Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 9;64(Pt 11):o2079. doi: 10.1107/S1600536808031796

Isopropyl 2-(5-methyl-3-methyl­sulfinyl-1-benzofuran-2-yl)acetate

Hong Dae Choi a, Pil Ja Seo a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC2959682  PMID: 21580944

Abstract

The title compound, C15H18O4S, was prepared by the oxidation of isopropyl 2-(5-methyl-3-methyl­sulfanyl-1-benzofuran-2-yl)acetate with 3-chloro­peroxy­benzoic acid. The crystal structure is stabilized by inter­molecular π–π inter­actions between the benzene rings; the centroid–centroid distance between the adjacent benzene rings (symmetry code: Inline graphic) is 3.713 (2) Å. In addition, C—H⋯π and weak inter­molecular C—H⋯O inter­actions are present in the structure.

Related literature

For the crystal structures of similar 2-(5-methyl-3-methyl­sulfinyl-1-benzofuran-2-yl)acetic acid derivatives, see: Choi et al. (2007, 2008).graphic file with name e-64-o2079-scheme1.jpg

Experimental

Crystal data

  • C15H18O4S

  • M r = 294.35

  • Triclinic, Inline graphic

  • a = 8.1829 (5) Å

  • b = 9.7027 (6) Å

  • c = 10.6545 (7) Å

  • α = 73.057 (1)°

  • β = 77.463 (1)°

  • γ = 66.421 (1)°

  • V = 736.76 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 298 (2) K

  • 0.40 × 0.30 × 0.30 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 5802 measured reflections

  • 2838 independent reflections

  • 2479 reflections with I > 2σ(I)

  • R int = 0.035

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.105

  • S = 1.07

  • 2838 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808031796/fb2111sup1.cif

e-64-o2079-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031796/fb2111Isup2.hkl

e-64-o2079-Isup2.hkl (139.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C2–C7 and C1/C2/C7/C8/O1 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O2i 0.97 2.38 3.249 (2) 149
C13—H13⋯Cg1ii 0.98 2.91 3.656 (2) 134
C15—H15CCg2ii 0.96 2.96 3.837 (2) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

This work is related to our previous communications on the synthesis and structure of 2-(5-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetic acid analogues, viz. ethyl 2-(5-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2007) and methyl 2-(5-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Choi et al., 2008). Here we report the crystal structure of the title compound, isopropyl 2-(5-methyl-3-methylsulfinyl-1-benzofuran-2-yl)acetate (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.004 (1) Å from the least-squares plane defined by the nine constituent atoms. The molecular packing (Fig. 2) is stabilized by π—π electron interactions between the benzofuran rings of the adjacent molecules. The distances between the centroids of the stacked benzene rings are 3.713 (2) Å (symmetry code: 1-x, 1-y, 1-z). The crystal packing is further stabilized by C—H···π electron interactions (Tab. 1). Additionally, intermolecular C—H···O interactions are present in the structure (Tab. 1).

Experimental

77% 3-chloroperoxybenzoic acid (471 mg, 2.1 mmol) was added in small portions to a stirred solution of isopropyl 2-(5-methyl-3-methylsulfanyl-1-benzofuran-2-yl)acetate (556 mg, 2.0 mmol) in dichloromethane (40 ml) at 273 K. After having been stirred for 3 h at room temperature, the mixture was washed with saturated sodium hydrogencarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated under vacuum. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colorless solid [yield 81%, m.p. 403–404 K; Rf = 0.74 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in ethyl acetate at room temperature. The average crystal size was approximately 1.0 x 1.0 x 0.5 mm. The crystals are colourless and soluble in polar solvents. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 1.25 (d, J = 6.20 Hz, 6H), 2.46 (s, 3H), 3.08 (s, 3H), 3.99 (s, 2H), 5.00–5.08 (m, 1H), 7.17 (d, J = 8.44 Hz, 1H), 7.39 (d, J = 8.44 Hz, 1H), 7.74 (s, 1H); EI—MS 294 [M+].

Refinement

All the hydrogen atoms could have been distinguished in the difference electron density maps. However, all the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for the aryl, 0.97 Å for the methylene, 0.98 Å for the methine and 0.96 Å for the methyl H atoms. Uiso(H) = 1.2Ueq(C) for the aryl, methine and methylene H atoms, and Uiso(H) = 1.5Ueq(C) for the methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

π—π, C—H···π and C—H···O interactions (dotted lines) in the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) x, y + 1, z; (iii) -x + 1, -y+, -z + 1; (iv) x, y - 1, z.]

Crystal data

C15H18O4S Z = 2
Mr = 294.35 F(000) = 312
Triclinic, P1 Dx = 1.327 Mg m3
Hall symbol: -P_1 Melting point = 403–404 K
a = 8.1829 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.7027 (6) Å Cell parameters from 4030 reflections
c = 10.6545 (7) Å θ = 2.4–28.2°
α = 73.057 (1)° µ = 0.23 mm1
β = 77.463 (1)° T = 298 K
γ = 66.421 (1)° Block, colourless
V = 736.76 (8) Å3 0.40 × 0.30 × 0.30 mm

Data collection

Bruker SMART CCD diffractometer 2479 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.035
graphite θmax = 26.0°, θmin = 2.7°
Detector resolution: 10.0 pixels mm-1 h = −10→10
φ and ω scans k = −11→11
5802 measured reflections l = −13→13
2838 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: difference Fourier map
wR(F2) = 0.105 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.2101P] where P = (Fo2 + 2Fc2)/3
2838 reflections (Δ/σ)max < 0.001
185 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.24 e Å3
68 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.74200 (6) 0.64759 (5) 0.04151 (4) 0.04706 (16)
O1 0.84827 (15) 0.47478 (12) 0.40980 (11) 0.0378 (3)
O2 0.7528 (2) 0.53592 (18) −0.03283 (14) 0.0705 (4)
O3 0.73496 (17) 0.88857 (15) 0.23749 (16) 0.0603 (4)
O4 1.00780 (15) 0.88109 (12) 0.25158 (12) 0.0422 (3)
C1 0.7543 (2) 0.55223 (18) 0.20899 (15) 0.0356 (3)
C2 0.6619 (2) 0.45172 (16) 0.29204 (15) 0.0336 (3)
C3 0.5364 (2) 0.39518 (18) 0.27713 (16) 0.0380 (4)
H3 0.4913 0.4233 0.1967 0.046*
C4 0.4806 (2) 0.29641 (19) 0.38454 (17) 0.0405 (4)
C5 0.5499 (2) 0.25528 (19) 0.50517 (17) 0.0424 (4)
H5 0.5109 0.1888 0.5761 0.051*
C6 0.6736 (2) 0.30967 (18) 0.52246 (16) 0.0401 (4)
H6 0.7189 0.2818 0.6027 0.048*
C7 0.7260 (2) 0.40767 (17) 0.41396 (15) 0.0343 (3)
C8 0.8622 (2) 0.56095 (18) 0.28352 (15) 0.0361 (3)
C9 0.9868 (2) 0.64659 (18) 0.25585 (18) 0.0405 (4)
H9A 1.0607 0.6321 0.1728 0.049*
H9B 1.0657 0.6029 0.3247 0.049*
C10 0.8915 (2) 0.81825 (18) 0.24831 (16) 0.0384 (4)
C11 0.3469 (3) 0.2312 (3) 0.3719 (2) 0.0598 (5)
H11A 0.2959 0.2846 0.2902 0.090*
H11B 0.2533 0.2443 0.4443 0.090*
H11C 0.4066 0.1232 0.3731 0.090*
C12 0.5114 (3) 0.7722 (3) 0.0561 (2) 0.0717 (6)
H12A 0.4814 0.8392 −0.0284 0.108*
H12B 0.4926 0.8332 0.1182 0.108*
H12C 0.4367 0.7112 0.0865 0.108*
C13 0.9392 (2) 1.04906 (18) 0.24297 (18) 0.0426 (4)
H13 0.8239 1.0791 0.2982 0.051*
C14 0.9158 (3) 1.1356 (2) 0.1023 (2) 0.0603 (5)
H14A 0.8323 1.1104 0.0707 0.090*
H14B 1.0294 1.1071 0.0488 0.090*
H14C 0.8708 1.2446 0.0974 0.090*
C15 1.0762 (3) 1.0762 (2) 0.2963 (3) 0.0692 (6)
H15A 1.1907 1.0407 0.2453 0.104*
H15B 1.0850 1.0206 0.3868 0.104*
H15C 1.0407 1.1846 0.2910 0.104*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0572 (3) 0.0469 (3) 0.0365 (2) −0.0241 (2) −0.00906 (19) 0.00182 (17)
O1 0.0416 (6) 0.0381 (6) 0.0392 (6) −0.0204 (5) −0.0113 (5) −0.0035 (5)
O2 0.0994 (12) 0.0694 (9) 0.0444 (8) −0.0262 (9) −0.0159 (8) −0.0158 (7)
O3 0.0408 (7) 0.0449 (7) 0.0966 (11) −0.0190 (6) −0.0103 (7) −0.0113 (7)
O4 0.0420 (6) 0.0328 (6) 0.0568 (7) −0.0177 (5) −0.0114 (5) −0.0075 (5)
C1 0.0406 (8) 0.0324 (7) 0.0355 (8) −0.0163 (7) −0.0064 (6) −0.0040 (6)
C2 0.0373 (8) 0.0292 (7) 0.0352 (8) −0.0128 (6) −0.0055 (6) −0.0067 (6)
C3 0.0411 (9) 0.0370 (8) 0.0415 (8) −0.0167 (7) −0.0096 (7) −0.0098 (7)
C4 0.0394 (9) 0.0362 (8) 0.0512 (10) −0.0175 (7) −0.0047 (7) −0.0124 (7)
C5 0.0458 (9) 0.0356 (8) 0.0454 (9) −0.0205 (7) −0.0016 (7) −0.0031 (7)
C6 0.0449 (9) 0.0377 (8) 0.0375 (8) −0.0165 (7) −0.0095 (7) −0.0024 (6)
C7 0.0357 (8) 0.0304 (7) 0.0394 (8) −0.0140 (6) −0.0076 (6) −0.0063 (6)
C8 0.0395 (8) 0.0312 (7) 0.0386 (8) −0.0159 (6) −0.0057 (6) −0.0040 (6)
C9 0.0396 (9) 0.0376 (8) 0.0490 (9) −0.0200 (7) −0.0070 (7) −0.0068 (7)
C10 0.0394 (9) 0.0387 (8) 0.0397 (8) −0.0206 (7) −0.0038 (7) −0.0038 (6)
C11 0.0605 (12) 0.0615 (12) 0.0731 (13) −0.0393 (10) −0.0128 (10) −0.0095 (10)
C12 0.0665 (14) 0.0616 (13) 0.0692 (14) −0.0084 (11) −0.0246 (11) 0.0023 (11)
C13 0.0444 (9) 0.0327 (8) 0.0540 (10) −0.0160 (7) −0.0051 (8) −0.0119 (7)
C14 0.0797 (15) 0.0395 (10) 0.0607 (12) −0.0235 (10) −0.0124 (10) −0.0039 (8)
C15 0.0745 (15) 0.0483 (11) 0.1006 (18) −0.0231 (11) −0.0311 (13) −0.0232 (11)

Geometric parameters (Å, °)

S—O2 1.4839 (15) C8—C9 1.490 (2)
S—C1 1.7583 (16) C9—C10 1.516 (2)
S—C12 1.790 (2) C9—H9A 0.9700
O1—C8 1.3698 (18) C9—H9B 0.9700
O1—C7 1.3830 (18) C11—H11A 0.9600
O3—C10 1.199 (2) C11—H11B 0.9600
O4—C10 1.3305 (19) C11—H11C 0.9600
O4—C13 1.4774 (19) C12—H12A 0.9600
C1—C8 1.349 (2) C12—H12B 0.9600
C1—C2 1.450 (2) C12—H12C 0.9600
C2—C7 1.392 (2) C13—C15 1.500 (3)
C2—C3 1.397 (2) C13—C14 1.500 (3)
C3—C4 1.386 (2) C13—H13 0.9800
C3—H3 0.9300 C14—H14A 0.9600
C4—C5 1.403 (2) C14—H14B 0.9600
C4—C11 1.511 (2) C14—H14C 0.9600
C5—C6 1.379 (2) C15—H15A 0.9600
C5—H5 0.9300 C15—H15B 0.9600
C6—C7 1.376 (2) C15—H15C 0.9600
C6—H6 0.9300
O2—S—C1 108.11 (8) H9A—C9—H9B 107.7
O2—S—C12 106.21 (11) O3—C10—O4 124.63 (15)
C1—S—C12 97.74 (9) O3—C10—C9 125.20 (14)
C8—O1—C7 106.03 (11) O4—C10—C9 110.14 (13)
C10—O4—C13 117.80 (13) C4—C11—H11A 109.5
C8—C1—C2 107.31 (13) C4—C11—H11B 109.5
C8—C1—S 123.03 (12) H11A—C11—H11B 109.5
C2—C1—S 129.65 (12) C4—C11—H11C 109.5
C7—C2—C3 119.08 (14) H11A—C11—H11C 109.5
C7—C2—C1 104.42 (13) H11B—C11—H11C 109.5
C3—C2—C1 136.50 (15) S—C12—H12A 109.5
C4—C3—C2 118.66 (15) S—C12—H12B 109.5
C4—C3—H3 120.7 H12A—C12—H12B 109.5
C2—C3—H3 120.7 S—C12—H12C 109.5
C3—C4—C5 119.95 (15) H12A—C12—H12C 109.5
C3—C4—C11 120.26 (16) H12B—C12—H12C 109.5
C5—C4—C11 119.79 (16) O4—C13—C15 105.45 (14)
C6—C5—C4 122.50 (15) O4—C13—C14 109.85 (14)
C6—C5—H5 118.7 C15—C13—C14 112.29 (17)
C4—C5—H5 118.7 O4—C13—H13 109.7
C7—C6—C5 116.08 (15) C15—C13—H13 109.7
C7—C6—H6 122.0 C14—C13—H13 109.7
C5—C6—H6 122.0 C13—C14—H14A 109.5
C6—C7—O1 125.47 (14) C13—C14—H14B 109.5
C6—C7—C2 123.73 (14) H14A—C14—H14B 109.5
O1—C7—C2 110.80 (13) C13—C14—H14C 109.5
C1—C8—O1 111.44 (13) H14A—C14—H14C 109.5
C1—C8—C9 132.89 (15) H14B—C14—H14C 109.5
O1—C8—C9 115.66 (13) C13—C15—H15A 109.5
C8—C9—C10 113.54 (14) C13—C15—H15B 109.5
C8—C9—H9A 108.9 H15A—C15—H15B 109.5
C10—C9—H9A 108.9 C13—C15—H15C 109.5
C8—C9—H9B 108.9 H15A—C15—H15C 109.5
C10—C9—H9B 108.9 H15B—C15—H15C 109.5
O2—S—C1—C8 133.07 (16) C3—C2—C7—C6 0.4 (2)
C12—S—C1—C8 −117.00 (17) C1—C2—C7—C6 −179.35 (15)
O2—S—C1—C2 −45.61 (17) C3—C2—C7—O1 −179.98 (13)
C12—S—C1—C2 64.32 (17) C1—C2—C7—O1 0.30 (17)
C8—C1—C2—C7 0.00 (18) C2—C1—C8—O1 −0.30 (19)
S—C1—C2—C7 178.83 (13) S—C1—C8—O1 −179.23 (11)
C8—C1—C2—C3 −179.65 (18) C2—C1—C8—C9 −178.84 (17)
S—C1—C2—C3 −0.8 (3) S—C1—C8—C9 2.2 (3)
C7—C2—C3—C4 −0.3 (2) C7—O1—C8—C1 0.48 (18)
C1—C2—C3—C4 179.36 (17) C7—O1—C8—C9 179.29 (13)
C2—C3—C4—C5 0.1 (2) C1—C8—C9—C10 74.3 (2)
C2—C3—C4—C11 −179.20 (16) O1—C8—C9—C10 −104.20 (16)
C3—C4—C5—C6 0.0 (3) C13—O4—C10—O3 0.8 (2)
C11—C4—C5—C6 179.31 (17) C13—O4—C10—C9 179.02 (13)
C4—C5—C6—C7 0.1 (3) C8—C9—C10—O3 −14.9 (2)
C5—C6—C7—O1 −179.86 (15) C8—C9—C10—O4 166.85 (14)
C5—C6—C7—C2 −0.3 (2) C10—O4—C13—C15 160.41 (17)
C8—O1—C7—C6 179.16 (15) C10—O4—C13—C14 −78.39 (19)
C8—O1—C7—C2 −0.48 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C9—H9A···O2i 0.97 2.38 3.249 (2) 149
C13—H13···Cg1ii 0.98 2.91 3.656 (2) 134
C15—H15C···Cg2ii 0.96 2.96 3.837 (2) 152

Symmetry codes: (i) −x+2, −y+1, −z; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2111).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007). Acta Cryst. E63, o3839.
  4. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2008). Acta Cryst. E64, o1711. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808031796/fb2111sup1.cif

e-64-o2079-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808031796/fb2111Isup2.hkl

e-64-o2079-Isup2.hkl (139.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES