Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 15;64(Pt 11):m1399. doi: 10.1107/S1600536808032571

Tetra­kis[tris­(2,2′-bi-1H-benzimidazole)nickel(II)] bis­(phosphate) sulfate

Chun-Sheng Ling a, Lin Yan a,*
PMCID: PMC2959627  PMID: 21580849

Abstract

The title compound, [Ni(C14H10N4)3]4(PO4)2(SO4), consists of [Ni(C14H10N4)3]2+ complex cations (.3. symmetry) and disordered anions (Inline graphic symmetry) with occupancy factors of two-thirds for PO4 3− and one-third for SO4 2−. The Ni2+ centre is chelated by three bidentate 2,2′-bi-1H-benzimidazole mol­ecules in a distorted octa­hedral coordination. N—H⋯O hydrogen bonds consolidate the building units into a framework structure.

Related literature

For the potential applications of metal–organic coordination compounds in gas absorption and separation, catalysis, non-linear optics, luminescence and magnetism, see: Kitagawa & Matsuda (2007); Maspoch et al. (2007).graphic file with name e-64-m1399-scheme1.jpg

Experimental

Crystal data

  • [Ni(C14H10N4)3]4(PO4)2(SO4)

  • M r = 3331.96

  • Cubic, Inline graphic

  • a = 24.964 (7) Å

  • V = 15558 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 296 (2) K

  • 0.32 × 0.27 × 0.23 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.834, T max = 0.876

  • 20222 measured reflections

  • 2551 independent reflections

  • 1782 reflections with I > 2σ(I)

  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.098

  • S = 1.01

  • 2551 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack (1983), 1182 Friedel pairs

  • Flack parameter: −0.02 (2)

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808032571/at2642sup1.cif

e-64-m1399-sup1.cif (21.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032571/at2642Isup2.hkl

e-64-m1399-Isup2.hkl (126.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯O1i 0.86 1.96 2.766 (4) 156
N2—H2B⋯O1ii 0.86 1.82 2.675 (4) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Basic Research Foundation for Natural Science of Henan University.

supplementary crystallographic information

Comment

More attentions have been paid to metal-organic coordination compounds (MOCCs) because of their potential applications in gas absorption and separation, catalysis, nonlinear optics, luminescence and magnetism (Kitagawa & Matsuda 2007, Maspoch et al. 2007). In the field of coordination chemistry, the N,N-bidentate ligands, such as 2,2'-bipyridine, 1,10-phenanthroline and their derivatives act as versatile ligands owing to the stable coordination configuration in the bidentate N-donors chelating manner. Herein, we report the title compound (I).

The title compound (I) consists of four [Ni(C14H10N4)3]2+ complex cations, one [SO4]2- and two [PO4]3- anions. In the mlecular structure, the Ni2+ centre is coordinated by six N atoms from three bidentate 1H,1'H-2,2'-bi-1H-benzimidazole molecules (Fig.1). The 1H,1'H-2,2'-bi-1H-benzimidazole ligand was prepared in situ and coordinated to the Ni2+ cations in hydrothermal reaction. Additionally, the [SO4]2- and [PO4]3- anions statistically distribute in one position with 1/3 probability for S and 2/3 probability for P atoms. The environment of the Ni2+ caion is in a distorted octahedral geometry with the Ni—N distances ranging from 2.088 (3) to 2.122 (3) Å (Table 1).

In addition, the [Ni(C14H10N4)3]2+ complex cations, [SO4]2- and [PO4]3- anions in the complexes are linked together via many N—H···O hydrogen bonds resulting in a three-dimensional structural frameworks (Fig.2 and Table 2).

Experimental

All reagents were commercially available and of analytical grade. The mixture of NiSO4.6H2O, H3PO4, oxalic acid, and 1,2-diaminobenzene in the mole ratio of 1: 1.5: 6: 6 was dissolved in 25 ml H2O, which was heated in a Teflon-lined steel autoclave inside a programmable electric furnace at 393 K for five days. After cooling the autoclave to room temperature, green block crystals of (I) were obtained.

Refinement

H atoms were treated as riding, with C—H = 0.93 Å and N—H = 0.86 Å, and were refined as riding with Uiso(H) = 1.2Ueq(N and C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

Fig. 2.

Fig. 2.

Three-dimensional structure of (I). Displacement ellipsoids are drawn at the 50% probability level. For clarity, H atoms not involved in hydrogen bonds are omitted.

Crystal data

[Ni(C14H10N4)3]4(PO4)2(SO4) Dx = 1.423 Mg m3
Mr = 3331.96 Mo Kα radiation, λ = 0.71073 Å
Cubic, I43d Cell parameters from 3375 reflections
Hall symbol: I -4bd 2c 3 θ = 2.3–19.2°
a = 24.964 (7) Å µ = 0.59 mm1
V = 15558 (8) Å3 T = 296 K
Z = 4 Block, green
F(000) = 6872 0.32 × 0.27 × 0.23 mm

Data collection

Bruker SMART CCD area-detector diffractometer 2551 independent reflections
Radiation source: fine-focus sealed tube 1782 reflections with I > 2σ(I)
graphite Rint = 0.066
φ and ω scans θmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −30→11
Tmin = 0.834, Tmax = 0.876 k = −30→29
20222 measured reflections l = −21→20

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0528P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
2551 reflections Δρmax = 0.61 e Å3
177 parameters Δρmin = −0.20 e Å3
0 restraints Absolute structure: Flack (1983), 1182 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.02 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Ni1 0.564621 (16) 0.435379 (16) −0.064621 (16) 0.0428 (2)
P1 0.7500 0.6250 1.0000 0.0427 (4) 0.67
S1 0.7500 0.6250 1.0000 0.0427 (4) 0.33
N1 0.64773 (10) 0.44469 (11) −0.06574 (11) 0.0443 (6)
N2 0.71668 (10) 0.50117 (12) −0.06248 (11) 0.0498 (7)
H2B 0.7340 0.5309 −0.0604 0.060*
N3 0.56297 (10) 0.42828 (11) 0.02009 (10) 0.0444 (6)
N4 0.55652 (11) 0.37290 (12) 0.08942 (11) 0.0502 (7)
H4B 0.5538 0.3435 0.1072 0.060*
C1 0.69498 (13) 0.41559 (13) −0.06917 (13) 0.0462 (8)
C2 0.70405 (15) 0.36114 (16) −0.07434 (15) 0.0594 (9)
H2 0.6758 0.3370 −0.0763 0.071*
C3 0.75637 (17) 0.34409 (18) −0.07642 (16) 0.0744 (13)
H3 0.7638 0.3077 −0.0797 0.089*
C4 0.79858 (16) 0.3808 (2) −0.07359 (16) 0.0707 (12)
H4 0.8335 0.3679 −0.0750 0.085*
C5 0.79104 (13) 0.43383 (18) −0.06895 (15) 0.0627 (10)
H5 0.8197 0.4576 −0.0670 0.075*
C6 0.73810 (12) 0.45147 (14) −0.06724 (14) 0.0473 (8)
C7 0.66286 (13) 0.49523 (14) −0.06164 (13) 0.0443 (8)
C8 0.56226 (15) 0.45873 (13) 0.06673 (14) 0.0487 (9)
C9 0.56566 (17) 0.51278 (15) 0.07424 (15) 0.0645 (11)
H9 0.5681 0.5363 0.0455 0.077*
C10 0.5653 (2) 0.53090 (18) 0.12671 (19) 0.0848 (13)
H10 0.5672 0.5675 0.1333 0.102*
C11 0.5623 (2) 0.49628 (19) 0.16920 (17) 0.0863 (14)
H11 0.5627 0.5102 0.2037 0.104*
C12 0.55859 (18) 0.44183 (18) 0.16272 (14) 0.0698 (11)
H12 0.5562 0.4186 0.1917 0.084*
C13 0.55865 (13) 0.42369 (14) 0.11042 (13) 0.0489 (8)
C14 0.55946 (13) 0.37792 (14) 0.03571 (13) 0.0443 (8)
O1 0.77314 (11) 0.59036 (9) 0.95604 (10) 0.0629 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0428 (2) 0.0428 (2) 0.0428 (2) −0.00140 (19) −0.00140 (19) 0.00140 (19)
P1 0.0469 (6) 0.0341 (9) 0.0469 (6) 0.000 0.000 0.000
S1 0.0469 (6) 0.0341 (9) 0.0469 (6) 0.000 0.000 0.000
N1 0.0386 (14) 0.0485 (17) 0.0458 (16) 0.0000 (13) −0.0006 (13) 0.0019 (15)
N2 0.0447 (17) 0.0543 (18) 0.0503 (17) −0.0083 (14) −0.0009 (14) −0.0019 (15)
N3 0.0432 (16) 0.0445 (16) 0.0456 (15) 0.0006 (15) −0.0046 (13) −0.0007 (13)
N4 0.0552 (19) 0.0518 (18) 0.0436 (17) −0.0046 (14) −0.0034 (14) 0.0093 (14)
C1 0.049 (2) 0.0486 (19) 0.0411 (18) 0.0030 (16) −0.0031 (17) −0.0036 (15)
C2 0.054 (2) 0.060 (2) 0.065 (2) 0.0073 (18) −0.0023 (19) −0.0042 (19)
C3 0.064 (3) 0.076 (3) 0.084 (3) 0.024 (2) −0.003 (2) −0.009 (2)
C4 0.045 (2) 0.097 (4) 0.070 (3) 0.021 (2) −0.002 (2) −0.014 (2)
C5 0.0439 (19) 0.083 (3) 0.061 (3) 0.000 (2) −0.0050 (18) −0.016 (3)
C6 0.0417 (19) 0.064 (2) 0.0366 (18) 0.0018 (16) −0.0048 (16) −0.0077 (17)
C7 0.044 (2) 0.048 (2) 0.0410 (19) −0.0065 (15) −0.0027 (15) −0.0012 (16)
C8 0.049 (2) 0.052 (2) 0.0449 (19) 0.0051 (16) −0.0042 (18) −0.0057 (16)
C9 0.092 (3) 0.050 (2) 0.051 (2) −0.002 (2) −0.009 (2) −0.0036 (17)
C10 0.124 (4) 0.065 (3) 0.066 (3) 0.006 (3) −0.010 (3) −0.013 (2)
C11 0.133 (4) 0.077 (3) 0.049 (3) 0.001 (3) −0.013 (3) −0.017 (2)
C12 0.093 (3) 0.074 (3) 0.042 (2) −0.006 (3) −0.005 (2) 0.001 (2)
C13 0.050 (2) 0.055 (2) 0.0423 (19) −0.0009 (18) −0.0050 (16) −0.0006 (16)
C14 0.0315 (18) 0.053 (2) 0.049 (2) −0.0032 (16) −0.0021 (15) 0.0045 (17)
O1 0.0818 (18) 0.0455 (15) 0.0616 (17) −0.0077 (13) 0.0150 (14) −0.0033 (12)

Geometric parameters (Å, °)

Ni1—N1 2.088 (3) C1—C6 1.401 (5)
Ni1—N1i 2.088 (3) C2—C3 1.375 (5)
Ni1—N1ii 2.088 (3) C2—H2 0.9300
Ni1—N3ii 2.122 (3) C3—C4 1.398 (6)
Ni1—N3 2.122 (3) C3—H3 0.9300
Ni1—N3i 2.122 (3) C4—C5 1.342 (6)
P1—O1iii 1.512 (3) C4—H4 0.9300
P1—O1iv 1.512 (3) C5—C6 1.394 (4)
P1—O1 1.512 (3) C5—H5 0.9300
P1—O1v 1.512 (3) C7—C14ii 1.435 (5)
N1—C7 1.321 (4) C8—C9 1.365 (5)
N1—C1 1.388 (4) C8—C13 1.401 (5)
N2—C7 1.352 (4) C9—C10 1.386 (6)
N2—C6 1.356 (4) C9—H9 0.9300
N2—H2B 0.8600 C10—C11 1.370 (6)
N3—C14 1.319 (4) C10—H10 0.9300
N3—C8 1.391 (4) C11—C12 1.372 (6)
N4—C14 1.349 (4) C11—H11 0.9300
N4—C13 1.373 (4) C12—C13 1.382 (5)
N4—H4B 0.8600 C12—H12 0.9300
C1—C2 1.384 (5) C14—C7i 1.435 (5)
N1—Ni1—N1i 95.67 (10) C1—C2—H2 121.2
N1—Ni1—N1ii 95.67 (10) C2—C3—C4 120.7 (4)
N1i—Ni1—N1ii 95.67 (10) C2—C3—H3 119.6
N1—Ni1—N3ii 78.84 (10) C4—C3—H3 119.6
N1i—Ni1—N3ii 170.67 (9) C5—C4—C3 123.0 (4)
N1ii—Ni1—N3ii 92.40 (9) C5—C4—H4 118.5
N1—Ni1—N3 92.40 (9) C3—C4—H4 118.5
N1i—Ni1—N3 78.84 (10) C4—C5—C6 116.6 (4)
N1ii—Ni1—N3 170.67 (9) C4—C5—H5 121.7
N3ii—Ni1—N3 93.75 (9) C6—C5—H5 121.7
N1—Ni1—N3i 170.67 (9) N2—C6—C5 131.7 (3)
N1i—Ni1—N3i 92.40 (9) N2—C6—C1 106.6 (3)
N1ii—Ni1—N3i 78.84 (10) C5—C6—C1 121.7 (3)
N3ii—Ni1—N3i 93.75 (9) N1—C7—N2 112.8 (3)
N3—Ni1—N3i 93.75 (9) N1—C7—C14ii 118.2 (3)
O1iii—P1—O1iv 110.22 (17) N2—C7—C14ii 128.9 (3)
O1iii—P1—O1 109.10 (9) C9—C8—N3 130.9 (3)
O1iv—P1—O1 109.10 (9) C9—C8—C13 121.0 (3)
O1iii—P1—O1v 109.10 (9) N3—C8—C13 108.1 (3)
O1iv—P1—O1v 109.10 (9) C8—C9—C10 116.9 (4)
O1—P1—O1v 110.22 (17) C8—C9—H9 121.6
C7—N1—C1 105.2 (3) C10—C9—H9 121.6
C7—N1—Ni1 112.9 (2) C11—C10—C9 121.7 (4)
C1—N1—Ni1 141.9 (2) C11—C10—H10 119.1
C7—N2—C6 107.0 (3) C9—C10—H10 119.1
C7—N2—H2B 126.5 C10—C11—C12 122.5 (4)
C6—N2—H2B 126.5 C10—C11—H11 118.7
C14—N3—C8 105.8 (3) C12—C11—H11 118.7
C14—N3—Ni1 112.0 (2) C11—C12—C13 115.8 (4)
C8—N3—Ni1 142.1 (2) C11—C12—H12 122.1
C14—N4—C13 107.0 (3) C13—C12—H12 122.1
C14—N4—H4B 126.5 N4—C13—C12 131.5 (3)
C13—N4—H4B 126.5 N4—C13—C8 106.4 (3)
C2—C1—N1 131.2 (3) C12—C13—C8 122.1 (3)
C2—C1—C6 120.4 (3) N3—C14—N4 112.7 (3)
N1—C1—C6 108.4 (3) N3—C14—C7i 117.7 (3)
C3—C2—C1 117.6 (4) N4—C14—C7i 129.5 (3)
C3—C2—H2 121.2
N1i—Ni1—N1—C7 −168.5 (2) C2—C1—C6—N2 179.6 (3)
N1ii—Ni1—N1—C7 95.2 (3) N1—C1—C6—N2 0.3 (4)
N3ii—Ni1—N1—C7 3.9 (2) C2—C1—C6—C5 −1.8 (5)
N3—Ni1—N1—C7 −89.5 (3) N1—C1—C6—C5 178.9 (3)
N3i—Ni1—N1—C7 41.7 (7) C1—N1—C7—N2 0.4 (4)
N1i—Ni1—N1—C1 11.1 (4) Ni1—N1—C7—N2 −179.9 (2)
N1ii—Ni1—N1—C1 −85.2 (3) C1—N1—C7—C14ii 177.6 (3)
N3ii—Ni1—N1—C1 −176.5 (4) Ni1—N1—C7—C14ii −2.6 (4)
N3—Ni1—N1—C1 90.1 (4) C6—N2—C7—N1 −0.2 (4)
N3i—Ni1—N1—C1 −138.6 (6) C6—N2—C7—C14ii −177.1 (3)
N1—Ni1—N3—C14 −100.0 (2) C14—N3—C8—C9 178.8 (4)
N1i—Ni1—N3—C14 −4.7 (2) Ni1—N3—C8—C9 −4.5 (7)
N1ii—Ni1—N3—C14 49.9 (7) C14—N3—C8—C13 0.5 (4)
N3ii—Ni1—N3—C14 −178.9 (2) Ni1—N3—C8—C13 177.2 (3)
N3i—Ni1—N3—C14 87.1 (3) N3—C8—C9—C10 −178.2 (4)
N1—Ni1—N3—C8 83.5 (4) C13—C8—C9—C10 0.0 (6)
N1i—Ni1—N3—C8 178.8 (4) C8—C9—C10—C11 0.7 (7)
N1ii—Ni1—N3—C8 −126.7 (6) C9—C10—C11—C12 −1.0 (8)
N3ii—Ni1—N3—C8 4.5 (4) C10—C11—C12—C13 0.6 (8)
N3i—Ni1—N3—C8 −89.5 (3) C14—N4—C13—C12 −178.1 (4)
C7—N1—C1—C2 −179.6 (4) C14—N4—C13—C8 0.8 (4)
Ni1—N1—C1—C2 0.7 (7) C11—C12—C13—N4 178.7 (4)
C7—N1—C1—C6 −0.4 (4) C11—C12—C13—C8 0.0 (6)
Ni1—N1—C1—C6 180.0 (3) C9—C8—C13—N4 −179.3 (3)
N1—C1—C2—C3 −179.6 (3) N3—C8—C13—N4 −0.8 (4)
C6—C1—C2—C3 1.2 (5) C9—C8—C13—C12 −0.3 (6)
C1—C2—C3—C4 −0.3 (6) N3—C8—C13—C12 178.2 (4)
C2—C3—C4—C5 −0.2 (6) C8—N3—C14—N4 0.0 (4)
C3—C4—C5—C6 −0.3 (6) Ni1—N3—C14—N4 −177.9 (2)
C7—N2—C6—C5 −178.5 (4) C8—N3—C14—C7i −177.4 (3)
C7—N2—C6—C1 0.0 (4) Ni1—N3—C14—C7i 4.8 (3)
C4—C5—C6—N2 179.5 (4) C13—N4—C14—N3 −0.5 (4)
C4—C5—C6—C1 1.3 (6) C13—N4—C14—C7i 176.5 (3)

Symmetry codes: (i) −z+1/2, −x+1, y−1/2; (ii) −y+1, z+1/2, −x+1/2; (iii) −z+7/4, −y+5/4, x+1/4; (iv) z−1/4, −y+5/4, −x+7/4; (v) −x+3/2, y, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4B···O1vi 0.86 1.96 2.766 (4) 156
N2—H2B···O1vii 0.86 1.82 2.675 (4) 170

Symmetry codes: (vi) x−1/4, −z+5/4, −y+3/4; (vii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2642).

References

  1. Bruker (2001). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Kitagawa, S. & Matsuda, R. (2007). Coord. Chem. Rev.251, 2490–2509.
  4. Maspoch, D., Ruiz-Molina, D. & Veciana, J. (2007). Chem. Soc. Rev.36, 770–818. [DOI] [PubMed]
  5. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808032571/at2642sup1.cif

e-64-m1399-sup1.cif (21.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032571/at2642Isup2.hkl

e-64-m1399-Isup2.hkl (126.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES