Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2008 Oct 22;64(Pt 11):o2167. doi: 10.1107/S1600536808033540

Butyl 2-(3-benzoyl­thio­ureido)acetate

Ibrahim N Hassan a, Bohari M Yamin a, Mohammad B Kassim a,*
PMCID: PMC2959747  PMID: 21581027

Abstract

In the title compound, C14H18N2O3S, the butyl acetate fragment and the benzoyl group adopt a cis–trans configuration, respectively, with respect to the thiono S atom across the C—N bonds. In the crystal packing, the mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds to form a one-dimensional chain along the c axis. The terminal butyl C atom is disordered with occupancies 0.82 (2)and 0.18 (2).

Related literature

For information on bond lengths, see: Allen et al. (1987); For related structures, see: Hassan et al. (2008a ,b ); Yamin & Hassan (2004); Yamin & Yusof (2003).graphic file with name e-64-o2167-scheme1.jpg

Experimental

Crystal data

  • C14H18N2O3S

  • M r = 294.36

  • Monoclinic, Inline graphic

  • a = 14.051 (3) Å

  • b = 7.9482 (18) Å

  • c = 14.116 (3) Å

  • β = 102.753 (3)°

  • V = 1537.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 298 (2) K

  • 0.46 × 0.28 × 0.25 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.906, T max = 0.947

  • 7933 measured reflections

  • 2853 independent reflections

  • 2098 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.136

  • S = 1.03

  • 2853 reflections

  • 187 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808033540/at2648sup1.cif

e-64-o2167-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033540/at2648Isup2.hkl

e-64-o2167-Isup2.hkl (140.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.39 3.203 (2) 158
N2—H2A⋯O1 0.86 1.96 2.631 (2) 134
C2—H2⋯O1i 0.93 2.53 3.328 (3) 144

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Universiti Kebangsaan Malaysia for providing the facilities and the Ministry of Science, Technology and Innovation for the research fund No. UKM-ST-01FRGS0016–2006.

supplementary crystallographic information

Comment

The title compound (I) is a thiourea derivative of glycine analogous to ethyl-2-(3-benzoylthioureido)acetate (II) (Hassan et al., 2008a) and propyl-2-(3-benzoylthioureido)acetate (III) (Hassan et al., 2008b), with the shorter alkyl groups replaced by a butyl group. The molecule maintains the same cis–trans configuration with respect to the positions of the butyl acetate and benzoyl groups, relative to the S atom across the C—N bonds (Fig. 1 and Fig. 2), respectively. There is a disorder in the molecules involving the terminal butyl carbon atom. 'Soft' restrains, SIMU and EADP, were applied to the disorder components, C14 and C14', to resolve the overlapping components. In the final refinement the main disorder component, C14, resides in about 80% occupancy whereas the minor component, C14', occupies 20% at a time.

The compound was synthesized by a similar procedure to that of reported in (II). The bond lengths and angles in the molecules are in normal ranges (Allen et al., 1987) and comparable to those in II and III. The phenyl ring, (C1–C6), and the central fragment, (C6/C7/C8/C9/N1/N2/S1), are essentially planar and the dihedral angle between them is 27.82 (9)°. In the butyl fragment, (C11/C12/C13/O3), the maximum deviation from the mean plane is 0.017 (3)Å for the atom C12. The dihedral angle between the phenyl ring and the butyl group is 14.5 (3)°. The intramolecular N2—H2···O1 and C9—H9B···S1 hydrogen bonds, (Table 1), force the molecule to adopt the present molecular conformation. The intermolecular N1—H1B···O2 and C2—H4A···O1 hydrogen bonds, (Table 2), link the molecules into a chain parallel to the c axis (Fig. 3).

Experimental

Preparation of the compound was carried out according to a previously reported experimental procedures (Hassan et al., 2008a). A yellowish crystal, suitable for X-ray crystallography, was obtained by a slow evaporation from CH2Cl2 solution at room temperature (yield 75%).

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with, Uiso =1.2Ueq (N) for NH 0.86 Å, Uiso=1.2Ueq (C) for aromatic 0.93 Å, Uiso = 1.2Ueq (C) for CH2 0.97 Å and Uiso = 1.5Ueq (C) for CH3 0.96 Å. The disordered component of the butyl group, C14 and C14', was resolved by applying SIMU and EADP constrains and refined anisotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the main (80% occupancy) disorder component of the butyl terminal carbon atom, with displacement ellipsods are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The molecular structure of (I) showing the minor (20% occupancy) disorder component of the butyl terminal carbon atom, with displacement ellipsods are drawn at the 50% probability level.

Fig. 3.

Fig. 3.

Crystal packing of (I) viewed down the a axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

C14H18N2O3S F(000) = 624
Mr = 294.36 Dx = 1.272 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2213 reflections
a = 14.051 (3) Å θ = 3.0–25.5°
b = 7.9482 (18) Å µ = 0.22 mm1
c = 14.116 (3) Å T = 298 K
β = 102.753 (3)° Block, colourless
V = 1537.5 (6) Å3 0.46 × 0.28 × 0.25 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2853 independent reflections
Radiation source: fine-focus sealed tube 2098 reflections with I > 2σ(I)
graphite Rint = 0.022
ω scans θmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −17→15
Tmin = 0.906, Tmax = 0.947 k = −9→9
7933 measured reflections l = −17→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.3732P] where P = (Fo2 + 2Fc2)/3
2853 reflections (Δ/σ)max < 0.001
187 parameters Δρmax = 0.24 e Å3
6 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C5 0.38240 (15) 0.4009 (3) 0.51713 (17) 0.0528 (6)
H5 0.3785 0.4057 0.4506 0.063*
C4 0.31404 (17) 0.4833 (3) 0.55659 (18) 0.0588 (6)
H4 0.2645 0.5445 0.5167 0.071*
C3 0.31902 (17) 0.4750 (3) 0.65504 (18) 0.0606 (6)
H3 0.2730 0.5312 0.6816 0.073*
C2 0.39148 (17) 0.3842 (3) 0.71373 (17) 0.0626 (7)
H2 0.3936 0.3768 0.7799 0.075*
C1 0.46139 (16) 0.3037 (3) 0.67530 (16) 0.0545 (6)
H1 0.5114 0.2445 0.7158 0.065*
C6 0.45697 (14) 0.3111 (3) 0.57640 (15) 0.0460 (5)
C7 0.52769 (15) 0.2248 (3) 0.52830 (15) 0.0480 (5)
C8 0.69838 (15) 0.1216 (3) 0.55880 (15) 0.0477 (5)
C9 0.75837 (16) −0.0258 (3) 0.43410 (16) 0.0563 (6)
H9A 0.7547 −0.1438 0.4503 0.068*
H9B 0.8220 0.0155 0.4671 0.068*
C10 0.74863 (17) −0.0094 (3) 0.32743 (17) 0.0526 (5)
C11 0.82911 (19) −0.0919 (4) 0.20303 (18) 0.0751 (8)
H11A 0.8197 0.0214 0.1771 0.090*
H11B 0.7797 −0.1641 0.1645 0.090*
C12 0.92815 (19) −0.1537 (4) 0.1994 (2) 0.0751 (8)
H12A 0.9353 −0.2686 0.2231 0.090*
H12B 0.9765 −0.0855 0.2424 0.090*
C13 0.9475 (2) −0.1483 (5) 0.0995 (2) 0.0897 (9)
H13A 0.9217 −0.2484 0.0637 0.108*
H13B 0.9161 −0.0507 0.0648 0.108*
C14' 1.050 (2) −0.139 (7) 0.108 (2) 0.111 (3) 0.18 (2)
H14E 1.0727 −0.0282 0.1288 0.166* 0.18 (2)
H14F 1.0652 −0.1633 0.0466 0.166* 0.18 (2)
H14D 1.0819 −0.2199 0.1554 0.166* 0.18 (2)
C14 1.0392 (5) −0.2373 (17) 0.0885 (5) 0.111 (3) 0.82 (2)
H14B 1.0456 −0.2286 0.0223 0.166* 0.82 (2)
H14A 1.0356 −0.3537 0.1055 0.166* 0.82 (2)
H14C 1.0947 −0.1862 0.1306 0.166* 0.82 (2)
S1 0.80227 (5) 0.10476 (11) 0.64102 (5) 0.0744 (3)
O1 0.50502 (11) 0.1805 (2) 0.44383 (11) 0.0647 (5)
O2 0.68594 (12) 0.0656 (2) 0.27269 (13) 0.0709 (5)
O3 0.82116 (12) −0.0935 (2) 0.30338 (11) 0.0648 (5)
N1 0.61986 (12) 0.2016 (2) 0.58446 (12) 0.0492 (5)
H1A 0.6302 0.2413 0.6425 0.059*
N2 0.68439 (13) 0.0652 (2) 0.46870 (13) 0.0517 (5)
H2A 0.6292 0.0835 0.4295 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C5 0.0497 (12) 0.0591 (14) 0.0492 (13) −0.0022 (11) 0.0100 (10) 0.0037 (11)
C4 0.0504 (13) 0.0584 (15) 0.0658 (15) 0.0052 (11) 0.0090 (11) 0.0063 (12)
C3 0.0552 (14) 0.0631 (16) 0.0670 (16) 0.0002 (11) 0.0209 (12) −0.0101 (12)
C2 0.0611 (15) 0.0801 (18) 0.0481 (13) −0.0007 (13) 0.0154 (11) −0.0050 (12)
C1 0.0499 (12) 0.0630 (15) 0.0481 (13) 0.0003 (11) 0.0057 (10) 0.0024 (11)
C6 0.0421 (11) 0.0488 (12) 0.0463 (12) −0.0056 (9) 0.0077 (9) −0.0015 (10)
C7 0.0460 (12) 0.0511 (13) 0.0459 (12) −0.0034 (10) 0.0076 (9) 0.0015 (10)
C8 0.0470 (12) 0.0481 (13) 0.0495 (13) −0.0026 (10) 0.0137 (10) 0.0069 (10)
C9 0.0539 (13) 0.0606 (15) 0.0566 (14) 0.0078 (11) 0.0171 (11) 0.0027 (11)
C10 0.0485 (12) 0.0540 (14) 0.0575 (14) −0.0006 (11) 0.0162 (11) −0.0009 (11)
C11 0.0707 (17) 0.101 (2) 0.0565 (15) 0.0157 (15) 0.0201 (13) −0.0033 (14)
C12 0.0645 (16) 0.092 (2) 0.0718 (17) 0.0078 (14) 0.0222 (13) −0.0051 (15)
C13 0.087 (2) 0.110 (2) 0.0789 (19) 0.0225 (18) 0.0322 (16) 0.0006 (17)
C14' 0.104 (3) 0.147 (7) 0.093 (3) 0.051 (4) 0.048 (3) 0.010 (4)
C14 0.104 (3) 0.147 (7) 0.093 (3) 0.051 (4) 0.048 (3) 0.010 (4)
S1 0.0534 (4) 0.1112 (6) 0.0549 (4) 0.0174 (4) 0.0040 (3) −0.0017 (4)
O1 0.0538 (9) 0.0881 (12) 0.0482 (10) 0.0065 (9) 0.0030 (7) −0.0130 (9)
O2 0.0631 (11) 0.0901 (13) 0.0620 (11) 0.0204 (10) 0.0188 (9) 0.0141 (9)
O3 0.0613 (10) 0.0803 (12) 0.0557 (10) 0.0175 (9) 0.0195 (8) −0.0007 (8)
N1 0.0449 (10) 0.0609 (12) 0.0418 (9) 0.0013 (9) 0.0096 (7) −0.0019 (8)
N2 0.0454 (10) 0.0605 (12) 0.0494 (11) 0.0029 (9) 0.0109 (8) −0.0034 (9)

Geometric parameters (Å, °)

C5—C4 1.377 (3) C10—O2 1.195 (3)
C5—C6 1.386 (3) C10—O3 1.324 (3)
C5—H5 0.9300 C11—O3 1.445 (3)
C4—C3 1.378 (3) C11—C12 1.487 (4)
C4—H4 0.9300 C11—H11A 0.9700
C3—C2 1.368 (3) C11—H11B 0.9700
C3—H3 0.9300 C12—C13 1.494 (4)
C2—C1 1.380 (3) C12—H12A 0.9700
C2—H2 0.9300 C12—H12B 0.9700
C1—C6 1.385 (3) C13—C14' 1.42 (3)
C1—H1 0.9300 C13—C14 1.507 (7)
C6—C7 1.489 (3) C13—H13A 0.9700
C7—O1 1.216 (2) C13—H13B 0.9700
C7—N1 1.373 (3) C14'—H14E 0.9600
C8—N2 1.322 (3) C14'—H14F 0.9600
C8—N1 1.389 (3) C14'—H14D 0.9600
C8—S1 1.658 (2) C14—H14B 0.9600
C9—N2 1.437 (3) C14—H14A 0.9600
C9—C10 1.487 (3) C14—H14C 0.9600
C9—H9A 0.9700 N1—H1A 0.8600
C9—H9B 0.9700 N2—H2A 0.8600
C4—C5—C6 120.2 (2) O3—C11—H11B 110.1
C4—C5—H5 119.9 C12—C11—H11B 110.1
C6—C5—H5 119.9 H11A—C11—H11B 108.5
C5—C4—C3 120.0 (2) C11—C12—C13 112.9 (2)
C5—C4—H4 120.0 C11—C12—H12A 109.0
C3—C4—H4 120.0 C13—C12—H12A 109.0
C2—C3—C4 120.1 (2) C11—C12—H12B 109.0
C2—C3—H3 120.0 C13—C12—H12B 109.0
C4—C3—H3 120.0 H12A—C12—H12B 107.8
C3—C2—C1 120.4 (2) C14'—C13—C12 108.2 (12)
C3—C2—H2 119.8 C14'—C13—C14 32.8 (19)
C1—C2—H2 119.8 C12—C13—C14 115.0 (3)
C2—C1—C6 119.9 (2) C14'—C13—H13A 110.1
C2—C1—H1 120.0 C12—C13—H13A 110.1
C6—C1—H1 120.0 C14—C13—H13A 77.9
C1—C6—C5 119.4 (2) C14'—C13—H13B 110.1
C1—C6—C7 123.66 (19) C12—C13—H13B 110.1
C5—C6—C7 116.99 (19) C14—C13—H13B 128.8
O1—C7—N1 122.4 (2) H13A—C13—H13B 108.4
O1—C7—C6 121.58 (19) C13—C14'—H14E 109.5
N1—C7—C6 115.97 (18) C13—C14'—H14F 109.5
N2—C8—N1 116.64 (19) C13—C14'—H14D 109.5
N2—C8—S1 124.56 (17) C13—C14—H14B 109.5
N1—C8—S1 118.80 (16) C13—C14—H14A 109.5
N2—C9—C10 112.83 (19) H14B—C14—H14A 109.5
N2—C9—H9A 109.0 C13—C14—H14C 109.5
C10—C9—H9A 109.0 H14B—C14—H14C 109.5
N2—C9—H9B 109.0 H14A—C14—H14C 109.5
C10—C9—H9B 109.0 C10—O3—C11 118.49 (19)
H9A—C9—H9B 107.8 C7—N1—C8 127.81 (18)
O2—C10—O3 125.8 (2) C7—N1—H1A 116.1
O2—C10—C9 126.0 (2) C8—N1—H1A 116.1
O3—C10—C9 108.1 (2) C8—N2—C9 122.18 (19)
O3—C11—C12 107.8 (2) C8—N2—H2A 118.9
O3—C11—H11A 110.1 C9—N2—H2A 118.9
C12—C11—H11A 110.1

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.86 2.39 3.203 (2) 158
N2—H2A···O1 0.86 1.96 2.631 (2) 134
C2—H2···O1i 0.93 2.53 3.328 (3) 144
C9—H9B···S1 0.97 2.63 3.032 (2) 105

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2648).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008a). Acta Cryst. E64, o1727. [DOI] [PMC free article] [PubMed]
  4. Hassan, I. N., Yamin, B. M. & Kassim, M. B. (2008b). Acta Cryst. E64, o2083. [DOI] [PMC free article] [PubMed]
  5. Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  6. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  9. Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513–o2514.
  10. Yamin, B. M. & Yusof, M. S. M. (2003). Acta Cryst. E59, o151–o152.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808033540/at2648sup1.cif

e-64-o2167-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808033540/at2648Isup2.hkl

e-64-o2167-Isup2.hkl (140.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES