Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 11;64(Pt 11):o2105. doi: 10.1107/S1600536808031942

N-(Pyrazin-2-yl)aniline

Wan Ainna Mardhiah Wan Saffiee a, Azila Idris a, Zanariah Abdullah a, Zaharah Aiyub a, Seik Weng Ng a,*
PMCID: PMC2959679  PMID: 21580969

Abstract

The two aromatic rings in the title compound, C10H9N3, are inclined at 15.2 (1)° to each other; this opens up the angle at the amino N atom to 130.4 (1)°. The amino N atom forms a hydrogen bond to the 4-N atom of an adjacent mol­ecule to create a chain motif.

Related literature

For the structure of amino­pyrazine, see: Chao et al. (1976). For the structure of 2-pyrazinyl-N-2-nitro­phenyl­aniline; see: Parsons et al. (2006).graphic file with name e-64-o2105-scheme1.jpg

Experimental

Crystal data

  • C10H9N3

  • M r = 171.20

  • Monoclinic, Inline graphic

  • a = 11.0644 (3) Å

  • b = 7.8423 (3) Å

  • c = 10.8907 (3) Å

  • β = 116.439 (2)°

  • V = 846.15 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 (2) K

  • 0.20 × 0.10 × 0.05 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 5664 measured reflections

  • 1934 independent reflections

  • 1463 reflections with I > 2σ(I)

  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.101

  • S = 1.03

  • 1934 reflections

  • 122 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808031942/pk2121sup1.cif

e-64-o2105-sup1.cif (13.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031942/pk2121Isup2.hkl

e-64-o2105-Isup2.hkl (95.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.89 (1) 2.12 (1) 2.977 (2) 162 (1)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the University of Malaya for supporting this study (grant Nos. FS 358/2008A and FA 067/2006A).

supplementary crystallographic information

Comment

There are few structural examples of pyrazine compounds having an amino substituent; these are limited to, for example, aminopyrazine (Chao et al., 1976) and pyrazinyl-N-2-nitrophenylaniline (Parsons et al., 2006). In the title compound (Scheme I, Fig. 1), the two aromatic rings are aligned at 15.2 (1)°; these open up the angle at the amino nitrogen to 130.4 (1) °. The amino nitrogen forms a hydrogen bond to the 4-nitrogen atom of an adjacent molecule to furnish a chain motif.

Experimental

Chloropyrazine (1 ml, 1.1 mmol) and aniline (1 ml, 1.1 mmol) were heated at 423–433 K for 3 h. The solid was dissolved in water. The compound was extracted with ether. The ether extract was dried over sodium sulfate; evaporation of the solvent gave a colorless crystals among some unidentified dark brown materials.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) fixed at 1.2U(C). The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N—H 0.88 (1) Å.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of C10H9N3 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Crystal data

C10H9N3 F(000) = 360
Mr = 171.20 Dx = 1.344 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3723 reflections
a = 11.0644 (3) Å θ = 3.3–26.4°
b = 7.8423 (3) Å µ = 0.09 mm1
c = 10.8907 (3) Å T = 100 K
β = 116.439 (2)° Prism, colourless
V = 846.15 (5) Å3 0.20 × 0.10 × 0.05 mm
Z = 4

Data collection

Bruker SMART APEX diffractometer 1463 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.033
graphite θmax = 27.5°, θmin = 3.3°
ω scans h = −14→14
5664 measured reflections k = −10→10
1934 independent reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.247P] where P = (Fo2 + 2Fc2)/3
1934 reflections (Δ/σ)max = 0.001
122 parameters Δρmax = 0.23 e Å3
1 restraint Δρmin = −0.23 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.36080 (11) 0.49391 (15) 0.56127 (12) 0.0188 (3)
H1 0.4485 (9) 0.479 (2) 0.6153 (13) 0.024 (4)*
N2 0.36741 (11) 0.89784 (15) 0.72193 (11) 0.0205 (3)
N3 0.18404 (11) 0.69151 (16) 0.51024 (12) 0.0221 (3)
C1 0.29407 (14) 0.36077 (18) 0.46992 (13) 0.0181 (3)
C2 0.37632 (14) 0.23785 (18) 0.45198 (14) 0.0201 (3)
H2 0.4717 0.2479 0.5007 0.024*
C3 0.32046 (15) 0.1019 (2) 0.36410 (15) 0.0246 (3)
H3 0.3775 0.0188 0.3534 0.029*
C4 0.18124 (15) 0.0862 (2) 0.29138 (15) 0.0255 (3)
H4 0.1427 −0.0058 0.2293 0.031*
C5 0.09930 (14) 0.20604 (19) 0.31037 (14) 0.0235 (3)
H5 0.0040 0.1948 0.2617 0.028*
C6 0.15425 (14) 0.34292 (18) 0.39962 (14) 0.0204 (3)
H6 0.0969 0.4236 0.4125 0.025*
C7 0.31216 (13) 0.64466 (17) 0.58462 (13) 0.0174 (3)
C8 0.40342 (13) 0.74982 (17) 0.69058 (14) 0.0184 (3)
H8 0.4941 0.7127 0.7412 0.022*
C9 0.23812 (14) 0.94629 (19) 0.64641 (14) 0.0232 (3)
H9 0.2078 1.0522 0.6649 0.028*
C10 0.14961 (14) 0.84350 (19) 0.54274 (15) 0.0245 (3)
H10 0.0594 0.8820 0.4914 0.029*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0140 (6) 0.0182 (6) 0.0186 (6) 0.0013 (5) 0.0023 (5) −0.0019 (5)
N2 0.0201 (6) 0.0197 (6) 0.0210 (6) −0.0006 (5) 0.0085 (5) −0.0008 (5)
N3 0.0182 (6) 0.0214 (7) 0.0220 (6) 0.0020 (5) 0.0048 (5) −0.0008 (5)
C1 0.0201 (7) 0.0171 (7) 0.0147 (6) −0.0012 (5) 0.0057 (5) 0.0009 (5)
C2 0.0176 (7) 0.0223 (8) 0.0194 (7) −0.0005 (6) 0.0074 (6) 0.0000 (6)
C3 0.0285 (8) 0.0227 (8) 0.0257 (8) −0.0008 (6) 0.0150 (6) −0.0045 (6)
C4 0.0286 (8) 0.0236 (8) 0.0233 (7) −0.0072 (6) 0.0108 (6) −0.0075 (6)
C5 0.0197 (7) 0.0251 (8) 0.0214 (7) −0.0047 (6) 0.0051 (6) −0.0003 (6)
C6 0.0189 (7) 0.0197 (7) 0.0194 (7) −0.0005 (6) 0.0056 (6) 0.0008 (6)
C7 0.0180 (7) 0.0175 (7) 0.0164 (7) −0.0003 (5) 0.0073 (5) 0.0019 (5)
C8 0.0155 (6) 0.0193 (7) 0.0187 (7) 0.0006 (5) 0.0060 (5) 0.0019 (5)
C9 0.0215 (7) 0.0211 (7) 0.0250 (7) 0.0039 (6) 0.0087 (6) −0.0015 (6)
C10 0.0191 (7) 0.0237 (8) 0.0266 (8) 0.0058 (6) 0.0065 (6) −0.0001 (6)

Geometric parameters (Å, °)

N1—C7 1.3689 (17) C3—H3 0.9500
N1—C1 1.4039 (17) C4—C5 1.384 (2)
N1—H1 0.891 (9) C4—H4 0.9500
N2—C8 1.3207 (18) C5—C6 1.393 (2)
N2—C9 1.3488 (17) C5—H5 0.9500
N3—C7 1.3335 (17) C6—H6 0.9500
N3—C10 1.3458 (19) C7—C8 1.4120 (19)
C1—C6 1.3944 (18) C8—H8 0.9500
C1—C2 1.3978 (19) C9—C10 1.378 (2)
C2—C3 1.381 (2) C9—H9 0.9500
C2—H2 0.9500 C10—H10 0.9500
C3—C4 1.389 (2)
C7—N1—C1 130.38 (12) C4—C5—H5 119.5
C7—N1—H1 113.3 (10) C6—C5—H5 119.5
C1—N1—H1 116.3 (10) C5—C6—C1 119.56 (13)
C8—N2—C9 116.75 (12) C5—C6—H6 120.2
C7—N3—C10 115.67 (12) C1—C6—H6 120.2
C6—C1—C2 119.09 (13) N3—C7—N1 121.64 (12)
C6—C1—N1 124.65 (13) N3—C7—C8 121.03 (12)
C2—C1—N1 116.25 (12) N1—C7—C8 117.32 (12)
C3—C2—C1 120.72 (13) N2—C8—C7 122.44 (12)
C3—C2—H2 119.6 N2—C8—H8 118.8
C1—C2—H2 119.6 C7—C8—H8 118.8
C2—C3—C4 120.26 (14) N2—C9—C10 120.58 (13)
C2—C3—H3 119.9 N2—C9—H9 119.7
C4—C3—H3 119.9 C10—C9—H9 119.7
C5—C4—C3 119.26 (14) N3—C10—C9 123.53 (13)
C5—C4—H4 120.4 N3—C10—H10 118.2
C3—C4—H4 120.4 C9—C10—H10 118.2
C4—C5—C6 121.08 (13)
C7—N1—C1—C6 −12.7 (2) C10—N3—C7—N1 −179.30 (12)
C7—N1—C1—C2 168.41 (13) C10—N3—C7—C8 0.36 (19)
C6—C1—C2—C3 1.1 (2) C1—N1—C7—N3 −4.2 (2)
N1—C1—C2—C3 −179.89 (12) C1—N1—C7—C8 176.09 (13)
C1—C2—C3—C4 0.5 (2) C9—N2—C8—C7 −0.73 (19)
C2—C3—C4—C5 −1.5 (2) N3—C7—C8—N2 0.3 (2)
C3—C4—C5—C6 0.9 (2) N1—C7—C8—N2 −179.99 (12)
C4—C5—C6—C1 0.7 (2) C8—N2—C9—C10 0.4 (2)
C2—C1—C6—C5 −1.7 (2) C7—N3—C10—C9 −0.7 (2)
N1—C1—C6—C5 179.40 (13) N2—C9—C10—N3 0.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···N2i 0.89 (1) 2.12 (1) 2.977 (2) 162 (1)

Symmetry codes: (i) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2121).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chao, M., Schempp, E. & Rosenstein, R. D. (1976). Acta Cryst. B32, 288–290.
  4. Parsons, S., Wharton, S., McNab, H., Parkin, A. & Johnstone, R. (2006). Private communication (Deposition No. 610410). CCDC, Union Road, Cambridge, England.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Westrip, S. P. (2008). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808031942/pk2121sup1.cif

e-64-o2105-sup1.cif (13.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031942/pk2121Isup2.hkl

e-64-o2105-Isup2.hkl (95.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES