Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 4;64(Pt 11):o2058. doi: 10.1107/S1600536808031322

4,4′-Bipyridine–cyano­acetic acid (1/2)

Ge Song a, Er-Jun Hao a, Wei Li a,*
PMCID: PMC2959634  PMID: 21580924

Abstract

Crystals of the title adduct, C10H8N2·2C3H3NO2, were obtained from a methanol/water solution of cyano­acetic acid and 4,4′-bipyridine at room temperature. In the crystal structure, cyano­acetic acid and centrosymmetric 4,4′-bipyridine mol­ecules are linked by O—H⋯N hydrogen bonds to form three-component supra­molecular adducts. The acidic H atom is almost midway between the O and N atoms of the cyano­acetic acid and bipyridine mol­ecules, with O—H and N—H distances of 1.19 (3) and 1.39 (3) Å, respectively, so that the H-atom transfer is best regarded as partial. The three-component adducts are further inter­connected with neighboring mol­ecules by weak inter­molecular C—H⋯O and C—H⋯N hydrogen bonds and by π–π stacking inter­actions [centroid–centroid distance = 3.7200 (11) Å] to generate a three-dimensional supra­molecular structure.

Related literature

For similar partial proton transfer from a carbonic acid towards a nitro­gen base, see: Farrell et al. (2002a ,b ); For C—H⋯O and C—H⋯N hydrogen bonds, see: Balakrishna et al. (2005); Wang et al. (2008).graphic file with name e-64-o2058-scheme1.jpg

Experimental

Crystal data

  • C10H8N2·2C3H3NO2

  • M r = 326.31

  • Monoclinic, Inline graphic

  • a = 4.887 (2) Å

  • b = 21.383 (10) Å

  • c = 7.921 (4) Å

  • β = 100.664 (8)°

  • V = 813.4 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 291 (2) K

  • 0.34 × 0.26 × 0.19 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.952, T max = 0.982

  • 3537 measured reflections

  • 1487 independent reflections

  • 1153 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.133

  • S = 1.04

  • 1487 reflections

  • 112 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031322/zl2142sup1.cif

e-64-o2058-sup1.cif (13.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031322/zl2142Isup2.hkl

e-64-o2058-Isup2.hkl (73.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯N2i 0.97 2.92 3.420 (3) 113
C2—H2⋯O2ii 0.93 2.62 3.361 (3) 137
C2—H2⋯N2iii 0.93 2.75 3.322 (3) 121
O1—H1D⋯N1 1.19 (3) 1.39 (3) 2.566 (2) 170 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

Comment

A view of the title structure is shown in Fig. 1. The asymmetric unit consists of one cyanoacetic acid molecule and half a 4,4'-bipyridine molecule. The H1D was found in a Fourier map and its position was refined freely. Within the asymmetric unit, atom H1D is almost mid-way between atoms O1 and N1, so that the H-atom transfer is best regarded as partial. The distances of O1—H1D and N1—H1D are 1.19 (3) Å and 1.39 (3) Å, respectively, which are comparable with literature data (Farrell et al., 2002a,b). Cyanoacetic acid and 4,4'-bipyridine molecules are linked by these O—H···N hydrogen bonds to form 3-component supramolecular adducts.

The 3-compenent adducts interact with neigboring molecules via by weak intermolecular C—H···O and C—H···N hydrogen bonds, and by π-π stacking interactions. Within the asymmetric unit, the atoms C2 and C7 act as hydrogen-bond donors, via atoms H2, H2, and H7A, to atoms O2ii , N2iii and N2i, respectively (symmetry operators: i = x + 1/2,-y + 1/2,z + 1/2; ii = x - 1,y,z -1; iii = x - 3/2,-y + 1/2,z - 1/2). The bond lengths and angles of the above three hydrogen bonds (Table 1) are comparable with literature data (Balakrishna et al., 2005; Wang et al., 2008). These hydrogen bonds, albeit rather weak, link the 3-component supramolecular adducts into a three-dimensional supramolecular structure, which is further stabilized by weak intermolecular π-π stacking interactions, formed by adjacent bipyridine rings (centroid–centroid distance = 3.7200 (11) Å) (Fig. 2 and Fig. 3).

Experimental

Cyanoacetic acid (0.2 mmol) and 4,4'-bipyridine (0.2 mmol) were dissolved in methanol (5 ml) and water (1 ml) at room temperature. The single crystals of the title compound were obtained from the solution after ten days.

Refinement

H1D was found in a difference Fourier map and was refined with Uiso(H) = 1.5Ueq(O). All other H atoms were positioned geometrically and treated as riding, with C—H bonding lengths constrained to 0.93 (aromatic CH) or 0.97 Å (methylene CH2), and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the title compound, showing 30% probability displacement ellipsoids. Symmetry code: (iv) -x, 1 - y,-z.

Fig. 2.

Fig. 2.

A view of the three-dimensional hydrogen-bonding pattern network.

Fig. 3.

Fig. 3.

View of the π-π interactions between bipyridine rings in the crystal structure of the title compound.

Crystal data

C10H8N2·2C3H3NO2 F(000) = 340
Mr = 326.31 Dx = 1.332 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 4.887 (2) Å Cell parameters from 1445 reflections
b = 21.383 (10) Å θ = 2.8–27.1°
c = 7.921 (4) Å µ = 0.10 mm1
β = 100.664 (8)° T = 291 K
V = 813.4 (7) Å3 Block, colorless
Z = 2 0.34 × 0.26 × 0.19 mm

Data collection

Bruker SMART CCD area-detector diffractometer 1487 independent reflections
Radiation source: fine-focus sealed tube 1153 reflections with I > 2σ(I)
graphite Rint = 0.031
φ and ω scans θmax = 25.5°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Bruker, 1997) h = −5→5
Tmin = 0.952, Tmax = 0.982 k = −25→24
3537 measured reflections l = −9→7

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.1963P] where P = (Fo2 + 2Fc2)/3
1487 reflections (Δ/σ)max < 0.001
112 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.15 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.9569 (3) 0.33450 (7) 0.35022 (19) 0.0763 (5)
H1D 0.779 (6) 0.3714 (12) 0.298 (3) 0.114*
O2 1.0674 (4) 0.40335 (8) 0.5596 (2) 0.1022 (6)
N1 0.5590 (3) 0.40726 (7) 0.21445 (19) 0.0595 (4)
N2 1.4242 (5) 0.21975 (10) 0.3693 (3) 0.1017 (7)
C1 0.3898 (4) 0.38664 (9) 0.0757 (3) 0.0729 (6)
H1 0.4196 0.3468 0.0354 0.087*
C2 0.1717 (4) 0.42138 (9) −0.0118 (3) 0.0682 (6)
H2 0.0604 0.4052 −0.1100 0.082*
C3 0.1174 (3) 0.48036 (7) 0.04596 (19) 0.0464 (4)
C4 0.2939 (4) 0.50109 (9) 0.1930 (2) 0.0652 (5)
H4 0.2662 0.5402 0.2384 0.078*
C5 0.5109 (4) 0.46370 (9) 0.2722 (2) 0.0685 (6)
H5 0.6278 0.4787 0.3700 0.082*
C6 1.1058 (4) 0.35458 (9) 0.4903 (2) 0.0598 (5)
C7 1.3428 (4) 0.31156 (10) 0.5682 (3) 0.0707 (6)
H7A 1.5125 0.3360 0.5955 0.085*
H7B 1.3038 0.2948 0.6750 0.085*
C8 1.3896 (4) 0.25990 (10) 0.4580 (3) 0.0699 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0708 (9) 0.0714 (9) 0.0772 (9) 0.0193 (7) −0.0112 (7) −0.0097 (7)
O2 0.1424 (17) 0.0813 (11) 0.0760 (11) 0.0340 (11) 0.0021 (10) −0.0164 (8)
N1 0.0558 (9) 0.0595 (9) 0.0611 (9) 0.0096 (7) 0.0053 (7) 0.0059 (7)
N2 0.1006 (16) 0.0809 (13) 0.1175 (17) 0.0300 (12) 0.0043 (13) −0.0100 (12)
C1 0.0752 (14) 0.0532 (11) 0.0818 (14) 0.0146 (9) −0.0073 (11) −0.0079 (9)
C2 0.0700 (13) 0.0540 (10) 0.0708 (12) 0.0087 (9) −0.0122 (10) −0.0092 (9)
C3 0.0465 (9) 0.0460 (8) 0.0468 (8) 0.0003 (7) 0.0088 (7) 0.0027 (7)
C4 0.0685 (12) 0.0620 (11) 0.0592 (11) 0.0143 (9) −0.0038 (9) −0.0121 (8)
C5 0.0663 (13) 0.0744 (12) 0.0583 (11) 0.0123 (10) −0.0051 (9) −0.0077 (9)
C6 0.0676 (12) 0.0595 (10) 0.0536 (10) 0.0058 (9) 0.0143 (9) 0.0026 (8)
C7 0.0672 (13) 0.0827 (13) 0.0586 (11) 0.0084 (10) 0.0025 (9) 0.0020 (9)
C8 0.0613 (12) 0.0669 (12) 0.0773 (14) 0.0145 (10) 0.0021 (10) 0.0099 (10)

Geometric parameters (Å, °)

O1—C6 1.283 (2) C3—C4 1.388 (2)
O1—H1D 1.19 (3) C3—C3i 1.498 (3)
O2—C6 1.209 (2) C4—C5 1.382 (3)
N1—C1 1.323 (2) C4—H4 0.9300
N1—C5 1.327 (2) C5—H5 0.9300
N2—C8 1.142 (3) C6—C7 1.518 (3)
C1—C2 1.377 (3) C7—C8 1.452 (3)
C1—H1 0.9300 C7—H7A 0.9700
C2—C3 1.384 (2) C7—H7B 0.9700
C2—H2 0.9300
C6—O1—H1D 109.8 (12) C5—C4—H4 119.9
C1—N1—C5 117.80 (16) C3—C4—H4 119.9
C1—N1—H1D 121.6 (10) N1—C5—C4 122.65 (17)
C5—N1—H1D 120.6 (10) N1—C5—H5 118.7
C1—N1—H1D 121.6 (10) C4—C5—H5 118.7
C5—N1—H1D 120.6 (10) O2—C6—O1 124.78 (19)
N1—C1—C2 123.03 (18) O2—C6—C7 120.59 (19)
N1—C1—H1 118.5 O1—C6—C7 114.63 (17)
C2—C1—H1 118.5 C8—C7—C6 114.18 (17)
C1—C2—C3 120.22 (18) C8—C7—H7A 108.7
C1—C2—H2 119.9 C6—C7—H7A 108.7
C3—C2—H2 119.9 C8—C7—H7B 108.7
C2—C3—C4 116.19 (16) C6—C7—H7B 108.7
C2—C3—C3i 121.79 (18) H7A—C7—H7B 107.6
C4—C3—C3i 122.02 (18) N2—C8—C7 179.0 (2)
C5—C4—C3 120.11 (17)
C5—N1—C1—C2 1.2 (3) C3i—C3—C4—C5 −178.96 (19)
H1D—N1—C1—C2 −179.1 (12) C1—N1—C5—C4 −0.3 (3)
N1—C1—C2—C3 −1.2 (3) H1D—N1—C5—C4 −180.0 (12)
C1—C2—C3—C4 0.2 (3) C3—C4—C5—N1 −0.7 (3)
C1—C2—C3—C3i 179.8 (2) O2—C6—C7—C8 −170.9 (2)
C2—C3—C4—C5 0.7 (3) O1—C6—C7—C8 9.4 (3)

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7A···N2ii 0.97 2.92 3.420 (3) 113
C2—H2···O2iii 0.93 2.62 3.361 (3) 137
C2—H2···N2iv 0.93 2.75 3.322 (3) 121
O1—H1D···N1 1.19 (3) 1.39 (3) 2.566 (2) 170 (2)

Symmetry codes: (ii) x+1/2, −y+1/2, z+1/2; (iii) x−1, y, z−1; (iv) x−3/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2142).

References

  1. Balakrishna, R. B., Srinivas, B. & Ashwini, N. (2005). Cryst. Growth Des.5, 1683–1686.
  2. Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrell, D. M. M., Ferguson, G., Lough, A. J. & Glidewell, C. (2002a). Acta Cryst. B58, 272–288. [DOI] [PubMed]
  4. Farrell, D. M. M., Ferguson, G., Lough, A. J. & Glidewell, C. (2002b). Acta Cryst. B58, 530–544. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wang, Y.-T., Tang, G.-M., Zhang, Y.-C. & Wan, W.-Z. (2008). Acta Cryst. E64, o1753. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808031322/zl2142sup1.cif

e-64-o2058-sup1.cif (13.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031322/zl2142Isup2.hkl

e-64-o2058-Isup2.hkl (73.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES