Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 11;64(Pt 11):o2094. doi: 10.1107/S1600536808032170

4-(2,5-Dihexyl­oxyphen­yl)benzoic acid

Hong Li a,*, Lu Zhang a, Yan-Qi Liu a, Duo-Bin Mao a, Wen-Ye Zhang a
PMCID: PMC2959701  PMID: 21580958

Abstract

In the title compound, C25H34O4, one n-hexyl chain of the hex­yloxy group adopts a fully extended all-trans conformation, and the other n-hexyl chain displays disorder with site occupancies of 0.470 (3) and 0.530 (3). The dihedral angle between the benzene rings is 44.5 (3)°. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds form dimers via crystallographic inversion centres.

Related literature

For a review of applications of Suzuki–Miyura cross-coupling reactions in organic syntheses, see: Kotha et al. (2002). For the structure of 1,4-dibromo-2,5-bis­(hex­yloxy)benzene, see: Li et al. (2008). For the syntheses of related compounds, see: Maruyama & Kawanishi (2002); Zhang et al. (2006).graphic file with name e-64-o2094-scheme1.jpg

Experimental

Crystal data

  • C25H34O4

  • M r = 398.52

  • Monoclinic, Inline graphic

  • a = 7.2936 (12) Å

  • b = 14.689 (2) Å

  • c = 22.137 (4) Å

  • β = 95.283 (3)°

  • V = 2361.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 (2) K

  • 0.35 × 0.15 × 0.06 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.975, T max = 0.996

  • 15777 measured reflections

  • 4359 independent reflections

  • 1432 reflections with I > 2σ(I)

  • R int = 0.087

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061

  • wR(F 2) = 0.194

  • S = 0.97

  • 4359 reflections

  • 257 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808032170/si2116sup1.cif

e-64-o2094-sup1.cif (26.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032170/si2116Isup2.hkl

e-64-o2094-Isup2.hkl (213.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.82 2.632 (4) 174

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Doctoral Foundation of Zhengzhou University of Light Industry.

supplementary crystallographic information

Comment

Palladium-catalyzed Suzuki coupling reaction has become an extremely powerful method in synthesis for the formation of carbon-carbon bond (Kotha et al., 2002). For example, 1,4-Dibromide-2,5-bis(hexyloxy)benzene was reacted with 4-carboxyphenylboronic acid in the presence of Pd(PPh3)4 to give coupling product 2,5-bis(hexyloxy)-1,4-di(4'-carboxyphenyl)benzene (Zhang et al., 2006). In the above reaction, we obtained the title compound as a side product.

A view of the molecular structure of the title compound is given in Fig.1. The dihedral angle between benzene rings is 44.5 (3)°. One n-hexyl chain of the hexyloxyl group has the same fully extended all - trans conformation as the 1,4-Dibromide-2,5-bis(hexyloxy)benzene (Li, et al., 2008), while the other n-hexyl chain displays disorder with site occupancies 0.470 (3) and 0.530 (3). In the crystal structure, centrosymmetric dimers arise from pairs of O—H···O hydrogen bonds involving the carboxylic acid groups (Fig.2, Table 1).

Experimental

1,4-Dibromo-2,5-bis(hexyloxy)benzene was prepared as described in the literature (Maruyama & Kawanishi 2002). The title compound was obtained as a side-product from the Suzuki coupling reaction of 1,4-Dibromo-2,5-bis(hexyloxy)benzene and 4-carboxyphenylboronic acid as described in the literature (Zhang et al., 2006) and recrystallized from ethanol at room temperature to give the desired crystals suitable for single-crystal X-ray diffraction.

Refinement

H atoms attached to C atoms of the title compound were placed in geometrically idealized positions and treated as riding with C—H distances constrained to 0.93 (aromatic CH), or 0.96 Å (methyl CH3), and 0.97 Å (methylene CH2) and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C) (1.5Ueq for methyl H).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids at the 30% probability level. The disordered components are shown.

Fig. 2.

Fig. 2.

The dimeric structure of the title compound linked by the O—H···O hydrogen bonds.

Crystal data

C25H34O4 F(000) = 864
Mr = 398.52 Dx = 1.121 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 7.2936 (12) Å Cell parameters from 918 reflections
b = 14.689 (2) Å θ = 2.8–17.8°
c = 22.137 (4) Å µ = 0.07 mm1
β = 95.283 (3)° T = 295 K
V = 2361.7 (7) Å3 Block, colourless
Z = 4 0.35 × 0.15 × 0.06 mm

Data collection

Bruker SMART CCD diffractometer 4359 independent reflections
Radiation source: fine-focus sealed tube 1432 reflections with I > 2σ(I)
graphite Rint = 0.087
φ and ω scans θmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.975, Tmax = 0.996 k = −17→17
15777 measured reflections l = −26→26

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061 H-atom parameters constrained
wR(F2) = 0.194 w = 1/[σ2(Fo2) + (0.0705P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max < 0.001
4359 reflections Δρmax = 0.16 e Å3
257 parameters Δρmin = −0.14 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0061 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C20 0.7088 (7) 0.0256 (3) 0.2574 (2) 0.1007 (16) 0.470 (3)
H20A 0.7986 −0.0208 0.2703 0.121* 0.470 (3)
H20B 0.6837 0.0216 0.2136 0.121* 0.470 (3)
C21 0.5320 (5) 0.0098 (4) 0.28753 (19) 0.108 (3) 0.470 (3)
H21A 0.4350 0.0476 0.2679 0.129* 0.470 (3)
H21B 0.4949 −0.0533 0.2821 0.129* 0.470 (3)
C22 0.5551 (5) 0.0315 (5) 0.35456 (16) 0.137 (4) 0.470 (3)
H22A 0.5929 0.0946 0.3594 0.165* 0.470 (3)
H22B 0.6542 −0.0058 0.3734 0.165* 0.470 (3)
C23 0.3866 (6) 0.0171 (4) 0.3885 (2) 0.155 (4) 0.470 (3)
H23A 0.3371 −0.0429 0.3787 0.187* 0.470 (3)
H23B 0.4241 0.0183 0.4317 0.187* 0.470 (3)
C24 0.2371 (8) 0.0856 (3) 0.3751 (2) 0.162 (3) 0.470 (3)
H24A 0.1901 0.0795 0.3328 0.195* 0.470 (3)
H24B 0.2902 0.1460 0.3803 0.195* 0.470 (3)
C25 0.0785 (8) 0.0786 (4) 0.4134 (2) 0.153 (3) 0.470 (3)
H25A −0.0192 0.0445 0.3920 0.229* 0.470 (3)
H25B 0.0353 0.1386 0.4219 0.229* 0.470 (3)
H25C 0.1180 0.0483 0.4508 0.229* 0.470 (3)
C20' 0.7495 (6) 0.0177 (3) 0.2742 (2) 0.1007 (16) 0.530 (3)
H20C 0.8659 −0.0135 0.2835 0.121* 0.530 (3)
H20D 0.6987 −0.0016 0.2342 0.121* 0.530 (3)
C21' 0.6199 (6) −0.0085 (3) 0.3200 (2) 0.108 (3) 0.530 (3)
H21C 0.5838 −0.0714 0.3129 0.129* 0.530 (3)
H21D 0.6861 −0.0053 0.3600 0.129* 0.530 (3)
C22' 0.4489 (5) 0.0478 (2) 0.32045 (16) 0.137 (4) 0.530 (3)
H22C 0.4839 0.1083 0.3347 0.165* 0.530 (3)
H22D 0.3942 0.0537 0.2790 0.165* 0.530 (3)
C23' 0.3055 (5) 0.0122 (3) 0.3584 (2) 0.155 (4) 0.530 (3)
H23C 0.1984 −0.0048 0.3315 0.187* 0.530 (3)
H23D 0.3527 −0.0427 0.3785 0.187* 0.530 (3)
C24' 0.2443 (6) 0.0752 (3) 0.4053 (2) 0.162 (3) 0.530 (3)
H24C 0.2090 0.1325 0.3858 0.195* 0.530 (3)
H24D 0.3487 0.0873 0.4346 0.195* 0.530 (3)
C25' 0.0875 (7) 0.0431 (4) 0.4391 (3) 0.153 (3) 0.530 (3)
H25D 0.0275 −0.0073 0.4180 0.229* 0.530 (3)
H25E 0.0009 0.0918 0.4419 0.229* 0.530 (3)
H25F 0.1336 0.0242 0.4792 0.229* 0.530 (3)
O1 0.7303 (4) 0.4749 (2) 0.48474 (13) 0.1015 (9)
H1 0.6643 0.4951 0.5097 0.152*
O2 0.4582 (4) 0.45546 (17) 0.43055 (11) 0.0937 (9)
O3 1.3854 (4) 0.25963 (18) 0.17662 (11) 0.0957 (9)
O4 0.7809 (4) 0.11432 (17) 0.27390 (12) 0.1056 (10)
C1 0.6290 (7) 0.4451 (3) 0.43801 (19) 0.0811 (12)
C2 0.7271 (6) 0.3934 (2) 0.39327 (17) 0.0735 (10)
C3 0.6246 (5) 0.3488 (3) 0.34666 (18) 0.0766 (11)
H3 0.4969 0.3535 0.3432 0.092*
C4 0.7099 (6) 0.2974 (2) 0.30537 (16) 0.0774 (11)
H4 0.6384 0.2684 0.2741 0.093*
C5 0.9002 (6) 0.2878 (2) 0.30924 (16) 0.0692 (10)
C6 1.0009 (5) 0.3342 (3) 0.35605 (18) 0.0835 (12)
H6 1.1287 0.3303 0.3593 0.100*
C7 0.9163 (6) 0.3863 (3) 0.39816 (17) 0.0832 (11)
H7 0.9869 0.4160 0.4293 0.100*
C8 0.9934 (5) 0.2331 (3) 0.26465 (15) 0.0720 (10)
C9 0.9291 (6) 0.1468 (3) 0.24652 (17) 0.0810 (11)
C10 1.0170 (6) 0.0979 (3) 0.20426 (17) 0.0909 (12)
H10 0.9734 0.0406 0.1923 0.109*
C11 1.1685 (6) 0.1332 (3) 0.17971 (17) 0.0892 (12)
H11 1.2252 0.1001 0.1509 0.107*
C12 1.2361 (6) 0.2173 (3) 0.19762 (17) 0.0791 (11)
C13 1.1469 (5) 0.2661 (3) 0.23992 (15) 0.0761 (11)
H13 1.1922 0.3231 0.2520 0.091*
C14 1.4854 (6) 0.2112 (3) 0.13414 (17) 0.0936 (12)
H14A 1.4047 0.1959 0.0983 0.112*
H14B 1.5351 0.1552 0.1522 0.112*
C15 1.6382 (5) 0.2718 (3) 0.11761 (17) 0.0939 (12)
H15A 1.7197 0.2842 0.1538 0.113*
H15B 1.5863 0.3293 0.1029 0.113*
C16 1.7496 (6) 0.2318 (3) 0.06986 (17) 0.1004 (13)
H16A 1.6698 0.2225 0.0328 0.120*
H16B 1.7964 0.1727 0.0835 0.120*
C17 1.9103 (6) 0.2919 (3) 0.05617 (17) 0.0987 (13)
H17A 1.8627 0.3502 0.0413 0.118*
H17B 1.9872 0.3028 0.0936 0.118*
C18 2.0261 (6) 0.2524 (3) 0.01070 (19) 0.1182 (16)
H18A 1.9485 0.2401 −0.0264 0.142*
H18B 2.0757 0.1947 0.0260 0.142*
C19 2.1840 (6) 0.3126 (3) −0.0042 (2) 0.1344 (18)
H19A 2.1360 0.3676 −0.0230 0.202*
H19B 2.2569 0.2812 −0.0315 0.202*
H19C 2.2591 0.3273 0.0324 0.202*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C20 0.121 (4) 0.072 (3) 0.111 (4) −0.021 (3) 0.019 (3) −0.011 (3)
C21 0.089 (7) 0.075 (4) 0.163 (8) 0.001 (4) 0.031 (6) −0.007 (5)
C22 0.124 (8) 0.105 (5) 0.191 (10) 0.015 (5) 0.057 (7) 0.039 (6)
C23 0.119 (7) 0.115 (5) 0.241 (10) 0.004 (5) 0.063 (7) 0.002 (6)
C24 0.217 (8) 0.172 (7) 0.096 (7) 0.008 (6) 0.006 (6) 0.023 (6)
C25 0.112 (5) 0.173 (8) 0.175 (8) 0.034 (5) 0.020 (5) 0.026 (7)
C20' 0.121 (4) 0.072 (3) 0.111 (4) −0.021 (3) 0.019 (3) −0.011 (3)
C21' 0.089 (7) 0.075 (4) 0.163 (8) 0.001 (4) 0.031 (6) −0.007 (5)
C22' 0.124 (8) 0.105 (5) 0.191 (10) 0.015 (5) 0.057 (7) 0.039 (6)
C23' 0.119 (7) 0.115 (5) 0.241 (10) 0.004 (5) 0.063 (7) 0.002 (6)
C24' 0.217 (8) 0.172 (7) 0.096 (7) 0.008 (6) 0.006 (6) 0.023 (6)
C25' 0.112 (5) 0.173 (8) 0.175 (8) 0.034 (5) 0.020 (5) 0.026 (7)
O1 0.102 (2) 0.112 (2) 0.094 (2) −0.0008 (18) 0.0274 (17) −0.0269 (18)
O2 0.095 (2) 0.103 (2) 0.0856 (19) 0.0112 (18) 0.0216 (17) −0.0026 (16)
O3 0.099 (2) 0.097 (2) 0.0964 (19) −0.0086 (17) 0.0363 (17) −0.0176 (16)
O4 0.120 (2) 0.0675 (18) 0.137 (2) −0.0163 (17) 0.052 (2) −0.0183 (17)
C1 0.096 (4) 0.082 (3) 0.069 (3) −0.008 (3) 0.022 (3) 0.002 (2)
C2 0.084 (3) 0.069 (2) 0.070 (3) −0.001 (2) 0.023 (2) −0.003 (2)
C3 0.080 (3) 0.074 (3) 0.077 (3) 0.000 (2) 0.017 (2) 0.003 (2)
C4 0.081 (3) 0.075 (3) 0.078 (3) −0.007 (2) 0.011 (2) −0.002 (2)
C5 0.080 (3) 0.057 (2) 0.071 (3) −0.001 (2) 0.009 (2) −0.001 (2)
C6 0.070 (3) 0.089 (3) 0.093 (3) 0.001 (2) 0.017 (2) −0.012 (2)
C7 0.087 (3) 0.087 (3) 0.078 (3) −0.006 (2) 0.017 (2) −0.014 (2)
C8 0.083 (3) 0.063 (3) 0.071 (2) 0.004 (2) 0.014 (2) −0.007 (2)
C9 0.094 (3) 0.068 (3) 0.084 (3) −0.004 (2) 0.023 (2) −0.005 (2)
C10 0.120 (4) 0.069 (3) 0.087 (3) −0.010 (3) 0.024 (3) −0.014 (2)
C11 0.108 (3) 0.085 (3) 0.078 (3) −0.001 (3) 0.026 (2) −0.013 (2)
C12 0.083 (3) 0.077 (3) 0.080 (3) −0.002 (3) 0.017 (2) −0.005 (2)
C13 0.084 (3) 0.071 (3) 0.075 (2) 0.002 (2) 0.012 (2) −0.012 (2)
C14 0.106 (3) 0.093 (3) 0.086 (3) 0.005 (3) 0.031 (3) −0.012 (2)
C15 0.095 (3) 0.100 (3) 0.089 (3) 0.004 (3) 0.021 (3) −0.004 (3)
C16 0.099 (3) 0.110 (3) 0.096 (3) 0.002 (3) 0.028 (3) −0.020 (3)
C17 0.100 (3) 0.104 (3) 0.096 (3) 0.002 (3) 0.031 (3) −0.016 (2)
C18 0.110 (4) 0.129 (4) 0.121 (4) 0.001 (3) 0.041 (3) −0.030 (3)
C19 0.117 (4) 0.154 (5) 0.139 (4) −0.019 (3) 0.049 (3) −0.025 (3)

Geometric parameters (Å, °)

C20—O4 1.440 (5) O3—C14 1.432 (4)
C20—C21 1.5236 (17) O4—C9 1.372 (4)
C20—H20A 0.9700 C1—C2 1.483 (5)
C20—H20B 0.9700 C2—C7 1.378 (4)
C21—C22 1.5119 (17) C2—C3 1.383 (4)
C21—H21A 0.9700 C3—C4 1.378 (4)
C21—H21B 0.9700 C3—H3 0.9300
C22—C23 1.5129 (17) C4—C5 1.390 (4)
C22—H22A 0.9700 C4—H4 0.9300
C22—H22B 0.9700 C5—C6 1.392 (4)
C23—C24 1.4930 (17) C5—C8 1.486 (4)
C23—H23A 0.9700 C6—C7 1.393 (4)
C23—H23B 0.9700 C6—H6 0.9300
C24—C25 1.4994 (17) C7—H7 0.9300
C24—H24A 0.9700 C8—C13 1.379 (4)
C24—H24B 0.9700 C8—C9 1.397 (5)
C25—H25A 0.9600 C9—C10 1.383 (5)
C25—H25B 0.9600 C10—C11 1.377 (5)
C25—H25C 0.9600 C10—H10 0.9300
C20'—O4 1.438 (4) C11—C12 1.374 (5)
C20'—C21' 1.4978 (17) C11—H11 0.9300
C20'—H20C 0.9700 C12—C13 1.388 (4)
C20'—H20D 0.9700 C13—H13 0.9300
C21'—C22' 1.4966 (17) C14—C15 1.498 (5)
C21'—H21C 0.9700 C14—H14A 0.9700
C21'—H21D 0.9700 C14—H14B 0.9700
C22'—C23' 1.4938 (17) C15—C16 1.510 (4)
C22'—H22C 0.9700 C15—H15A 0.9700
C22'—H22D 0.9700 C15—H15B 0.9700
C23'—C24' 1.4906 (17) C16—C17 1.520 (5)
C23'—H23C 0.9700 C16—H16A 0.9700
C23'—H23D 0.9700 C16—H16B 0.9700
C24'—C25' 1.4994 (17) C17—C18 1.490 (4)
C24'—H24C 0.9700 C17—H17A 0.9700
C24'—H24D 0.9700 C17—H17B 0.9700
C25'—H25D 0.9600 C18—C19 1.513 (5)
C25'—H25E 0.9600 C18—H18A 0.9700
C25'—H25F 0.9600 C18—H18B 0.9700
O1—C1 1.291 (4) C19—H19A 0.9600
O1—H1 0.8200 C19—H19B 0.9600
O2—C1 1.251 (4) C19—H19C 0.9600
O3—C12 1.372 (4)
O4—C20—C21 109.3 (2) C7—C2—C3 119.4 (4)
O4—C20—H20A 109.8 C7—C2—C1 121.8 (4)
C21—C20—H20A 109.8 C3—C2—C1 118.7 (4)
O4—C20—H20B 109.8 C4—C3—C2 120.6 (4)
C21—C20—H20B 109.8 C4—C3—H3 119.7
H20A—C20—H20B 108.3 C2—C3—H3 119.7
C22—C21—C20 112.1 C3—C4—C5 121.6 (4)
C22—C21—H21A 109.2 C3—C4—H4 119.2
C20—C21—H21A 109.2 C5—C4—H4 119.2
C22—C21—H21B 109.2 C4—C5—C6 116.9 (3)
C20—C21—H21B 109.2 C4—C5—C8 121.9 (4)
H21A—C21—H21B 107.9 C6—C5—C8 121.2 (4)
C21—C22—C23 115.8 C5—C6—C7 122.1 (4)
C21—C22—H22A 108.3 C5—C6—H6 119.0
C23—C22—H22A 108.3 C7—C6—H6 119.0
C21—C22—H22B 108.3 C2—C7—C6 119.4 (4)
C23—C22—H22B 108.3 C2—C7—H7 120.3
H22A—C22—H22B 107.4 C6—C7—H7 120.3
C24—C23—C22 114.8 C13—C8—C9 118.0 (3)
C24—C23—H23A 108.6 C13—C8—C5 120.7 (4)
C22—C23—H23A 108.6 C9—C8—C5 121.3 (4)
C24—C23—H23B 108.6 O4—C9—C10 123.4 (4)
C22—C23—H23B 108.6 O4—C9—C8 116.5 (4)
H23A—C23—H23B 107.5 C10—C9—C8 120.1 (4)
C23—C24—C25 115.4 C11—C10—C9 120.7 (4)
C23—C24—H24A 108.4 C11—C10—H10 119.7
C25—C24—H24A 108.4 C9—C10—H10 119.7
C23—C24—H24B 108.4 C12—C11—C10 120.3 (4)
C25—C24—H24B 108.4 C12—C11—H11 119.9
H24A—C24—H24B 107.5 C10—C11—H11 119.9
O4—C20'—C21' 111.6 (2) O3—C12—C11 125.8 (4)
O4—C20'—H20C 109.3 O3—C12—C13 115.5 (4)
C21'—C20'—H20C 109.3 C11—C12—C13 118.7 (4)
O4—C20'—H20D 109.3 C8—C13—C12 122.3 (4)
C21'—C20'—H20D 109.3 C8—C13—H13 118.9
H20C—C20'—H20D 108.0 C12—C13—H13 118.9
C22'—C21'—C20' 116.2 O3—C14—C15 107.5 (3)
C22'—C21'—H21C 108.2 O3—C14—H14A 110.2
C20'—C21'—H21C 108.2 C15—C14—H14A 110.2
C22'—C21'—H21D 108.2 O3—C14—H14B 110.2
C20'—C21'—H21D 108.2 C15—C14—H14B 110.2
H21C—C21'—H21D 107.4 H14A—C14—H14B 108.5
C23'—C22'—C21' 116.0 C14—C15—C16 113.6 (4)
C23'—C22'—H22C 108.3 C14—C15—H15A 108.9
C21'—C22'—H22C 108.3 C16—C15—H15A 108.9
C23'—C22'—H22D 108.3 C14—C15—H15B 108.9
C21'—C22'—H22D 108.3 C16—C15—H15B 108.9
H22C—C22'—H22D 107.4 H15A—C15—H15B 107.7
C24'—C23'—C22' 116.4 C15—C16—C17 112.8 (3)
C24'—C23'—H23C 108.2 C15—C16—H16A 109.0
C22'—C23'—H23C 108.2 C17—C16—H16A 109.0
C24'—C23'—H23D 108.2 C15—C16—H16B 109.0
C22'—C23'—H23D 108.2 C17—C16—H16B 109.0
H23C—C23'—H23D 107.3 H16A—C16—H16B 107.8
C23'—C24'—C25' 116.4 C18—C17—C16 113.8 (4)
C23'—C24'—H24C 108.2 C18—C17—H17A 108.8
C25'—C24'—H24C 108.2 C16—C17—H17A 108.8
C23'—C24'—H24D 108.2 C18—C17—H17B 108.8
C25'—C24'—H24D 108.2 C16—C17—H17B 108.8
H24C—C24'—H24D 107.4 H17A—C17—H17B 107.7
C24'—C25'—H25D 109.5 C17—C18—C19 114.2 (4)
C24'—C25'—H25E 109.5 C17—C18—H18A 108.7
H25D—C25'—H25E 109.5 C19—C18—H18A 108.7
C24'—C25'—H25F 109.5 C17—C18—H18B 108.7
H25D—C25'—H25F 109.5 C19—C18—H18B 108.7
H25E—C25'—H25F 109.5 H18A—C18—H18B 107.6
C1—O1—H1 109.5 C18—C19—H19A 109.5
C12—O3—C14 117.7 (3) C18—C19—H19B 109.5
C9—O4—C20' 118.6 (3) H19A—C19—H19B 109.5
C9—O4—C20 119.1 (3) C18—C19—H19C 109.5
O2—C1—O1 123.6 (4) H19A—C19—H19C 109.5
O2—C1—C2 120.7 (4) H19B—C19—H19C 109.5
O1—C1—C2 115.7 (4)
O4—C20—C21—C22 −49.3 (6) C6—C5—C8—C13 −43.6 (5)
C20—C21—C22—C23 −179.6 C4—C5—C8—C9 −45.5 (5)
C21—C22—C23—C24 −72.3 C6—C5—C8—C9 136.4 (4)
C22—C23—C24—C25 −173.4 C20'—O4—C9—C10 20.1 (6)
O4—C20'—C21'—C22' 46.6 (6) C20—O4—C9—C10 −1.4 (6)
C20'—C21'—C22'—C23' 169.9 C20'—O4—C9—C8 −158.2 (3)
C21'—C22'—C23'—C24' 124.5 C20—O4—C9—C8 −179.7 (3)
C22'—C23'—C24'—C25' 174.2 C13—C8—C9—O4 177.3 (3)
C21'—C20'—O4—C9 163.6 (3) C5—C8—C9—O4 −2.6 (5)
C21'—C20'—O4—C20 −99.5 (2) C13—C8—C9—C10 −1.0 (5)
C21—C20—O4—C9 −173.0 (3) C5—C8—C9—C10 179.1 (3)
C21—C20—O4—C20' 93.5 (2) O4—C9—C10—C11 −178.1 (3)
O2—C1—C2—C7 175.5 (4) C8—C9—C10—C11 0.1 (6)
O1—C1—C2—C7 −6.7 (5) C9—C10—C11—C12 1.0 (6)
O2—C1—C2—C3 −6.8 (5) C14—O3—C12—C11 −2.8 (5)
O1—C1—C2—C3 171.1 (3) C14—O3—C12—C13 178.3 (3)
C7—C2—C3—C4 0.1 (5) C10—C11—C12—O3 180.0 (3)
C1—C2—C3—C4 −177.7 (3) C10—C11—C12—C13 −1.1 (6)
C2—C3—C4—C5 0.6 (5) C9—C8—C13—C12 0.9 (5)
C3—C4—C5—C6 −1.3 (5) C5—C8—C13—C12 −179.2 (3)
C3—C4—C5—C8 −179.6 (3) O3—C12—C13—C8 179.2 (3)
C4—C5—C6—C7 1.4 (5) C11—C12—C13—C8 0.2 (5)
C8—C5—C6—C7 179.7 (3) C12—O3—C14—C15 179.1 (3)
C3—C2—C7—C6 0.0 (5) O3—C14—C15—C16 −176.5 (3)
C1—C2—C7—C6 177.7 (3) C14—C15—C16—C17 −176.9 (3)
C5—C6—C7—C2 −0.8 (5) C15—C16—C17—C18 178.0 (3)
C4—C5—C8—C13 134.6 (4) C16—C17—C18—C19 178.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.82 1.82 2.632 (4) 174

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2116).

References

  1. Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Kotha, S., Lahiri, K. & Kashinath, D. (2002). Tetrahedron, 58, 9633–9695.
  3. Li, Y.-F., Xu, C., Cen, F.-F., Wang, Z.-Q. & Zhang, Y.-Q. (2008). Acta Cryst. E64, o1930. [DOI] [PMC free article] [PubMed]
  4. Maruyama, S. & Kawanishi, Y. (2002). J. Mater. Chem.12, 2245–2249.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Zhang, P. P., Zhang, T. Y., Zhu, C. F., Diao, Y. X., Wan, Y. Z., Xie, P. & Zhang, R. B. (2006). Chin. J. Polym. Sci.24, 333–339.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808032170/si2116sup1.cif

e-64-o2094-sup1.cif (26.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808032170/si2116Isup2.hkl

e-64-o2094-Isup2.hkl (213.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES