Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 4;64(Pt 11):o2052–o2053. doi: 10.1107/S1600536808031206

Ethyl 4′-ethenyl-2′-oxo-4-phenyl-2-(3,4,5-trimethoxy­phen­yl)spiro­[pyrrolidine-3,3′-indoline]-5-carboxyl­ate monohydrate

M Sathyanarayanan a, P Ramesh b, Ramalingam Murugan c, S Sriman Narayanan c, M N Ponnuswamy d,*
PMCID: PMC2959656  PMID: 21580920

Abstract

In the title compound, C31H32N2O6·H2O, the pyrrolidine ring adopts an envelope conformation. The ethyl C atoms of the ethoxy­cabonyl group are disordered over two positions with occupancies of ca 0.80 and 0.20. Intra­molecular N—H⋯O hydrogen bonds form S(5) and S(6) ring motifs. Mol­ecules are linked into a three-dimensional framework by O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, and by C—H⋯π inter­actions.

Related literature

For related literature, see: Amalraj et al. (2003); Beddoes et al. (1986); Cordell (1981); Suzuki et al. (1994). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).graphic file with name e-64-o2052-scheme1.jpg

Experimental

Crystal data

  • C31H32N2O6·H2O

  • M r = 546.60

  • Hexagonal, Inline graphic

  • a = 38.8029 (10) Å

  • c = 11.0307 (3) Å

  • V = 14383.4 (7) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.23 × 0.21 × 0.17 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS, Sheldrick, 2001) T min = 0.982, T max = 0.986

  • 111058 measured reflections

  • 7909 independent reflections

  • 5572 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.141

  • S = 1.05

  • 7909 reflections

  • 399 parameters

  • 29 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808031206/ci2651sup1.cif

e-64-o2052-sup1.cif (29.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031206/ci2651Isup2.hkl

e-64-o2052-Isup2.hkl (379.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 (2) 2.419 (18) 2.8088 (18) 108 (1)
N1—H1⋯O3 0.86 (2) 2.376 (18) 2.9395 (17) 123 (1)
O4—H4B⋯O1i 0.85 (3) 2.142 (18) 2.909 (2) 150 (3)
N16—H16⋯O3ii 0.87 (2) 1.99 (2) 2.8449 (17) 166 (2)
C5—H5⋯O5iii 0.98 2.45 3.3197 (18) 147
C18—H18⋯O4iv 0.93 2.46 3.357 (2) 162
C24—H24BCg1iii 0.93 2.93 3.776 (2) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

MS thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection.

supplementary crystallographic information

Comment

Substituted pyrrolidine compounds possess antimicrobial and antifungal activity against various pathogens (Amalraj et al., 2003). Several optically active pyrrolidine compounds are used as intermediates in controlled asymmetric synthesis (Suzuki et al., 1994). The spiro-indole-pyrrolidine ring system is a frequently encountered structural motif in many biologically important and pharmacologically relevant alkaloids, e.g. vincrinstine, vinblastine and spirotypostatins (Cordell, 1981). Against this background and to ascertain the detailed information on its molecular conformation, the structure determination of the title compound has been carried out.

The pyrrolidine ring (N1—C5) adopts an envelope conformation, with puckering (Cremer & Pople, 1975) and asymmetry (Nardelli, 1983) parameters q2 = 0.416 (2) Å, φ = 137.5 (2)° and Δs(C5) = 2.8 (2)°. The indoline ring system is planar and the keto atom O3 lies on the plane. The sum of angles at atom N1 of the pyrrolidine ring (323.3°) is in accordance with sp3 hybridization (Beddoes et al., 1986). The ethoxycarbonyl group is in an extended conformation as evidenced by torsion angles C2—C6—O2—C7 of -170.3 (3)° and C6—O2—C7—C8 of 170.3 (3)°.

Intramolecular N1—H1···O1 and N1—H1···O3 hydrogen bonds generate S(5) and S(6) ring motifs (Bernstein et al. 1995), respectively. The crystal packing is stabilized by O—H···O, O—H···N, N—H···O and C—H···O hydrogen bonds, and C—H···π intermolecular interactions (Table 1) which link the molecules into a three-dimensional framework.

Experimental

3-Arylidene-4-vinylindoline-2-one (0.5 g, 1.0 mol) and (E)-ethyl-2-(3,4,5-trimethoxybenzylideneamino)acetate (0.15 g, 1.0 mol) in acetonitrile (10 ml) was stirred in the presence of catalytic amount of AgOAc and triethylamine. The obtained crude product was recrystallized in n-hexane-acetone (8:2 v/v).

Refinement

The ethyl C atoms of the ethoxycarbonyl group are disordered over two positions (C7/C7A and C8/C8A) with refined occupancies of 0.797 (8) and 0.203 (8). The corresponding bond distances involving the disordered atoms were restrained to 1.54 (5) Å, and also the Uij parameters of atoms C7, C7A, C8 and C8A were restrained to an approximate isotropic behaviour. The O– and N-bound H atoms were located in a difference map and refined with O—H and H···H distances restrained to 0.84 (1) and 1.37 (1) Å, respectively. The remaining H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2–1.5(methyl) Ueq(C). A search for solvent-accessible voids in the crystal structure using PLATON showed a potential solvent volume of 2189.3 Å3 and subsequent application of SQUEEZE procedures showed three relevant voids each with a solvent-accessible volume of 730 Å3. However, this procedure showed no electrons in the voids. This indicates that the crystal lost nearly all of its solvent of crystallization by the time it was used for data collection, without collapse of the structure.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Both disorder components are shown.

Crystal data

C31H32N2O6·H2O Dx = 1.136 Mg m3
Mr = 546.60 Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R3 Cell parameters from 5683 reflections
Hall symbol: -R 3 θ = 1.1–28.2°
a = 38.8029 (10) Å µ = 0.08 mm1
c = 11.0307 (3) Å T = 293 K
V = 14383.4 (7) Å3 Block, colourless
Z = 18 0.23 × 0.21 × 0.17 mm
F(000) = 5220

Data collection

Bruker Kappa APEXII area-detector diffractometer 7909 independent reflections
Radiation source: fine-focus sealed tube 5572 reflections with I > 2σ(I)
graphite Rint = 0.035
ω and φ scans θmax = 28.2°, θmin = 1.9°
Absorption correction: multi-scan (SADABS, Sheldrick, 2001) h = −51→51
Tmin = 0.982, Tmax = 0.986 k = −51→51
111058 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0548P)2 + 16.9913P] where P = (Fo2 + 2Fc2)/3
7909 reflections (Δ/σ)max = 0.001
399 parameters Δρmax = 0.26 e Å3
29 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.56007 (4) 0.06180 (4) 0.10291 (14) 0.0633 (4)
O2 0.56908 (4) 0.12184 (4) 0.05914 (13) 0.0619 (4)
O3 0.50835 (3) 0.01984 (3) 0.34955 (10) 0.0412 (3)
O5 0.31168 (3) −0.07849 (4) 0.31585 (11) 0.0499 (3)
O6 0.33393 (4) −0.13259 (3) 0.34016 (11) 0.0501 (3)
O7 0.40791 (4) −0.11581 (4) 0.28214 (13) 0.0556 (3)
N1 0.47767 (4) 0.03182 (4) 0.11926 (11) 0.0385 (3)
H1 0.4898 (5) 0.0196 (5) 0.1441 (16) 0.041 (5)*
N16 0.47798 (4) 0.03293 (4) 0.50612 (12) 0.0400 (3)
H16 0.4835 (5) 0.0200 (6) 0.5595 (18) 0.048 (5)*
C2 0.50558 (5) 0.07457 (5) 0.12126 (13) 0.0392 (3)
H2 0.4975 0.0866 0.0572 0.047*
C3 0.50071 (4) 0.09151 (5) 0.24589 (13) 0.0376 (3)
H3 0.4867 0.1059 0.2262 0.045*
C4 0.46974 (4) 0.05359 (4) 0.31510 (12) 0.0326 (3)
C5 0.44655 (4) 0.02552 (4) 0.20623 (12) 0.0337 (3)
H5 0.4309 0.0362 0.1690 0.040*
C6 0.54749 (5) 0.08427 (6) 0.09354 (15) 0.0467 (4)
C7 0.61222 (16) 0.13632 (13) 0.0495 (5) 0.0722 (13) 0.797 (8)
H7A 0.6178 0.1242 −0.0189 0.087* 0.797 (8)
H7B 0.6221 0.1305 0.1229 0.087* 0.797 (8)
C8 0.63069 (12) 0.18077 (11) 0.0316 (6) 0.121 (2) 0.797 (8)
H8A 0.6259 0.1860 −0.0499 0.182* 0.797 (8)
H8B 0.6588 0.1935 0.0456 0.182* 0.797 (8)
H8C 0.6191 0.1910 0.0876 0.182* 0.797 (8)
C7A 0.6071 (7) 0.1388 (7) 0.0101 (16) 0.068 (5) 0.203 (8)
H7C 0.6102 0.1568 −0.0554 0.081* 0.203 (8)
H7D 0.6121 0.1184 −0.0212 0.081* 0.203 (8)
C8A 0.6359 (5) 0.1615 (6) 0.1138 (16) 0.109 (6) 0.203 (8)
H8D 0.6324 0.1434 0.1780 0.163* 0.203 (8)
H8E 0.6305 0.1816 0.1439 0.163* 0.203 (8)
H8F 0.6628 0.1739 0.0846 0.163* 0.203 (8)
C9 0.53732 (5) 0.12089 (5) 0.31560 (16) 0.0463 (4)
C10 0.54234 (7) 0.15785 (7) 0.3395 (3) 0.0837 (8)
H10 0.5233 0.1640 0.3128 0.100*
C11 0.57526 (10) 0.18618 (9) 0.4028 (4) 0.1240 (13)
H11 0.5782 0.2111 0.4177 0.149*
C12 0.60336 (9) 0.17751 (10) 0.4432 (3) 0.1093 (11)
H12 0.6255 0.1965 0.4855 0.131*
C13 0.59885 (7) 0.14127 (8) 0.4215 (2) 0.0780 (7)
H13 0.6178 0.1353 0.4496 0.094*
C14 0.56632 (5) 0.11301 (6) 0.35802 (17) 0.0554 (5)
H14 0.5638 0.0882 0.3434 0.066*
C15 0.48836 (4) 0.03372 (4) 0.38989 (13) 0.0345 (3)
C17 0.45453 (4) 0.05069 (5) 0.52273 (13) 0.0370 (3)
C18 0.44120 (5) 0.05730 (5) 0.63084 (14) 0.0469 (4)
H18 0.4468 0.0495 0.7044 0.056*
C19 0.41904 (5) 0.07617 (6) 0.62473 (15) 0.0507 (4)
H19 0.4099 0.0816 0.6960 0.061*
C20 0.41024 (5) 0.08710 (5) 0.51543 (15) 0.0446 (4)
H20 0.3951 0.0996 0.5148 0.054*
C21 0.42347 (4) 0.07994 (4) 0.40474 (13) 0.0366 (3)
C22 0.44694 (4) 0.06215 (4) 0.41045 (12) 0.0329 (3)
C23 0.41162 (5) 0.09042 (5) 0.28964 (15) 0.0430 (4)
H23 0.4249 0.0898 0.2202 0.052*
C24 0.38483 (8) 0.10039 (9) 0.2753 (2) 0.0826 (8)
H24A 0.3707 0.1015 0.3419 0.099*
H24B 0.3796 0.1065 0.1984 0.099*
C25 0.41775 (4) −0.01738 (4) 0.23731 (12) 0.0344 (3)
C26 0.37872 (4) −0.02733 (5) 0.26238 (13) 0.0363 (3)
H26 0.3714 −0.0079 0.2588 0.044*
C27 0.35070 (4) −0.06595 (5) 0.29254 (13) 0.0377 (3)
C28 0.36146 (5) −0.09500 (5) 0.30097 (14) 0.0392 (3)
C29 0.40046 (5) −0.08511 (5) 0.27477 (14) 0.0401 (3)
C30 0.42853 (5) −0.04645 (5) 0.24184 (14) 0.0396 (3)
H30 0.4544 −0.0401 0.2230 0.048*
C31 0.29816 (5) −0.05142 (6) 0.29070 (19) 0.0546 (5)
H31A 0.2701 −0.0640 0.3062 0.082*
H31B 0.3032 −0.0435 0.2072 0.082*
H31C 0.3120 −0.0284 0.3416 0.082*
C32 0.31732 (7) −0.16139 (7) 0.2477 (2) 0.0876 (9)
H32A 0.2983 −0.1865 0.2822 0.131*
H32B 0.3380 −0.1639 0.2085 0.131*
H32C 0.3044 −0.1533 0.1894 0.131*
C33 0.44799 (6) −0.10687 (6) 0.2791 (2) 0.0670 (6)
H33A 0.4490 −0.1309 0.2889 0.100*
H33B 0.4625 −0.0888 0.3437 0.100*
H33C 0.4597 −0.0948 0.2028 0.100*
O4 0.31014 (5) 0.11716 (5) 0.52433 (13) 0.0667 (4)
H4A 0.3088 (8) 0.1132 (9) 0.6004 (10) 0.110 (11)*
H4B 0.3348 (4) 0.1306 (9) 0.507 (2) 0.122 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0469 (7) 0.0699 (9) 0.0813 (10) 0.0354 (7) 0.0131 (7) 0.0068 (7)
O2 0.0454 (7) 0.0612 (8) 0.0703 (9) 0.0201 (6) 0.0217 (6) 0.0187 (7)
O3 0.0417 (6) 0.0510 (7) 0.0404 (6) 0.0303 (5) 0.0012 (5) 0.0064 (5)
O5 0.0351 (6) 0.0546 (7) 0.0608 (7) 0.0231 (6) 0.0113 (5) 0.0135 (6)
O6 0.0465 (7) 0.0408 (6) 0.0553 (7) 0.0161 (5) 0.0091 (5) 0.0048 (5)
O7 0.0459 (7) 0.0424 (7) 0.0841 (9) 0.0262 (6) 0.0031 (6) 0.0014 (6)
N1 0.0389 (7) 0.0463 (8) 0.0349 (6) 0.0247 (6) 0.0067 (5) 0.0077 (5)
N16 0.0442 (7) 0.0492 (8) 0.0330 (6) 0.0281 (7) −0.0007 (5) 0.0077 (6)
C2 0.0381 (8) 0.0459 (9) 0.0357 (7) 0.0226 (7) 0.0052 (6) 0.0112 (6)
C3 0.0355 (8) 0.0409 (8) 0.0398 (8) 0.0218 (7) 0.0056 (6) 0.0095 (6)
C4 0.0295 (7) 0.0374 (8) 0.0331 (7) 0.0184 (6) 0.0013 (5) 0.0054 (6)
C5 0.0321 (7) 0.0427 (8) 0.0307 (7) 0.0219 (7) 0.0010 (5) 0.0049 (6)
C6 0.0409 (9) 0.0566 (11) 0.0407 (8) 0.0231 (8) 0.0088 (7) 0.0068 (7)
C7 0.043 (2) 0.079 (2) 0.078 (3) 0.0183 (18) 0.019 (2) 0.013 (2)
C8 0.073 (2) 0.080 (3) 0.164 (5) 0.0039 (19) 0.033 (3) 0.003 (3)
C7A 0.050 (7) 0.077 (8) 0.069 (8) 0.026 (5) 0.003 (6) 0.024 (6)
C8A 0.089 (8) 0.114 (10) 0.111 (10) 0.042 (7) 0.006 (7) −0.015 (7)
C9 0.0394 (9) 0.0424 (9) 0.0493 (9) 0.0146 (7) 0.0091 (7) 0.0039 (7)
C10 0.0583 (13) 0.0541 (13) 0.134 (2) 0.0244 (11) −0.0018 (14) −0.0212 (14)
C11 0.085 (2) 0.0677 (18) 0.199 (4) 0.0227 (16) −0.010 (2) −0.057 (2)
C12 0.0620 (16) 0.101 (2) 0.129 (3) 0.0137 (16) −0.0146 (16) −0.050 (2)
C13 0.0464 (12) 0.0876 (18) 0.0723 (14) 0.0127 (11) −0.0080 (10) −0.0029 (12)
C14 0.0428 (10) 0.0570 (11) 0.0559 (10) 0.0170 (9) −0.0032 (8) 0.0038 (8)
C15 0.0306 (7) 0.0368 (8) 0.0356 (7) 0.0165 (6) −0.0016 (5) 0.0049 (6)
C17 0.0352 (8) 0.0393 (8) 0.0357 (7) 0.0181 (7) 0.0010 (6) 0.0039 (6)
C18 0.0512 (10) 0.0565 (10) 0.0331 (7) 0.0271 (8) 0.0021 (7) 0.0032 (7)
C19 0.0534 (10) 0.0622 (11) 0.0385 (8) 0.0304 (9) 0.0083 (7) −0.0018 (7)
C20 0.0424 (9) 0.0494 (9) 0.0472 (9) 0.0268 (8) 0.0073 (7) 0.0005 (7)
C21 0.0333 (7) 0.0380 (8) 0.0387 (7) 0.0180 (6) 0.0038 (6) 0.0037 (6)
C22 0.0305 (7) 0.0347 (7) 0.0322 (7) 0.0154 (6) 0.0020 (5) 0.0036 (5)
C23 0.0446 (9) 0.0526 (10) 0.0425 (8) 0.0324 (8) 0.0042 (7) 0.0052 (7)
C24 0.0934 (17) 0.149 (2) 0.0544 (12) 0.0973 (19) 0.0075 (11) 0.0120 (13)
C25 0.0329 (7) 0.0418 (8) 0.0292 (6) 0.0193 (6) −0.0002 (5) 0.0013 (6)
C26 0.0367 (8) 0.0432 (8) 0.0340 (7) 0.0236 (7) 0.0018 (6) 0.0034 (6)
C27 0.0317 (7) 0.0483 (9) 0.0321 (7) 0.0194 (7) 0.0031 (5) 0.0020 (6)
C28 0.0381 (8) 0.0400 (8) 0.0355 (7) 0.0164 (7) 0.0023 (6) 0.0005 (6)
C29 0.0406 (8) 0.0410 (8) 0.0418 (8) 0.0226 (7) −0.0008 (6) −0.0028 (6)
C30 0.0334 (8) 0.0447 (9) 0.0432 (8) 0.0213 (7) 0.0017 (6) −0.0012 (6)
C31 0.0411 (9) 0.0628 (12) 0.0665 (11) 0.0310 (9) 0.0115 (8) 0.0136 (9)
C32 0.0689 (15) 0.0558 (13) 0.0984 (18) 0.0013 (11) 0.0245 (13) −0.0236 (12)
C33 0.0528 (12) 0.0571 (12) 0.1029 (17) 0.0365 (10) 0.0078 (11) 0.0063 (11)
O4 0.0785 (11) 0.0625 (9) 0.0496 (8) 0.0280 (8) 0.0013 (7) 0.0025 (7)

Geometric parameters (Å, °)

O1—C6 1.198 (2) C10—C11 1.387 (4)
O2—C6 1.323 (2) C10—H10 0.93
O2—C7A 1.39 (2) C11—C12 1.367 (5)
O2—C7 1.479 (6) C11—H11 0.93
O3—C15 1.2281 (18) C12—C13 1.349 (4)
O5—C27 1.3632 (18) C12—H12 0.93
O5—C31 1.417 (2) C13—C14 1.379 (3)
O6—C28 1.3774 (19) C13—H13 0.93
O6—C32 1.409 (3) C14—H14 0.93
O7—C29 1.3618 (19) C17—C18 1.374 (2)
O7—C33 1.414 (2) C17—C22 1.396 (2)
N1—C2 1.459 (2) C18—C19 1.382 (3)
N1—C5 1.4639 (18) C18—H18 0.93
N1—H1 0.864 (19) C19—C20 1.377 (2)
N16—C15 1.3397 (19) C19—H19 0.93
N16—C17 1.401 (2) C20—C21 1.405 (2)
N16—H16 0.87 (2) C20—H20 0.93
C2—C6 1.506 (2) C21—C22 1.392 (2)
C2—C3 1.575 (2) C21—C23 1.475 (2)
C2—H2 0.98 C23—C24 1.288 (3)
C3—C9 1.513 (2) C23—H23 0.93
C3—C4 1.557 (2) C24—H24A 0.93
C3—H3 0.98 C24—H24B 0.93
C4—C22 1.514 (2) C25—C30 1.386 (2)
C4—C15 1.5344 (19) C25—C26 1.391 (2)
C4—C5 1.568 (2) C26—C27 1.382 (2)
C5—C25 1.509 (2) C26—H26 0.93
C5—H5 0.98 C27—C28 1.387 (2)
C7—C8 1.514 (4) C28—C29 1.393 (2)
C7—H7A 0.97 C29—C30 1.391 (2)
C7—H7B 0.97 C30—H30 0.93
C8—H8A 0.96 C31—H31A 0.96
C8—H8B 0.96 C31—H31B 0.96
C8—H8C 0.96 C31—H31C 0.96
C7A—C8A 1.532 (5) C32—H32A 0.96
C7A—H7C 0.97 C32—H32B 0.96
C7A—H7D 0.97 C32—H32C 0.96
C8A—H8D 0.96 C33—H33A 0.96
C8A—H8E 0.96 C33—H33B 0.96
C8A—H8F 0.96 C33—H33C 0.96
C9—C10 1.373 (3) O4—H4A 0.850 (10)
C9—C14 1.387 (3) O4—H4B 0.85 (3)
C6—O2—C7A 124.8 (11) C13—C12—H12 120.2
C6—O2—C7 114.3 (2) C11—C12—H12 120.2
C7A—O2—C7 20.0 (6) C12—C13—C14 120.6 (3)
C27—O5—C31 117.10 (13) C12—C13—H13 119.7
C28—O6—C32 114.69 (15) C14—C13—H13 119.7
C29—O7—C33 118.19 (14) C13—C14—C9 121.1 (2)
C2—N1—C5 105.16 (12) C13—C14—H14 119.4
C2—N1—H1 108.6 (12) C9—C14—H14 119.4
C5—N1—H1 109.4 (12) O3—C15—N16 125.83 (13)
C15—N16—C17 112.06 (12) O3—C15—C4 125.81 (13)
C15—N16—H16 120.3 (13) N16—C15—C4 108.32 (12)
C17—N16—H16 127.2 (13) C18—C17—C22 123.46 (15)
N1—C2—C6 112.10 (14) C18—C17—N16 127.07 (14)
N1—C2—C3 108.17 (11) C22—C17—N16 109.45 (13)
C6—C2—C3 114.37 (13) C17—C18—C19 116.65 (15)
N1—C2—H2 107.3 C17—C18—H18 121.7
C6—C2—H2 107.3 C19—C18—H18 121.7
C3—C2—H2 107.3 C20—C19—C18 121.46 (15)
C9—C3—C4 116.95 (12) C20—C19—H19 119.3
C9—C3—C2 119.65 (13) C18—C19—H19 119.3
C4—C3—C2 103.33 (12) C19—C20—C21 121.92 (16)
C9—C3—H3 105.2 C19—C20—H20 119.0
C4—C3—H3 105.2 C21—C20—H20 119.0
C2—C3—H3 105.2 C22—C21—C20 116.93 (14)
C22—C4—C15 102.14 (11) C22—C21—C23 123.17 (13)
C22—C4—C3 113.14 (12) C20—C21—C23 119.89 (14)
C15—C4—C3 113.80 (12) C21—C22—C17 119.51 (13)
C22—C4—C5 119.27 (12) C21—C22—C4 132.54 (13)
C15—C4—C5 108.28 (12) C17—C22—C4 107.86 (12)
C3—C4—C5 100.64 (11) C24—C23—C21 126.75 (17)
N1—C5—C25 115.29 (12) C24—C23—H23 116.6
N1—C5—C4 104.29 (11) C21—C23—H23 116.6
C25—C5—C4 116.34 (11) C23—C24—H24A 120.0
N1—C5—H5 106.8 C23—C24—H24B 120.0
C25—C5—H5 106.8 H24A—C24—H24B 120.0
C4—C5—H5 106.8 C30—C25—C26 119.79 (14)
O1—C6—O2 124.28 (16) C30—C25—C5 123.19 (13)
O1—C6—C2 125.63 (16) C26—C25—C5 117.02 (13)
O2—C6—C2 110.08 (15) C27—C26—C25 120.38 (14)
O2—C7—C8 104.1 (4) C27—C26—H26 119.8
O2—C7—H7A 110.9 C25—C26—H26 119.8
C8—C7—H7A 110.9 O5—C27—C26 124.30 (14)
O2—C7—H7B 110.9 O5—C27—C28 115.41 (14)
C8—C7—H7B 110.9 C26—C27—C28 120.29 (14)
H7A—C7—H7B 109.0 O6—C28—C27 119.52 (14)
C7—C8—H8A 109.5 O6—C28—C29 121.14 (15)
C7—C8—H8B 109.5 C27—C28—C29 119.28 (14)
H8A—C8—H8B 109.5 O7—C29—C30 124.38 (14)
C7—C8—H8C 109.5 O7—C29—C28 115.04 (14)
H8A—C8—H8C 109.5 C30—C29—C28 120.56 (14)
H8B—C8—H8C 109.5 C25—C30—C29 119.65 (14)
O2—C7A—C8A 106.2 (15) C25—C30—H30 120.2
O2—C7A—H7C 110.5 C29—C30—H30 120.2
C8A—C7A—H7C 110.5 O5—C31—H31A 109.5
O2—C7A—H7D 110.5 O5—C31—H31B 109.5
C8A—C7A—H7D 110.5 H31A—C31—H31B 109.5
H7C—C7A—H7D 108.7 O5—C31—H31C 109.5
C7A—C8A—H8D 109.5 H31A—C31—H31C 109.5
C7A—C8A—H8E 109.5 H31B—C31—H31C 109.5
H8D—C8A—H8E 109.5 O6—C32—H32A 109.5
C7A—C8A—H8F 109.5 O6—C32—H32B 109.5
H8D—C8A—H8F 109.5 H32A—C32—H32B 109.5
H8E—C8A—H8F 109.5 O6—C32—H32C 109.5
C10—C9—C14 117.30 (19) H32A—C32—H32C 109.5
C10—C9—C3 118.31 (18) H32B—C32—H32C 109.5
C14—C9—C3 124.39 (16) O7—C33—H33A 109.5
C9—C10—C11 121.2 (3) O7—C33—H33B 109.5
C9—C10—H10 119.4 H33A—C33—H33B 109.5
C11—C10—H10 119.4 O7—C33—H33C 109.5
C12—C11—C10 120.1 (3) H33A—C33—H33C 109.5
C12—C11—H11 120.0 H33B—C33—H33C 109.5
C10—C11—H11 120.0 H4A—O4—H4B 106.1 (15)
C13—C12—C11 119.7 (3)
C5—N1—C2—C6 149.93 (13) C5—C4—C15—N16 −128.16 (13)
C5—N1—C2—C3 22.92 (15) C15—N16—C17—C18 −175.19 (16)
N1—C2—C3—C9 135.98 (14) C15—N16—C17—C22 3.36 (18)
C6—C2—C3—C9 10.3 (2) C22—C17—C18—C19 0.3 (3)
N1—C2—C3—C4 3.84 (15) N16—C17—C18—C19 178.67 (16)
C6—C2—C3—C4 −121.84 (14) C17—C18—C19—C20 1.1 (3)
C9—C3—C4—C22 71.14 (17) C18—C19—C20—C21 −0.4 (3)
C2—C3—C4—C22 −155.16 (12) C19—C20—C21—C22 −1.7 (2)
C9—C3—C4—C15 −44.87 (18) C19—C20—C21—C23 177.00 (16)
C2—C3—C4—C15 88.82 (14) C20—C21—C22—C17 3.0 (2)
C9—C3—C4—C5 −160.45 (13) C23—C21—C22—C17 −175.60 (15)
C2—C3—C4—C5 −26.75 (13) C20—C21—C22—C4 −172.97 (15)
C2—N1—C5—C25 −169.62 (12) C23—C21—C22—C4 8.4 (3)
C2—N1—C5—C4 −40.81 (14) C18—C17—C22—C21 −2.5 (2)
C22—C4—C5—N1 166.34 (12) N16—C17—C22—C21 178.91 (13)
C15—C4—C5—N1 −77.61 (13) C18—C17—C22—C4 174.44 (15)
C3—C4—C5—N1 42.03 (13) N16—C17—C22—C4 −4.17 (17)
C22—C4—C5—C25 −65.48 (17) C15—C4—C22—C21 179.73 (16)
C15—C4—C5—C25 50.57 (16) C3—C4—C22—C21 57.0 (2)
C3—C4—C5—C25 170.21 (12) C5—C4—C22—C21 −61.0 (2)
C7A—O2—C6—O1 11.2 (8) C15—C4—C22—C17 3.37 (15)
C7—O2—C6—O1 −8.5 (4) C3—C4—C22—C17 −119.37 (13)
C7A—O2—C6—C2 −170.0 (7) C5—C4—C22—C17 122.61 (14)
C7—O2—C6—C2 170.3 (3) C22—C21—C23—C24 167.1 (2)
N1—C2—C6—O1 −20.7 (2) C20—C21—C23—C24 −11.5 (3)
C3—C2—C6—O1 102.9 (2) N1—C5—C25—C30 33.13 (19)
N1—C2—C6—O2 160.55 (14) C4—C5—C25—C30 −89.46 (17)
C3—C2—C6—O2 −75.85 (17) N1—C5—C25—C26 −146.98 (13)
C6—O2—C7—C8 −170.3 (4) C4—C5—C25—C26 90.44 (16)
C7A—O2—C7—C8 64 (3) C30—C25—C26—C27 0.4 (2)
C6—O2—C7A—C8A −100.1 (19) C5—C25—C26—C27 −179.48 (13)
C7—O2—C7A—C8A −36 (2) C31—O5—C27—C26 9.3 (2)
C4—C3—C9—C10 −113.8 (2) C31—O5—C27—C28 −170.80 (15)
C2—C3—C9—C10 120.2 (2) C25—C26—C27—O5 −178.51 (14)
C4—C3—C9—C14 65.8 (2) C25—C26—C27—C28 1.6 (2)
C2—C3—C9—C14 −60.2 (2) C32—O6—C28—C27 103.6 (2)
C14—C9—C10—C11 0.5 (4) C32—O6—C28—C29 −79.3 (2)
C3—C9—C10—C11 −179.9 (3) O5—C27—C28—O6 −4.9 (2)
C9—C10—C11—C12 −0.4 (5) C26—C27—C28—O6 175.03 (14)
C10—C11—C12—C13 −0.2 (6) O5—C27—C28—C29 177.94 (14)
C11—C12—C13—C14 0.6 (5) C26—C27—C28—C29 −2.1 (2)
C12—C13—C14—C9 −0.4 (4) C33—O7—C29—C30 12.7 (3)
C10—C9—C14—C13 −0.1 (3) C33—O7—C29—C28 −168.46 (17)
C3—C9—C14—C13 −179.70 (18) O6—C28—C29—O7 4.7 (2)
C17—N16—C15—O3 −179.00 (15) C27—C28—C29—O7 −178.19 (14)
C17—N16—C15—C4 −1.03 (17) O6—C28—C29—C30 −176.37 (14)
C22—C4—C15—O3 176.54 (14) C27—C28—C29—C30 0.7 (2)
C3—C4—C15—O3 −61.2 (2) C26—C25—C30—C29 −1.8 (2)
C5—C4—C15—O3 49.82 (19) C5—C25—C30—C29 178.09 (14)
C22—C4—C15—N16 −1.44 (15) O7—C29—C30—C25 −179.95 (15)
C3—C4—C15—N16 120.85 (14) C28—C29—C30—C25 1.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.86 (2) 2.419 (18) 2.8088 (18) 108 (1)
N1—H1···O3 0.86 (2) 2.376 (18) 2.9395 (17) 123 (1)
O4—H4B···O1i 0.85 (3) 2.14 (2) 2.909 (2) 150 (3)
N16—H16···O3ii 0.87 (2) 1.99 (2) 2.8449 (17) 166 (2)
C5—H5···O5iii 0.98 2.45 3.3197 (18) 147
C18—H18···O4iv 0.93 2.46 3.357 (2) 162
C24—H24B···Cg1iii 0.93 2.93 3.776 (2) 153

Symmetry codes: (i) y+1/3, −x+y+2/3, −z+2/3; (ii) −x+1, −y, −z+1; (iii) −y+1/3, xy−1/3, z−1/3; (iv) −x+y+2/3, −x+1/3, z+1/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2651).

References

  1. Amalraj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem.11, 407–419. [DOI] [PubMed]
  2. Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cordell, G. (1981). Introduction to Alkaloids: A Biogenic Approach New York: Wiley International.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  9. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  12. Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett.35, 6119–6122.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808031206/ci2651sup1.cif

e-64-o2052-sup1.cif (29.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031206/ci2651Isup2.hkl

e-64-o2052-Isup2.hkl (379.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES