Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 31;64(Pt 11):o2225. doi: 10.1107/S1600536808034764

1-[6-(Hydroxy­meth­yl)-2-pyrid­yl]-3-(2,4,6-trimethyl­benz­yl)-1H-imidazol-3-ium bromide

Chuang Zhou a, Xiang-Ge Zhou a, Yu-Ping Qiu a, Mei-Ming Luo a,*
PMCID: PMC2959624  PMID: 21581080

Abstract

In the title compound, C19H22N3O+·Br, the imidazole ring is approximately coplanar with the pyridine ring [dihedral angle = 0.88 (13)°] and nearly perpendicular to the benzene ring [dihedral angle = 81.70 (13)°]. O—H⋯Br and C—H⋯Br hydrogen bonding helps to stabilize the crystal structure.

Related literature

For general background, see: Liddle et al. (2007); Ren et al. (2007); Arnold & Wilson (2007); Chianese & Crabtree (2005); Dyson et al. (2008); Patel et al. (2006). For synthesis, see: Hosseinzadeh et al. (2006).graphic file with name e-64-o2225-scheme1.jpg

Experimental

Crystal data

  • C19H22N3O+·Br

  • M r = 388.31

  • Monoclinic, Inline graphic

  • a = 11.2315 (3) Å

  • b = 11.5390 (3) Å

  • c = 14.3673 (4) Å

  • β = 100.833 (2)°

  • V = 1828.82 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.26 mm−1

  • T = 296 (2) K

  • 0.50 × 0.48 × 0.40 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.320, T max = 0.405

  • 13818 measured reflections

  • 4184 independent reflections

  • 2287 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.116

  • S = 1.01

  • 4184 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808034764/xu2459sup1.cif

e-64-o2225-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034764/xu2459Isup2.hkl

e-64-o2225-Isup2.hkl (205.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Br1 0.82 2.49 3.227 (2) 151
C7—H7A⋯Br1i 0.93 2.75 3.598 (2) 152
C8—H8A⋯Br1ii 0.93 2.89 3.745 (2) 154
C10—H10B⋯Br1i 0.97 2.91 3.813 (2) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Financial support of this work by the Natural Science Foundation of Sichuan Province of China is gratefully acknowledged.

supplementary crystallographic information

Comment

The range of N-heterocyclic carbenes (NHCs) is expanding rapidly since many homogeneous catalysts rely on NHC-based supporting ligands for steric and electronic control. Recently the study of [C, O] chelating NHC ligands have attracted increasing attention. The bonding between the NHC and metal can be enhanced by alkoxide or phenoxide as a sidearm through the incorporation of chelating anionic oxygen (Liddle et al., 2007; Ren et al., 2007). These kind of ligands are of great significance to early metal catalysis and carbene chemistry (Arnold & Wilson, 2007; Chianese & Crabtree, 2005; Dyson et al., 2008; Patel et al., 2006). The title compound, a stable precursor imidazolium salt of a tridentate alkoxide-functionalized NHC ligands, was synthesized in moderate yield by reacting [6-(1H-imidazol-1-yl)pyridin-2-yl]methanol with 2-(bromomethyl)-1,3,5-trimethylbenzene in acetonitrile.

In the title compound (Fig. 1), the pyridine and imidazole rings are coplanar, the dihedral angle between the plane of the pyridine ring and the plane of the imidazole ring is 0.88°. In addition, the dihedral angle between the imidazole ring and the benzene ring is 81.70 °. This might be a result of intermolecular O—H···Br interactions and steric effects. The O—H···Br and C—H···Br hydrogen bonding (Table 1) helps to stabilize the crystal structure.

Experimental

[6-(1H-Imidazol-1-yl)pyridin-2-yl]methanol was prepared with the reported methods (Hosseinzadeh et al., 2006). The title compound was synthesized by dissolving [6-(1H-imidazol-1-yl)pyridin-2-yl]methanol (0.35 g, 2.0 mmol) and 2-(bromomethyl)-1,3,5-trimethylbenzene (0.85 g, 4.0 mmol) in 10 ml of acetonitrile. The mixture was stirred at 333 K for 15 h and the resulting precipitate was filtered, washed with ether. After removal of the solvent in vacuo the off-white crude product was purified by flash chromatography (CH2Cl2/CH3OH (5/1, v/v)) to afford the product as a white solid (0.60 g, 77%). Colorless single crystals suitable for X-ray diffraction were obtained at ambient temperature by slow evaporation of a CH2Cl2/CH3OH solution (5/1, v/v)) over a period of several days.

Refinement

All H atom were positioned geometrically with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and O—H = 0.82 Å, and refined using a riding model with 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C,O) for others.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Dashed line indicates the O—H···Br hydrogen bonding.

Crystal data

C19H22N3O+·Br F(000) = 800
Mr = 388.31 Dx = 1.410 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3980 reflections
a = 11.2315 (3) Å θ = 2.8–26.7°
b = 11.5390 (3) Å µ = 2.26 mm1
c = 14.3673 (4) Å T = 296 K
β = 100.833 (2)° Block, colourless
V = 1828.82 (9) Å3 0.50 × 0.48 × 0.40 mm
Z = 4

Data collection

Bruker SAMRT CCD area-detector diffractometer 4184 independent reflections
Radiation source: fine-focus sealed tube 2287 reflections with I > 2σ(I)
graphite Rint = 0.048
φ and ω scans θmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −14→14
Tmin = 0.320, Tmax = 0.405 k = −13→14
13818 measured reflections l = −17→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.05P)2 + 0.57P] where P = (Fo2 + 2Fc2)/3
4184 reflections (Δ/σ)max < 0.001
220 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.60 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 −0.28302 (3) 0.00291 (3) −0.05646 (2) 0.05606 (10)
O1 −0.21350 (16) 0.2315 (2) 0.07160 (15) 0.0662 (7)
H1A −0.2478 0.1920 0.0271 0.099*
N1 0.09397 (17) 0.27426 (17) 0.18365 (14) 0.0321 (5)
N2 0.28135 (17) 0.30337 (16) 0.27893 (14) 0.0305 (5)
N3 0.44633 (17) 0.20953 (17) 0.27441 (14) 0.0334 (5)
C1 0.1546 (2) 0.3348 (2) 0.25443 (17) 0.0316 (6)
C2 0.1075 (2) 0.4190 (2) 0.3045 (2) 0.0445 (8)
H2A 0.1547 0.4574 0.3553 0.053*
C3 −0.0135 (3) 0.4434 (3) 0.2752 (2) 0.0531 (9)
H3A −0.0507 0.4989 0.3068 0.064*
C4 −0.0795 (2) 0.3852 (2) 0.1986 (2) 0.0444 (8)
H4A −0.1606 0.4034 0.1764 0.053*
C5 −0.0234 (2) 0.2998 (2) 0.15572 (18) 0.0356 (7)
C6 −0.0886 (2) 0.2276 (2) 0.0752 (2) 0.0445 (8)
H6A −0.0703 0.2563 0.0160 0.053*
H6B −0.0608 0.1480 0.0832 0.053*
C7 0.3316 (2) 0.2205 (2) 0.23424 (18) 0.0346 (6)
H7A 0.2919 0.1775 0.1830 0.042*
C8 0.3694 (2) 0.3481 (2) 0.34984 (18) 0.0380 (7)
H8A 0.3598 0.4075 0.3916 0.046*
C9 0.4719 (2) 0.2892 (2) 0.34690 (18) 0.0384 (7)
H9A 0.5466 0.3002 0.3866 0.046*
C10 0.5327 (2) 0.1277 (2) 0.24373 (18) 0.0376 (7)
H10A 0.5877 0.1707 0.2121 0.045*
H10B 0.4880 0.0740 0.1982 0.045*
C11 0.6055 (2) 0.0601 (2) 0.32432 (17) 0.0312 (6)
C12 0.7292 (2) 0.0816 (2) 0.35423 (17) 0.0320 (6)
C13 0.7950 (2) 0.0118 (2) 0.42336 (17) 0.0339 (6)
H13A 0.8775 0.0261 0.4427 0.041*
C14 0.7435 (2) −0.0781 (2) 0.46487 (18) 0.0368 (7)
C15 0.6197 (2) −0.0969 (2) 0.43645 (18) 0.0370 (7)
H15A 0.5830 −0.1563 0.4645 0.044*
C16 0.5498 (2) −0.0293 (2) 0.36734 (18) 0.0336 (7)
C17 0.4158 (2) −0.0533 (3) 0.3403 (2) 0.0470 (8)
H17A 0.3971 −0.1241 0.3696 0.070*
H17B 0.3935 −0.0604 0.2727 0.070*
H17C 0.3713 0.0094 0.3615 0.070*
C18 0.7936 (2) 0.1776 (2) 0.3128 (2) 0.0466 (8)
H18A 0.8792 0.1721 0.3367 0.070*
H18B 0.7643 0.2511 0.3303 0.070*
H18C 0.7783 0.1708 0.2450 0.070*
C19 0.8180 (3) −0.1551 (3) 0.5387 (2) 0.0521 (8)
H19A 0.9026 −0.1385 0.5423 0.078*
H19B 0.8026 −0.2348 0.5215 0.078*
H19C 0.7963 −0.1408 0.5992 0.078*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0685 (2) 0.04819 (17) 0.04329 (16) −0.00279 (17) −0.01057 (14) −0.00348 (15)
O1 0.0395 (11) 0.0820 (15) 0.0724 (15) −0.0069 (11) −0.0020 (11) −0.0294 (12)
N1 0.0311 (11) 0.0305 (11) 0.0330 (12) −0.0008 (9) 0.0022 (9) 0.0017 (9)
N2 0.0304 (11) 0.0302 (11) 0.0296 (11) 0.0007 (9) 0.0021 (9) 0.0001 (9)
N3 0.0290 (11) 0.0338 (11) 0.0346 (12) 0.0002 (9) −0.0014 (9) 0.0000 (9)
C1 0.0312 (13) 0.0309 (13) 0.0324 (14) 0.0006 (11) 0.0049 (11) 0.0053 (11)
C2 0.0388 (15) 0.0424 (15) 0.0495 (17) 0.0016 (13) 0.0011 (13) −0.0122 (13)
C3 0.0433 (17) 0.0473 (16) 0.068 (2) 0.0062 (14) 0.0089 (15) −0.0158 (16)
C4 0.0314 (14) 0.0379 (15) 0.0611 (19) 0.0021 (12) 0.0015 (13) −0.0063 (14)
C5 0.0373 (14) 0.0316 (13) 0.0365 (15) −0.0057 (11) 0.0031 (12) 0.0074 (11)
C6 0.0367 (15) 0.0509 (17) 0.0420 (16) −0.0047 (13) −0.0029 (13) −0.0032 (14)
C7 0.0336 (14) 0.0359 (14) 0.0319 (14) −0.0010 (12) −0.0001 (11) −0.0012 (12)
C8 0.0393 (14) 0.0377 (14) 0.0341 (15) −0.0042 (12) 0.0000 (12) −0.0040 (12)
C9 0.0355 (14) 0.0402 (15) 0.0360 (15) −0.0055 (12) −0.0023 (12) −0.0051 (12)
C10 0.0335 (14) 0.0437 (15) 0.0342 (15) 0.0039 (12) 0.0030 (12) −0.0027 (12)
C11 0.0303 (13) 0.0309 (13) 0.0317 (14) 0.0014 (11) 0.0042 (11) −0.0022 (11)
C12 0.0311 (13) 0.0320 (13) 0.0336 (14) −0.0019 (11) 0.0077 (11) −0.0022 (11)
C13 0.0246 (12) 0.0404 (15) 0.0356 (13) −0.0004 (12) 0.0031 (10) −0.0022 (12)
C14 0.0416 (15) 0.0386 (14) 0.0306 (14) 0.0082 (12) 0.0073 (12) 0.0002 (12)
C15 0.0408 (14) 0.0341 (14) 0.0383 (15) −0.0060 (12) 0.0131 (12) 0.0037 (12)
C16 0.0325 (13) 0.0332 (14) 0.0359 (14) −0.0008 (11) 0.0087 (11) −0.0080 (11)
C17 0.0353 (15) 0.0474 (16) 0.0582 (19) −0.0060 (13) 0.0088 (14) −0.0031 (15)
C18 0.0364 (15) 0.0491 (17) 0.0519 (18) −0.0067 (13) 0.0018 (13) 0.0090 (14)
C19 0.0507 (17) 0.0587 (18) 0.0465 (18) 0.0092 (15) 0.0079 (14) 0.0163 (15)

Geometric parameters (Å, °)

O1—C6 1.394 (3) C10—C11 1.504 (3)
O1—H1A 0.8200 C10—H10A 0.9700
N1—C1 1.314 (3) C10—H10B 0.9700
N1—C5 1.336 (3) C11—C12 1.398 (3)
N2—C7 1.335 (3) C11—C16 1.408 (4)
N2—C8 1.380 (3) C12—C13 1.380 (3)
N2—C1 1.447 (3) C12—C18 1.505 (4)
N3—C7 1.315 (3) C13—C14 1.377 (4)
N3—C9 1.378 (3) C13—H13A 0.9300
N3—C10 1.479 (3) C14—C15 1.390 (3)
C1—C2 1.372 (4) C14—C19 1.510 (4)
C2—C3 1.373 (4) C15—C16 1.385 (3)
C2—H2A 0.9300 C15—H15A 0.9300
C3—C4 1.380 (4) C16—C17 1.509 (3)
C3—H3A 0.9300 C17—H17A 0.9600
C4—C5 1.377 (4) C17—H17B 0.9600
C4—H4A 0.9300 C17—H17C 0.9600
C5—C6 1.500 (3) C18—H18A 0.9600
C6—H6A 0.9700 C18—H18B 0.9600
C6—H6B 0.9700 C18—H18C 0.9600
C7—H7A 0.9300 C19—H19A 0.9600
C8—C9 1.344 (3) C19—H19B 0.9600
C8—H8A 0.9300 C19—H19C 0.9600
C9—H9A 0.9300
C6—O1—H1A 109.5 C11—C10—H10A 108.9
C1—N1—C5 117.0 (2) N3—C10—H10B 108.9
C7—N2—C8 108.3 (2) C11—C10—H10B 108.9
C7—N2—C1 123.3 (2) H10A—C10—H10B 107.8
C8—N2—C1 128.4 (2) C12—C11—C16 119.5 (2)
C7—N3—C9 108.4 (2) C12—C11—C10 120.7 (2)
C7—N3—C10 125.0 (2) C16—C11—C10 119.8 (2)
C9—N3—C10 126.6 (2) C13—C12—C11 119.0 (2)
N1—C1—C2 126.0 (2) C13—C12—C18 118.8 (2)
N1—C1—N2 113.4 (2) C11—C12—C18 122.2 (2)
C2—C1—N2 120.6 (2) C14—C13—C12 122.6 (2)
C1—C2—C3 116.2 (2) C14—C13—H13A 118.7
C1—C2—H2A 121.9 C12—C13—H13A 118.7
C3—C2—H2A 121.9 C13—C14—C15 117.9 (2)
C2—C3—C4 119.8 (3) C13—C14—C19 121.6 (2)
C2—C3—H3A 120.1 C15—C14—C19 120.4 (2)
C4—C3—H3A 120.1 C16—C15—C14 121.5 (2)
C5—C4—C3 118.8 (3) C16—C15—H15A 119.2
C5—C4—H4A 120.6 C14—C15—H15A 119.2
C3—C4—H4A 120.6 C15—C16—C11 119.3 (2)
N1—C5—C4 122.1 (2) C15—C16—C17 119.0 (2)
N1—C5—C6 114.9 (2) C11—C16—C17 121.7 (2)
C4—C5—C6 123.0 (2) C16—C17—H17A 109.5
O1—C6—C5 110.7 (2) C16—C17—H17B 109.5
O1—C6—H6A 109.5 H17A—C17—H17B 109.5
C5—C6—H6A 109.5 C16—C17—H17C 109.5
O1—C6—H6B 109.5 H17A—C17—H17C 109.5
C5—C6—H6B 109.5 H17B—C17—H17C 109.5
H6A—C6—H6B 108.1 C12—C18—H18A 109.5
N3—C7—N2 109.0 (2) C12—C18—H18B 109.5
N3—C7—H7A 125.5 H18A—C18—H18B 109.5
N2—C7—H7A 125.5 C12—C18—H18C 109.5
C9—C8—N2 106.7 (2) H18A—C18—H18C 109.5
C9—C8—H8A 126.7 H18B—C18—H18C 109.5
N2—C8—H8A 126.7 C14—C19—H19A 109.5
C8—C9—N3 107.6 (2) C14—C19—H19B 109.5
C8—C9—H9A 126.2 H19A—C19—H19B 109.5
N3—C9—H9A 126.2 C14—C19—H19C 109.5
N3—C10—C11 113.2 (2) H19A—C19—H19C 109.5
N3—C10—H10A 108.9 H19B—C19—H19C 109.5
C5—N1—C1—C2 2.5 (4) C7—N3—C9—C8 0.4 (3)
C5—N1—C1—N2 −178.8 (2) C10—N3—C9—C8 178.4 (2)
C7—N2—C1—N1 −0.3 (3) C7—N3—C10—C11 −132.4 (2)
C8—N2—C1—N1 −179.0 (2) C9—N3—C10—C11 49.8 (3)
C7—N2—C1—C2 178.5 (2) N3—C10—C11—C12 −109.5 (3)
C8—N2—C1—C2 −0.2 (4) N3—C10—C11—C16 73.4 (3)
N1—C1—C2—C3 −2.0 (4) C16—C11—C12—C13 2.1 (4)
N2—C1—C2—C3 179.4 (2) C10—C11—C12—C13 −175.0 (2)
C1—C2—C3—C4 −0.8 (4) C16—C11—C12—C18 −178.5 (2)
C2—C3—C4—C5 2.8 (4) C10—C11—C12—C18 4.4 (4)
C1—N1—C5—C4 −0.2 (4) C11—C12—C13—C14 −0.5 (4)
C1—N1—C5—C6 −179.6 (2) C18—C12—C13—C14 −179.8 (2)
C3—C4—C5—N1 −2.4 (4) C12—C13—C14—C15 −1.2 (4)
C3—C4—C5—C6 177.0 (3) C12—C13—C14—C19 178.5 (2)
N1—C5—C6—O1 160.1 (2) C13—C14—C15—C16 1.2 (4)
C4—C5—C6—O1 −19.3 (4) C19—C14—C15—C16 −178.5 (3)
C9—N3—C7—N2 −0.9 (3) C14—C15—C16—C11 0.4 (4)
C10—N3—C7—N2 −179.0 (2) C14—C15—C16—C17 −179.4 (2)
C8—N2—C7—N3 1.0 (3) C12—C11—C16—C15 −2.1 (4)
C1—N2—C7—N3 −177.9 (2) C10—C11—C16—C15 175.0 (2)
C7—N2—C8—C9 −0.8 (3) C12—C11—C16—C17 177.7 (2)
C1—N2—C8—C9 178.1 (2) C10—C11—C16—C17 −5.2 (4)
N2—C8—C9—N3 0.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1A···Br1 0.82 2.49 3.227 (2) 151
C7—H7A···Br1i 0.93 2.75 3.598 (2) 152
C8—H8A···Br1ii 0.93 2.89 3.745 (2) 154
C10—H10B···Br1i 0.97 2.91 3.813 (2) 155

Symmetry codes: (i) −x, −y, −z; (ii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2459).

References

  1. Arnold, P. L. & Wilson, C. (2007). Inorg. Chim. Acta, 360, 190–196.
  2. Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chianese, A. R. & Crabtree, R. H. (2005). Organometallics, 24, 4432–4436.
  4. Dyson, G., Frison, J., Simonovic, S., Whitwood, A. C. & Douthwaite, R. E. (2008). Organometallics, 27, 281–288.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  7. Hosseinzadeh, R., Tajbakhsh, M. & Alikarami, M. (2006). Tetrahedron Lett.47, 5203–5205.
  8. Liddle, S. T., Edworthy, I. S. & Arnold, P. L. (2007). Chem. Soc. Rev.36, 1732–1744. [DOI] [PubMed]
  9. Patel, D., Liddle, S. T., Mungur, S. A., Rodden, M., Blake, A. J. & Arnold, P. L. (2006). Chem. Commun.6, 1124–1126. [DOI] [PubMed]
  10. Ren, H. P., Yao, P. Y., Xu, S. S., Song, H. B. & Wang, B. Q. (2007). J. Organomet. Chem.692, 2092–2098.
  11. Sheldrick, G. M. (1996). SADABS University of Göttinger, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808034764/xu2459sup1.cif

e-64-o2225-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034764/xu2459Isup2.hkl

e-64-o2225-Isup2.hkl (205.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES