Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 25;64(Pt 11):o2190. doi: 10.1107/S1600536808034351

N-(3,5-Dichloro­phen­yl)benzene­sulfonamide

B Thimme Gowda a,*, Sabine Foro b, K S Babitha a, Hartmut Fuess b
PMCID: PMC2959669  PMID: 21581048

Abstract

In the crystal structure of the title compound, C12H9Cl2NO2S, the aromatic rings are aligned at 57.0 (1)°. The mol­ecules form chains via inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the structural systematics of 4,4′-disubstituted aryl benzene­sulfonamides, see: Gelbrich et al. (2007). For mono- and di-substituted-aryl benzene­sulfonamides, see: Gowda et al. (2008a ,b ); Tkachev et al. (2006). For the spectroscopic analysis of the title compound, see: Shetty & Gowda (2005).graphic file with name e-64-o2190-scheme1.jpg

Experimental

Crystal data

  • C12H9Cl2NO2S

  • M r = 302.16

  • Monoclinic, Inline graphic

  • a = 8.299 (2) Å

  • b = 7.215 (1) Å

  • c = 21.954 (3) Å

  • β = 99.49 (1)°

  • V = 1296.6 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.96 mm−1

  • T = 299 (2) K

  • 0.50 × 0.50 × 0.25 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.129, T max = 0.229

  • 2518 measured reflections

  • 2311 independent reflections

  • 2153 reflections with I > 2σ(I)

  • R int = 0.050

  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057

  • wR(F 2) = 0.156

  • S = 1.10

  • 2311 reflections

  • 167 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808034351/ng2501sup1.cif

e-64-o2190-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034351/ng2501Isup2.hkl

e-64-o2190-Isup2.hkl (113.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.856 (10) 2.059 (11) 2.915 (3) 178 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

As part of a study of the substituent effects on the crystal structures of N-(aryl)-benzenesulfonamides (Gowda et al., 2008a,b), in the present work, the structure of N-(3,5-dichlorophenyl)- benzenesulfonamide (N35DCPBSA) has been determined. The conformations of the N—H and S═O bonds in N35DCPBSA are trans to each other (Fig.1), similar to that observed in N-(3-chlorophenyl)- benzenesulfonamide (N3CPBSA) (Gowda et al., 2008b). The two benzene rings in N35DCPBSA form a dihedral angle of 57.0 (1)°, compared with the value of 65.4 (1)° in N3CPBSA (Gowda et al., 2008b). The other bond parameters in N35DCPBSA are also similar to those observed in N3CPBSA and other N-(aryl)-benzenesulfonamides (Gelbrich et al., 2007; Gowda et al., 2008a,b; Tkachev et al., 2006). The packing diagram of N35DCPBSA showing the N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Experimental

The solution of benzene (10 cc) in chloroform (40 cc) was treated dropwise with chlorosulfonic acid (25 cc) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual benzenesulfonylchloride was treated with 3,5-dichloroaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid N-(3,5-dichlorophenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Shetty & Gowda, 2005). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by evaporating it at room temperature.

Refinement

The H atom of the NH group was located in a diffrerence map and later restrained to the distance 0.86 (1) Å

The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C12H9Cl2NO2S F(000) = 616
Mr = 302.16 Dx = 1.548 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 8.299 (2) Å θ = 5.4–19.4°
b = 7.215 (1) Å µ = 5.96 mm1
c = 21.954 (3) Å T = 299 K
β = 99.49 (1)° Prism, colourless
V = 1296.6 (4) Å3 0.50 × 0.50 × 0.25 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 2153 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.050
graphite θmax = 67.0°, θmin = 4.1°
ω/2θ scans h = −9→1
Absorption correction: ψ scan (North et al., 1968) k = 0→8
Tmin = 0.129, Tmax = 0.229 l = −26→26
2518 measured reflections 3 standard reflections every 120 min
2311 independent reflections intensity decay: 1.0%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0987P)2 + 0.7373P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.001
2311 reflections Δρmax = 0.59 e Å3
167 parameters Δρmin = −0.38 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0105 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3043 (3) 0.1779 (4) 0.79280 (13) 0.0445 (6)
C2 0.4358 (4) 0.1697 (5) 0.84058 (17) 0.0604 (8)
H2 0.4201 0.1476 0.8809 0.072*
C3 0.5911 (4) 0.1953 (6) 0.8269 (2) 0.0783 (12)
H3 0.6811 0.1914 0.8584 0.094*
C4 0.6130 (4) 0.2267 (6) 0.7670 (2) 0.0773 (11)
H4 0.7180 0.2427 0.7582 0.093*
C5 0.4818 (5) 0.2344 (5) 0.7202 (2) 0.0746 (10)
H5 0.4980 0.2547 0.6798 0.090*
C6 0.3257 (4) 0.2121 (4) 0.73293 (15) 0.0562 (7)
H6 0.2360 0.2200 0.7015 0.067*
C7 0.1252 (3) 0.3838 (4) 0.90059 (11) 0.0400 (6)
C8 0.2051 (4) 0.5522 (4) 0.90920 (13) 0.0484 (6)
H8 0.2132 0.6288 0.8758 0.058*
C9 0.2725 (4) 0.6041 (4) 0.96827 (15) 0.0558 (7)
C10 0.2645 (4) 0.4935 (4) 1.01861 (14) 0.0590 (8)
H10 0.3122 0.5293 1.0582 0.071*
C11 0.1830 (4) 0.3278 (4) 1.00819 (13) 0.0534 (7)
C12 0.1118 (3) 0.2699 (4) 0.95062 (12) 0.0480 (6)
H12 0.0561 0.1577 0.9451 0.058*
N1 0.0494 (3) 0.3297 (3) 0.84009 (10) 0.0441 (5)
H1N 0.038 (4) 0.418 (3) 0.8138 (12) 0.053*
O1 −0.0021 (3) 0.1298 (3) 0.74998 (9) 0.0527 (5)
O2 0.1112 (3) −0.0066 (3) 0.85135 (10) 0.0574 (6)
Cl1 0.37237 (16) 0.81541 (13) 0.97944 (5) 0.0927 (4)
Cl2 0.16462 (15) 0.18752 (15) 1.07089 (4) 0.0834 (4)
S1 0.10584 (7) 0.14095 (9) 0.80800 (3) 0.0412 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0475 (14) 0.0400 (13) 0.0467 (15) 0.0019 (11) 0.0101 (11) 0.0007 (11)
C2 0.0571 (17) 0.0615 (19) 0.0589 (19) 0.0079 (14) −0.0009 (14) −0.0049 (15)
C3 0.0517 (18) 0.065 (2) 0.111 (3) 0.0057 (15) −0.0071 (19) −0.014 (2)
C4 0.0560 (19) 0.063 (2) 0.117 (4) 0.0031 (16) 0.029 (2) 0.001 (2)
C5 0.079 (2) 0.064 (2) 0.091 (3) −0.0014 (18) 0.044 (2) 0.0114 (19)
C6 0.0619 (17) 0.0556 (17) 0.0535 (17) 0.0004 (14) 0.0161 (13) 0.0070 (13)
C7 0.0447 (13) 0.0413 (13) 0.0349 (12) 0.0025 (10) 0.0088 (10) −0.0039 (10)
C8 0.0581 (15) 0.0404 (14) 0.0465 (14) 0.0000 (12) 0.0079 (12) 0.0033 (12)
C9 0.0631 (17) 0.0424 (15) 0.0585 (17) −0.0015 (13) 0.0001 (13) −0.0043 (13)
C10 0.078 (2) 0.0531 (17) 0.0426 (15) 0.0025 (15) 0.0004 (14) −0.0087 (13)
C11 0.0701 (18) 0.0540 (16) 0.0379 (14) 0.0049 (14) 0.0141 (13) 0.0020 (12)
C12 0.0593 (16) 0.0466 (15) 0.0405 (14) −0.0057 (12) 0.0157 (12) −0.0028 (11)
N1 0.0547 (13) 0.0423 (12) 0.0350 (12) 0.0020 (10) 0.0064 (9) −0.0004 (9)
O1 0.0548 (11) 0.0586 (12) 0.0427 (11) −0.0059 (9) 0.0021 (8) −0.0107 (9)
O2 0.0838 (15) 0.0415 (11) 0.0499 (11) −0.0053 (10) 0.0199 (10) 0.0058 (8)
Cl1 0.1209 (9) 0.0518 (5) 0.0915 (8) −0.0250 (5) −0.0236 (6) −0.0022 (4)
Cl2 0.1333 (9) 0.0798 (7) 0.0393 (5) −0.0122 (6) 0.0204 (5) 0.0085 (4)
S1 0.0495 (4) 0.0384 (4) 0.0359 (4) −0.0042 (2) 0.0076 (3) −0.0018 (2)

Geometric parameters (Å, °)

C1—C6 1.377 (4) C7—N1 1.427 (3)
C1—C2 1.385 (4) C8—C9 1.377 (4)
C1—S1 1.754 (3) C8—H8 0.9300
C2—C3 1.383 (5) C9—C10 1.374 (5)
C2—H2 0.9300 C9—Cl1 1.734 (3)
C3—C4 1.376 (6) C10—C11 1.374 (5)
C3—H3 0.9300 C10—H10 0.9300
C4—C5 1.370 (6) C11—C12 1.369 (4)
C4—H4 0.9300 C11—Cl2 1.736 (3)
C5—C6 1.379 (5) C12—H12 0.9300
C5—H5 0.9300 N1—S1 1.637 (2)
C6—H6 0.9300 N1—H1N 0.856 (10)
C7—C8 1.382 (4) O1—S1 1.433 (2)
C7—C12 1.391 (4) O2—S1 1.424 (2)
C6—C1—C2 121.4 (3) C7—C8—H8 120.7
C6—C1—S1 118.8 (2) C10—C9—C8 122.3 (3)
C2—C1—S1 119.8 (2) C10—C9—Cl1 118.9 (2)
C3—C2—C1 118.5 (4) C8—C9—Cl1 118.9 (2)
C3—C2—H2 120.8 C11—C10—C9 117.3 (3)
C1—C2—H2 120.8 C11—C10—H10 121.3
C4—C3—C2 120.3 (4) C9—C10—H10 121.3
C4—C3—H3 119.9 C12—C11—C10 123.0 (3)
C2—C3—H3 119.9 C12—C11—Cl2 118.2 (2)
C5—C4—C3 120.6 (3) C10—C11—Cl2 118.7 (2)
C5—C4—H4 119.7 C11—C12—C7 118.0 (3)
C3—C4—H4 119.7 C11—C12—H12 121.0
C4—C5—C6 120.0 (4) C7—C12—H12 121.0
C4—C5—H5 120.0 C7—N1—S1 120.98 (18)
C6—C5—H5 120.0 C7—N1—H1N 114 (2)
C1—C6—C5 119.2 (3) S1—N1—H1N 110 (2)
C1—C6—H6 120.4 O2—S1—O1 119.87 (14)
C5—C6—H6 120.4 O2—S1—N1 108.29 (12)
C8—C7—C12 120.7 (2) O1—S1—N1 104.34 (12)
C8—C7—N1 119.7 (2) O2—S1—C1 108.30 (14)
C12—C7—N1 119.5 (2) O1—S1—C1 107.97 (13)
C9—C8—C7 118.6 (3) N1—S1—C1 107.45 (13)
C9—C8—H8 120.7
C6—C1—C2—C3 −0.5 (5) C10—C11—C12—C7 1.0 (5)
S1—C1—C2—C3 178.6 (3) Cl2—C11—C12—C7 179.2 (2)
C1—C2—C3—C4 −0.5 (5) C8—C7—C12—C11 −1.4 (4)
C2—C3—C4—C5 0.5 (6) N1—C7—C12—C11 −178.6 (3)
C3—C4—C5—C6 0.5 (6) C8—C7—N1—S1 119.8 (2)
C2—C1—C6—C5 1.5 (5) C12—C7—N1—S1 −62.9 (3)
S1—C1—C6—C5 −177.6 (3) C7—N1—S1—O2 48.5 (2)
C4—C5—C6—C1 −1.5 (5) C7—N1—S1—O1 177.3 (2)
C12—C7—C8—C9 0.6 (4) C7—N1—S1—C1 −68.3 (2)
N1—C7—C8—C9 177.8 (3) C6—C1—S1—O2 138.8 (2)
C7—C8—C9—C10 0.7 (5) C2—C1—S1—O2 −40.3 (3)
C7—C8—C9—Cl1 −179.8 (2) C6—C1—S1—O1 7.6 (3)
C8—C9—C10—C11 −1.2 (5) C2—C1—S1—O1 −171.5 (2)
Cl1—C9—C10—C11 179.4 (3) C6—C1—S1—N1 −104.5 (2)
C9—C10—C11—C12 0.3 (5) C2—C1—S1—N1 76.5 (3)
C9—C10—C11—Cl2 −178.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.86 (1) 2.06 (1) 2.915 (3) 178 (3)

Symmetry codes: (i) −x, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2501).

References

  1. Enraf–Nonius (1996). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  2. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  3. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008a). Acta Cryst. E64, o1691. [DOI] [PMC free article] [PubMed]
  4. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008b). Acta Cryst. E64, o1825. [DOI] [PMC free article] [PubMed]
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.
  8. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  9. Stoe & Cie (1987). REDU4 Stoe & Cie GmbH, Darmstadt, Germany.
  10. Tkachev, V. V., Schaper, K.-J., Strakhova, N. N. & Kazachenko, V. P. (2006). Acta Cryst. E62, o2514–o2515.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808034351/ng2501sup1.cif

e-64-o2190-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808034351/ng2501Isup2.hkl

e-64-o2190-Isup2.hkl (113.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES