—C4—C8 124.72 (18) H2A—C2—H2C 109.5
O1—C4—C5 114.63 (16) H2B—C2—H2C 109.5
C8—C4—C5 120.65 (17) C11—O5—C12 116.06 (14)
O2—C5—C6 120.91 (17) C5—O2—C2 113.36 (15)
O2—C5—C4 119.61 (17) C6—O3—C3 117.27 (15)
C6—C5—C4 119.44 (16) C4—O1—C1 117.67 (16)
O5—C12—H12A 109.5 C10—N1—N2 116.53 (14)
O5—C12—H12B 109.5 C11—N2—N1 118.23 (14)
H12A—C12—H12B 109.5 C11—N2—H2 120.9
O5—C12—H12C 109.5 N1—N2—H2 120.9
C6—C7—C9—C8 −0.7 (3) C8—C4—C5—O2 −177.98 (18)
C6—C7—C9—C10 178.45 (18) O1—C4—C5—C6 178.96 (17)
N1—C10—C9—C7 174.74 (18) C8—C4—C5—C6 −0.5 (3)
N1—C10—C9—C8 −6.1 (3) O4—C11—O5—C12 5.6 (3)
C9—C7—C6—O3 −179.79 (18) N2—C11—O5—C12 −175.51 (18)
C9—C7—C6—C5 −0.5 (3) C6—C5—O2—C2 91.6 (2)
C7—C9—C8—C4 1.3 (3) C4—C5—O2—C2 −91.0 (2)
C10—C9—C8—C4 −177.86 (18) C5—C6—O3—C3 178.74 (18)
C9—C8—C4—O1 179.89 (18) C7—C6—O3—C3 −1.9 (3)
C9—C8—C4—C5 −0.7 (3) C8—C4—O1—C1 −1.7 (3)
O3—C6—C5—O2 −2.1 (3) C5—C4—O1—C1 178.9 (2)
C7—C6—C5—O2 178.52 (17) C9—C10—N1—N2 178.42 (17)
O3—C6—C5—C4 −179.53 (17) O4—C11—N2—N1 −6.2 (3)
C7—C6—C5—C4 1.1 (3) O5—C11—N2—N1 174.90 (15)
O1—C4—C5—O2 1.5 (3) C10—N1—N2—C11 −179.66 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O4i 0.86 2.16 3.000 (2) 166
C2—H2B···O2ii 0.96 2.57 3.498 (3) 161

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+2, −y, −z+3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2687).

References

  1. Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem.42, 4331–4342. [DOI] [PubMed]
  2. Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.
  4. Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim Acta, 151, 201–208.
  5. Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031590/ci2687sup1.cif

e-64-o2063-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031590/ci2687Isup2.hkl

e-64-o2063-Isup2.hkl (115.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES