Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 22;64(Pt 11):o2159. doi: 10.1107/S1600536808033965

1,3-Bis(4-methoxy­phen­yl)imidazolidium chloride monohydrate

Yu Wan a, Haiqiang Xin a, Xiumei Chen a, Huahong Xu a, Hui Wu a,*
PMCID: PMC2959710  PMID: 21581019

Abstract

The asymmetric unit of the title compound, C17H17N2O2 +·Cl·H2O, contains one-half of the cation, one-half of a water mol­ecule and a chloride anion. The complete cation is generated by crystallographic two-fold symmetry, with one C atom lying on the rotation axis. The O and Cl atoms have site symmetry 2. The imidazolidium ring is oriented at a dihedral angle of 4.15 (3)° with respect to the 4-methoxy­phenyl ring and an intramolecular C—H⋯O interaction occurs. In the crystal structure, inter­molecular O—H⋯Cl and C—H⋯Cl hydrogen bonds link the mol­ecules. There is a π–π contact between the imidazolidium and 4-methoxy­phenyl rings [centroid-to-centroid distance = 3.625(3 Å]. There is also a C—H⋯π contact between the methyl group and the 4-methoxy­phenyl ring.

Related literature

For general background, see: Lin & Vasam (2005). For bond-length data, see: Allen et al. (1987).graphic file with name e-64-o2159-scheme1.jpg

Experimental

Crystal data

  • C17H17N2O2 +·Cl·H2O

  • M r = 334.79

  • Monoclinic, Inline graphic

  • a = 15.6706 (19) Å

  • b = 9.4198 (9) Å

  • c = 5.4026 (4) Å

  • β = 90.156 (1)°

  • V = 797.50 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 (2) K

  • 0.20 × 0.11 × 0.09 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.951, T max = 0.977

  • 2026 measured reflections

  • 749 independent reflections

  • 688 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.076

  • S = 1.01

  • 749 reflections

  • 107 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808033965/hk2542sup1.cif

e-64-o2159-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033965/hk2542Isup2.hkl

e-64-o2159-Isup2.hkl (37.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C3–C8 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯Cl1 0.85 2.29 3.133 (3) 173
C1—H1⋯O2 0.93 2.13 3.060 (3) 180
C2—H2A⋯Cl1i 0.93 2.69 3.474 (3) 142
C4—H4⋯O2 0.93 2.47 3.391 (3) 170
C9—H9CCg2ii 0.96 2.91 3.629 (3) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (grant No. 20772103), the Natural Science Foundation of Jiangsu Province (grant No. BK 2007028) and the Surpassing Project of Jiangsu Province (grant No. CX07S_016z) for financial support.

supplementary crystallographic information

Comment

Imidazole and its derivatives such as imidazolium cation are important compounds playing important roles in medical, organic and material chemistry (Lin & Vasam, 2005). A broad application of imidazolium now is to synthesize ionic liquids. Recently, ionic liquids are attracting much attention as alternative reaction media for synthesis and catalysis. Its applications in many different areas including separation processes, catalyst, electrochemistry, electrolytes in solar cells and lubricants are widely recognized. Therefore, the need of ionic liquids with specific chemical and physical properties become stronger. We report herein the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1) contains one half-molecule, one half-water molecule and a chloride atom. The bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N1/N1'/C1/C2/C2') and B (C3–C8) are, of course, planar and the dihedral angle between them is A/B = 4.15 (3)° [symmetry code: (') -x, y, -z]. Intramolecular C—H···O and O—H···Cl hydrogen bonds (Table 1) link the molecules.

In the crystal structure, intramolecular C—H···O and O—H···Cl and intermolecular C—H···Cl hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contact between the imidazolidium and 4-methoxyphenyl rings, Cg1···Cg2i [symmetry code: (i) 1 - x, y, 1 - z, where Cg1 and Cg2 are the centroids of the rings A (N1/N1'/C1/C2/C2') and B (C3–C8), respectively] may further stabilize the structure, with centroid-centroid distance of 3.625 (3) Å. There also exist a C—H···π contact (Table 1) between the methyl group and the 4-methoxyphenyl ring.

Experimental

The reaction of 4-methoxybenzenamine (2 mmol) with formaldehyde (aq. 37%, 1 mmol) and glyoxal (aq. 40%, 1 mmol) in ethanol (95%) at 273–278 K for 8 h afforded 1-(2,3-diethoxy-4-(4-methoxyphenyl)cyclopentyl)-4-methoxybenzene (yield; 89%). The title compound was obtained through the oxidization of 1-(2,3-diethoxy-4-(4-methoxyphenyl)cyclopentyl)-4-methoxybenzene by phosgene in DMF at 268–273 K (yield 95%).

Refinement

H atoms were positioned geometrically, with O—H = 0.85 Å (for H2O) and C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,O), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme [symmetry code: (') -x, y, -z].

Fig. 2.

Fig. 2.

A partial packing diagram. Hydrogen bonds are shown as dashed lines.

Crystal data

C17H17N2O2+·Cl·H2O F(000) = 352
Mr = 334.79 Dx = 1.394 Mg m3
Monoclinic, C2 Melting point = 492–494 K
Hall symbol: -C 2y Mo Kα radiation, λ = 0.71073 Å
a = 15.6706 (19) Å Cell parameters from 1340 reflections
b = 9.4198 (9) Å θ = 2.5–28.3°
c = 5.4026 (4) Å µ = 0.26 mm1
β = 90.156 (1)° T = 298 K
V = 797.50 (14) Å3 Block, colourless
Z = 2 0.20 × 0.11 × 0.09 mm

Data collection

Bruker SMART CCD area-detector diffractometer 749 independent reflections
Radiation source: fine-focus sealed tube 688 reflections with I > 2σ(I)
graphite Rint = 0.021
φ and ω scans θmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −18→13
Tmin = 0.951, Tmax = 0.977 k = −9→11
2026 measured reflections l = −6→6

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.1521P] where P = (Fo2 + 2Fc2)/3
749 reflections (Δ/σ)max < 0.001
107 parameters Δρmax = 0.11 e Å3
1 restraint Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.5000 0.84927 (12) 0.5000 0.0800 (5)
O1 0.24434 (13) 0.4740 (2) 0.9080 (3) 0.0519 (5)
O2 0.5000 0.6808 (3) 0.0000 0.0567 (8)
H2 0.5000 0.7335 0.1277 0.068*
N1 0.45802 (12) 0.27396 (19) 0.1594 (3) 0.0334 (5)
C1 0.5000 0.3560 (4) 0.0000 0.0350 (7)
H1 0.5000 0.4547 0.0000 0.042*
C2 0.47435 (17) 0.1342 (3) 0.0983 (5) 0.0444 (6)
H2A 0.4534 0.0545 0.1795 0.053*
C3 0.40340 (14) 0.3225 (3) 0.3567 (4) 0.0335 (5)
C4 0.39574 (17) 0.4670 (3) 0.4036 (5) 0.0420 (6)
H4 0.4262 0.5322 0.3094 0.050*
C5 0.34270 (17) 0.5135 (3) 0.5903 (5) 0.0449 (6)
H5 0.3378 0.6101 0.6225 0.054*
C6 0.29642 (15) 0.4164 (3) 0.7309 (5) 0.0386 (6)
C7 0.30558 (17) 0.2728 (3) 0.6859 (5) 0.0446 (6)
H7 0.2758 0.2073 0.7812 0.054*
C8 0.35934 (16) 0.2262 (3) 0.4979 (5) 0.0440 (6)
H8 0.3654 0.1296 0.4678 0.053*
C9 0.19340 (19) 0.3780 (4) 1.0497 (5) 0.0580 (8)
H9A 0.1588 0.3219 0.9402 0.087*
H9B 0.1573 0.4309 1.1594 0.087*
H9C 0.2299 0.3168 1.1447 0.087*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1591 (13) 0.0423 (5) 0.0387 (5) 0.000 0.0069 (6) 0.000
O1 0.0545 (11) 0.0522 (12) 0.0491 (11) 0.0011 (9) 0.0158 (9) 0.0059 (9)
O2 0.092 (2) 0.0344 (15) 0.0434 (14) 0.000 0.0109 (14) 0.000
N1 0.0365 (11) 0.0278 (10) 0.0358 (10) −0.0015 (8) −0.0027 (8) 0.0024 (8)
C1 0.0400 (18) 0.0271 (15) 0.0379 (15) 0.000 0.0009 (14) 0.000
C2 0.0572 (16) 0.0300 (13) 0.0461 (13) −0.0031 (11) 0.0030 (11) 0.0012 (11)
C3 0.0319 (12) 0.0362 (13) 0.0323 (10) −0.0010 (10) −0.0018 (9) 0.0024 (10)
C4 0.0473 (15) 0.0333 (14) 0.0455 (14) −0.0024 (11) 0.0086 (11) 0.0080 (11)
C5 0.0510 (15) 0.0339 (13) 0.0499 (14) 0.0029 (12) 0.0085 (11) 0.0012 (12)
C6 0.0356 (14) 0.0442 (15) 0.0360 (12) −0.0008 (11) 0.0001 (11) 0.0027 (11)
C7 0.0480 (15) 0.0421 (16) 0.0438 (14) −0.0081 (12) 0.0045 (11) 0.0072 (12)
C8 0.0518 (16) 0.0319 (13) 0.0484 (15) −0.0044 (12) 0.0012 (13) 0.0019 (12)
C9 0.0485 (16) 0.069 (2) 0.0566 (16) −0.0036 (14) 0.0137 (13) 0.0109 (15)

Geometric parameters (Å, °)

O1—C6 1.371 (3) C4—C5 1.380 (4)
O1—C9 1.430 (3) C4—H4 0.9300
O2—H2 0.8500 C5—C6 1.394 (4)
N1—C1 1.332 (3) C5—H5 0.9300
N1—C2 1.382 (3) C6—C7 1.382 (4)
N1—C3 1.443 (3) C7—C8 1.392 (4)
C1—N1i 1.332 (3) C7—H7 0.9300
C1—H1 0.9300 C8—H8 0.9300
C2—C2i 1.334 (5) C9—H9A 0.9600
C2—H2A 0.9300 C9—H9B 0.9600
C3—C8 1.372 (3) C9—H9C 0.9600
C3—C4 1.390 (4)
C6—O1—C9 117.2 (2) C4—C5—H5 119.8
C1—N1—C2 107.8 (2) C6—C5—H5 119.8
C1—N1—C3 126.1 (2) O1—C6—C7 124.9 (2)
C2—N1—C3 126.1 (2) O1—C6—C5 115.6 (2)
N1i—C1—N1 109.1 (3) C7—C6—C5 119.5 (2)
N1i—C1—H1 125.5 C6—C7—C8 120.0 (2)
N1—C1—H1 125.5 C6—C7—H7 120.0
C2i—C2—N1 107.63 (14) C8—C7—H7 120.0
C2i—C2—H2A 126.2 C3—C8—C7 120.2 (2)
N1—C2—H2A 126.2 C3—C8—H8 119.9
C8—C3—C4 120.1 (2) C7—C8—H8 119.9
C8—C3—N1 120.1 (2) O1—C9—H9A 109.5
C4—C3—N1 119.8 (2) O1—C9—H9B 109.5
C5—C4—C3 119.8 (2) H9A—C9—H9B 109.5
C5—C4—H4 120.1 O1—C9—H9C 109.5
C3—C4—H4 120.1 H9A—C9—H9C 109.5
C4—C5—C6 120.4 (2) H9B—C9—H9C 109.5
C2—N1—C1—N1i 0.12 (13) C3—C4—C5—C6 −0.4 (4)
C3—N1—C1—N1i −178.4 (2) C9—O1—C6—C7 −2.5 (4)
C1—N1—C2—C2i −0.3 (3) C9—O1—C6—C5 177.7 (2)
C3—N1—C2—C2i 178.2 (2) C4—C5—C6—O1 −178.7 (2)
C1—N1—C3—C8 175.65 (18) C4—C5—C6—C7 1.5 (4)
C2—N1—C3—C8 −2.6 (3) O1—C6—C7—C8 178.9 (2)
C1—N1—C3—C4 −4.5 (3) C5—C6—C7—C8 −1.3 (4)
C2—N1—C3—C4 177.3 (2) C4—C3—C8—C7 1.1 (3)
C8—C3—C4—C5 −0.9 (4) N1—C3—C8—C7 −179.0 (2)
N1—C3—C4—C5 179.2 (2) C6—C7—C8—C3 0.0 (4)

Symmetry codes: (i) −x+1, y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···Cl1 0.85 2.29 3.133 (3) 173
C1—H1···O2 0.93 2.13 3.060 (3) 180
C2—H2A···Cl1ii 0.93 2.69 3.474 (3) 142
C4—H4···O2 0.93 2.47 3.391 (3) 170
C9—H9C···Cg2iii 0.96 2.91 3.629 (3) 133

Symmetry codes: (ii) x+1/2, y−1/2, z; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2542).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Lin, I. J. B. & Vasam, C. S. (2005). J. Organomet. Chem.690, 3498–3512.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808033965/hk2542sup1.cif

e-64-o2159-sup1.cif (15.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033965/hk2542Isup2.hkl

e-64-o2159-Isup2.hkl (37.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES